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Abstract

The state of the art in visual object retrieval from large

databases is achieved by systems that are inspired by text

retrieval. A key component of these approaches is that local

regions of images are characterized using high-dimensional

descriptors which are then mapped to “visual words” se-

lected from a discrete vocabulary.

This paper explores techniques to map each visual re-

gion to a weighted set of words, allowing the inclusion of

features which were lost in the quantization stage of pre-

vious systems. The set of visual words is obtained by se-

lecting words based on proximity in descriptor space. We

describe how this representation may be incorporated into

a standard tf-idf architecture, and how spatial verification

is modified in the case of this soft-assignment.

We evaluate our method on the standard Oxford Build-

ings dataset, and introduce a new dataset for evaluation.

Our results exceed the current state of the art retrieval per-

formance on these datasets, particularly on queries with

poor initial recall where techniques like query expansion

suffer. Overall we show that soft-assignment is always ben-

eficial for retrieval with large vocabularies, at a cost of in-

creased storage requirements for the index.

1. Introduction

We are interested in the problem of specific object re-

trieval from an image database. In other words, given a

query image in which a particular object has been selected,

our system should return from its corpus a set of represen-

tative images in which that object appears. This is a harder

problem than whole-image retrieval, since the query object

may be occluded, lit differently, or seen from different view-

points in returned images. On the other hand it is in many

ways simpler, and better specified, than the related problem

of object category retrieval, which requires some abstrac-

tion of the common visual appearance of all objects within

a given category.

Several successful object retrieval systems have recently

appeared [7, 9, 14, 15], using approaches inspired by the

text retrieval literature in the manner of [17]. A key compo-

nent of these approaches (which are reviewed in more detail

in section 2) is that local regions of images are characterized

using “visual words” selected from a discrete vocabulary.

The function that maps a high-dimensional region descrip-

tor into this vocabulary is an active area of research, but the

most successful approaches all perform some form of clus-

tering or quantization using example images as a training

set.

In this paper, we build on previous work that trains its

vocabulary using a small set of representative images. Sub-

stantial engineering effort has been devoted in recent years

to the study of feature detection, summarizing image re-

gions using invariant descriptors, and clustering these de-

scriptors, and we adopt state of the art methods for these

tasks. The novelty of our work is in the use that we make

of the clustered descriptors. Recent work [7, 15] has shown

that these methods can suffer from poor recall: feature de-

tectors often fail to fire even on near-duplicate images, and

query regions often fail to contain the visual words needed

to retrieve matches from the database. One very successful

technique for boosting recall is query expansion [7] which

achieves substantially better retrieval performance when the

visual words in a query region are augmented using words

taken from matching regions in the initial results set. How-

ever, this method relies on sufficient recall from the ini-

tial query to get the process started, and can fail badly on

queries with poor initial recall.

Our approach, described in section 3, specifically ad-

dresses the problem of recall from an initial query, and

is therefore complementary to query expansion methods.

It relies on “soft-assignment,” so that a high-dimensional

descriptor is mapped to a weighted combination of visual

words, rather than “hard-assigned” to a single word as in

previous work. Thus we address the problem of failing to

retrieve image patches whose descriptors have been “lost in

quantization”.
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The paper mainly concentrates on a mechanism we call

“descriptor-space soft assignment,” which generates a sin-

gle descriptor for each patch as is usual, but then associates

that descriptor with r nearby cluster centers instead of its

single nearest-neighbour cluster. This can be thought of

as very loosely analogous to “stemming” in text retrieval

where a search term is expanded to include textually sim-

ilar variants. We also briefly discuss experiments using

“image-space soft assignment” where we generate multi-

ple descriptors by perturbing the image patch directly, and

choose visual words to approximate the space of these per-

turbed descriptors. The function from images to descrip-

tors is not continuous, so this can result in descriptors

which are distant. This technique bears some resemblance

to synonym/acronym expansion in text retrieval, where an

acronym such as “CIA” might be expanded to the search

terms “Central Intelligence Agency.”

Section 4 explains how the soft-assigned words are used

in a retrieval system. Section 5 describes the datasets we

use to evaluate the approach, and section 6 describe the ex-

periments we have performed. We show results both when

the underlying vocabulary is trained on the corpus images,

and also when training is performed on similar but distinct

scenes. We report substantial improvement to the baseline

using soft assignment, particularly when the vocabulary is

not trained on the corpus images. In section 7 we examine

the performance of image-based soft assignment in compar-

ison to the descriptor based method. Section 8 concludes

with a discussion.

2. State of the Art

This section overviews the state of the art of real-time

large image corpus object retrieval. Most of the successful

engines are based on the bag-of-visual-words approach [7,

9, 14, 15, 17].

Image description. For each image in the dataset affine

invariant interest regions are detected. Popular choices are

MSER [12, 14] or multi-scale Hessian interest points [13,

15]. Each detected feature determines an affine covariant

measurement region, typically an ellipse defined by the sec-

ond moment matrix of the region. An affine invariant de-

scriptor is then extracted from the measurement regions.

Often a 128-dimensional SIFT [11] descriptor is used.

Quantization. Vector quantization of feature descriptors

for object retrieval was originally suggested in [17]. In that

work, small vocabularies of 10K and 6K clusters were gen-

erated using k-means. The time complexity of the k-means

algorithm is O(kN), where N is the number of data points.

Such a time complexity is feasible for small values of k,

but renders the algorithm intractable for large vocabularies

(k > 105).

It was shown [14, 15] that for large scale image / ob-

ject retrieval a more discriminative vocabulary is necessary.

The time complexity is, in the case of [14], reduced by ex-

ploiting a nested structure of Voronoi cells, known as Hier-

archical k-means (HKM) [8]. Instead of solving one clus-

tering with a large number of cluster centers, a tree orga-

nized hierarchy of smaller clustering problems is solved.

This reduces the time complexity to O(N log k). In [15]

it was shown that this reduced time complexity could also

be achieved by replacing the nearest neighbour search of

k-means by a KD-forest approximation [11, 16]. The ex-

periments of [15] demonstrated that vector quantization ob-

tained by this Approximate k-means (AKM) is superior

to HKM. A fixed quantization method (complexity O(N))
was suggested in [18].

Search engine. The search engines used for image / par-

ticular object search have been inspired by widely used text

search engines [3, 5]. Such a search engine uses the vector-

space model of information-retrieval. The query and each

document in the corpus is represented as a sparse vector of

term (visual word) occurrences and search then proceeds by

calculating the similarity between the query vector and each

document vector. The standard tf-idf weighting scheme [4]

is used, which down-weights the contribution that com-

monly occurring, and therefore less discriminative, words

make to the relevance score.

For computational speed, the engine stores word occur-

rences in an index, which maps individual words to the doc-

uments in which they occur. For sparse queries, this can

result in a substantial speedup over examining every doc-

ument vector, as only documents which contain common

(to the query) words need to be examined. The scores for

each document are accumulated so that they are identical to

explicitly computing the similarity.

Spatial verification. Up to this point, the bag-of-visual-

words based retrieval was discussed and all the spatial in-

formation was ignored. As shown in [7, 15, 17], the re-

sults can be significantly improved using the feature layout

to verify the consistency of the retrieved images with the

query region.

The initially returned result list is re-ranked by estimat-

ing affine homographies between the query image and each

of the top-ranking results from the initial query. The score

used in re-ranking is computed from the number of verified

inliers for each result.

Contextual dissimilarity measure. Typically, the dissimi-

larity between the (appropriately normalized) query and im-

age visual word vectors is measured by the L1 or L2 dis-

tance [7, 14, 15, 17]. These standard dissimilarity measures

could be further modified to depend on the local density

around each image vector in the visual word vector space,

essentially “pushing” images in the densely populated areas

of the vector space away from the query. This “contextual



dissimilarity measure” [9] was found to improve retrieval

performance on the image retrieval benchmark of [14], but

requires computing k-nearest neighbouring images for each

image in the database, which may become prohibitively ex-

pensive on very large image collections.

Query expansion. In the text retrieval literature, a stan-

dard method for improving performance is query expansion,

where a number of the highly ranked documents from the

original query are reissued as a new query. This allows the

retrieval system to use relevant terms not present in the orig-

inal query.

In [7], query expansion was brought into the visual do-

main. A strong spatial constraint between the query image

and each result allows for an accurate verification of each

return, suppressing the false positives which typically ruin

text-based query expansion. These verified images can then

be used to learn a latent feature model to enable controlled

construction of expanded queries.

The simplest well performing query expansion method is

called average query expansion. A new query is constructed

by averaging a number of document descriptors. The doc-

uments used for the expanded query are taken from the top

verified results of the original query.

2.1. The baseline

For a baseline retrieval system, we follow the architec-

ture of our previous work [15]. We detect Hessian inter-

est points and fit affine covariant ellipses [13]. On aver-

age, there are 3,300 regions detected on an image of size

1024× 768. For each of these affine regions, we compute a

128-dimensional SIFT descriptor [11].

A visual vocabulary of 1M words is generated using an

approximate k-means clustering method [15]. Each visual

descriptor is assigned, via approximate nearest neighbour

search, to a single cluster center, giving a standard bag-of-

visual-words model. These quantized visual features are

then used to index the images for the search engine.

To reach the state of the art results, we employ the

query expansion method of [7], using the average expan-

sion method.

3. Soft Assignment of Visual Words

In the bag-of-visual-words representation two image fea-

tures are considered identical if they are assigned to the

same visual word (cluster center). On the other hand, two

features assigned to different (even very close) clusters are

considered totally different. In effect the quantization pro-

vides a very coarse approximation to the actual distance be-

tween the two features — zero if assigned to the same vi-

sual word, and infinite otherwise. In practice this hard as-

signment leads to errors because of variability in the feature

descriptor.

This variability arises from many sources: image noise,

varying scene illumination, instability in the feature detec-

tion process and non-affine changes in the measurement re-

gions. Distortions that cannot be handled by the invariance

built into the descriptor result in a change in the descriptor

value, and in turn this may result in the same surface patch

being assigned to different visual words in different images.

Typically, descriptors corresponding to the same physical

patch in different images will be close together, however

this is not always the case. Severe image distortions, such as

strong lighting variations (e.g. cast shadows) or self occlu-

sions can abruptly change the descriptor value of the patch.

In many cases that are of our interest, even a small change

in the patch appearance can change the descriptor dramat-

ically. These cases are related to errors in establishing an

invariant coordinate system (e.g. during dominant orienta-

tion detection in the SIFT descriptor).

Our objective therefore is to describe an image of a sur-

face patch by a weighted combination of visual words, such

that there is an improvement in matching (compared to a

hard assignment) of the surface patch between images. In

this paper we describe two different approaches to choos-

ing this weighted combination. In the first approach, re-

ferred to as “descriptor-space soft-assignment”, we extract

a single descriptor from each image patch and assign it to

several visual words nearby in the descriptor space. In sec-

tion 7 we briefly discuss a second approach, referred to as

“image-space soft-assignment”, in which we extract a set

of descriptors from each image patch by synthesizing de-

formations of the patch in the image space and assign each

descriptor to the nearest visual word.

3.1. Descriptor­space soft assignment

The term “soft assignment” is commonly used [6] in his-

togram comparisons. It describes techniques that identify

a continuous value with a weighted combination of nearby

bins, or “smooth” a histogram so that the count in one bin

is spread to neighbouring bins.

In this section we investigate a descriptor dependent soft-

assignment where the weight assigned to neighbouring cells

depends on the distance between the descriptor and the cell

centers. The intuition is that the weight vector can act as

a local coordinate frame to more precisely localize the de-

scriptor in SIFT space. The benefit of such soft-assignments

are illustrated in figure 1.

As is usual in soft-assignment (for example in estimat-

ing Gaussian Mixture Models [6]) the weight assigned to a

cell is an exponential function of the distance to the clus-

ter center. We assign weights to each cell proportional to

exp− d2

2σ2 , where d is the distance from the cluster center to

the descriptor point. In practice σ is chosen so that a sub-

stantial weight is only assigned to a small number of cells.

The essential parameters are then: the spatial scale σ and
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Figure 1. Benefits of soft assignment. Points A-E represent clus-

ter centers (visual words), and points 1–4 are features. Here we

demonstrate two benefits of soft assignment: (i) In hard assign-

ment, features 3 and 4 will never be matched as they are assigned

to different visual words despite being close in descriptor space.

Using soft-assignment, words 3 and 4 will be assigned to A, B

and C (with certain weights) and can be matched strongly as they

are close in the descriptor space; (ii) In hard assignment, features

1–3 are all assigned to word A equally and there is no way of dis-

tinguishing that 2 and 3 are closer than 1 and 3. Soft-assignment

provides a way of recording this information, and subsequently

giving more weight to the closer matches and less to the further.

the number, r, of nearest neighbours considered. Note that

after computing the weights to the r nearest neighbours, the

descriptor is represented by an r-vector, which is then L1

normalized. In section 6, we give experimental result for

several settings of values for σ and r.

The descriptor-space soft assignment “plugs into” the

standard index architecture of the search engine at a cost

of more storage (since the index is less sparse) but limited

extra run time complexity at the index stage. There is a cost

at the spatial verification stage however.

4. Large scale object retrieval with soft visual

words

Changing the representation of a visual feature from a

single word to an r-vector affects elements of the retrieval

system that have until now assumed a single word id per

feature. We now describe the changes required in the search

engine.

4.1. TF–IDF weighting and soft assignment

The tf-idf weighting scheme is generally applied only to

integer counts of visual-words in images. It requires some

modification to handle a descriptor represented by a weight

r-vector. We adapt this weighting scheme for soft cluster-

ing as follows. For the term frequency we simply use the

normalized weight value for each visual word. For the in-

verse document feature measure, we found that counting an

occurrence of a visual word as one, no matter how small its

weight, gave the best results.

4.2. Spatial re­ranking and soft assignment

When advancing from hard to soft assignment, one of

the major performance considerations is the potential for

growth in the number of tentative correspondences between

two images (defined as the set of features which share at

least one visual word assignment). This growth is because

one feature in an image has more assigned visual words and

can potentially match more features in the other image.

However, since our visual vocabulary is specific and

large (1M), the probability that two unrelated features are

assigned to the same visual word is small. Therefore, we

empirically observe a roughly linear growth in number of

tentative correspondences as the number of nearest neigh-

bours taken increases. For r = 3, we find that the average

increase in tentative correspondences is 3.24.

The set of tentative correspondences that are consistent

with an affine homography is determined by a RANSAC

style estimation, as described in [15]. This requires a scor-

ing for each hypothesised transformation, and the scoring

function can make use of the weighted vector associated

with each feature, rather than simply counting the number

of inlier correspondences.

Suppose features x and y are matched and their weight

r-vectors are wx and wy respectively, then for exam-

ple the scoring function could be the scalar product

wx.wy , or the (cosine of the) angle between the vectors

wx.wy/||wx||||wy|| (since wx and wy are L1, not L2, nor-

malized). The score for the hypothesis is simply taken as the

sum of the scores for all the inliers. We give performance

results over several scoring functions in section 6.

5. Datasets and Evaluation

To evaluate our system, we use the Oxford Buildings

dataset available from [1]. This is a relatively small set

of 5K images with an extensive associated ground truth for

55 standard queries: 5 queries for each of 11 Oxford land-

marks. To examine the generalization of our system when

the testing dataset (here Oxford) differs from the dataset

used to generate the quantization (visual words), we have

collected a new training dataset of a different city – Paris.

We also use an additional unlabeled dataset, Flickr1 which

is assumed not to contain images of the ground truth land-

marks. The images in these additional datasets are used as

“distractors” for the system and provide an important test

for the scalability of our method. These three datasets are

described below and compared in table 1. The set of im-

ages downloaded from two or more of Flickr’s tags will not

in general be disjoint, so we remove exact duplicate images

from all our datasets.

The Oxford dataset. This dataset [1] of 5,062 images is a

standard particular object retrieval test set [7, 15]. A sample

of 4 query images is shown in figure 2, for the rest see [1].
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Figure 2. Some of the 55 Oxford query images.

Figure 3. A random sample of images from the Paris dataset.

Dataset Number of images Number of features

Oxford 5,062 16,334,970

Paris 6,300 20,219,488

Flickr1 99,782 277,770,833

Total 111,144 314,325,291
Table 1. The number of descriptors for each dataset.

The Paris dataset. This dataset, used for training the SIFT

descriptor quantizers in some experiments in this paper,

contains 6,300 high resolution (1024 × 768) images ob-

tained from Flickr by querying the associated text tags for

famous Paris landmarks such as “Paris Eiffel Tower” or

“Paris Triomphe.” Example images from this dataset are

shown in figure 3. The motivation for choosing Paris land-

marks is to have images of similar scenes to those of the Ox-

ford landmarks (i.e. buildings, often with some similarities

in architectural style), but without having identical build-

ings to those used in the Oxford quantization. More details

for this dataset can be found in [2].

Flickr1 dataset. This dataset was crawled from Flickr’s

145 most popular tags and consists of 99,782 high resolu-

tion images.

5.1. Evaluation procedure

To evaluate performance we use Average Precision (AP)

computed as the area under the precision-recall curve. Pre-

cision is the number of retrieved positive images relative to

the total number of images retrieved. Recall is the number

of retrieved positive images relative to the total number of

positives in the corpus. An ideal precision-recall curve has

precision 1 over all recall levels, which corresponds to an

Average Precision of 1.

An Average Precision score is computed for each of the

5 queries for a landmark specified in the Oxford Buildings

dataset, and these are averaged to obtain a Mean Average

Precision (mAP) for the landmark. For some experiments,

in addition to the mAP, we also display precision-recall
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Figure 4. Some examples of the improvement in mAP obtained by

using soft-assignment on two different queries, with spatial and

query-expansion turned on. The results for hard-assignment is

shown in blue with the descriptor soft-assignment method shown

in red.

curves which can sometimes better illustrate the success of

our system in improving recall.

We evaluate our system on two databases – D1 com-

posed of only the Oxford dataset (5,062 images), and D1

+ D2 composed of Oxford (D1) + Flickr1 (D2) datasets

The combined datasets of Oxford and Flickr1, consists of

104,844 images. The vector quantizers are trained on either

the Oxford or Paris datasets. The effect of the training data

used for quantization and the size of the image database on

the performance is discussed in section 6.

6. Experimental evaluation

The goal here is to evaluate the benefits of descriptor

based soft-assignment. In particular, we test the sensitiv-

ity of soft-assignment to different parameter settings, com-

pare performance to alternative quantization methods, and

evaluate the benefit of soft-assignment when combined with

spatial re-ranking and query expansion. Unless otherwise

stated the performance is measured on the D1 dataset con-

sisting of 5K Oxford images.

Parameter variation: Table 2 shows the retrieval perfor-

mance with different soft-assignment parameter settings as

evaluated on the Oxford dataset, trained using both Oxford

and Paris. Here we test only the bag-of-visual-words re-

trieval with tf-idf weighting as described in section 4.1, i.e.

no spatial verification or query expansion is used.

It can be seen from the table that the performance of

the system as these two parameters are varied changes very

little. In particular, soft-assigning to more than 4 near-

est neighbours doesn’t bring any additional benefit, which

might be attributed to increased confusion during matching.

Therefore, as a compromise between retrieval quality and

extra computational cost and memory requirements, we use

r=3, σ2=6,250 in all subsequent experiments.

Comparison with other methods: Here we compare the

bag-of-visual-words retrieval (i.e. no spatial ranking or

query expansion) using the soft- and hard-assigned vocab-

ularies with our implementation of hierarchical k-means

(HKM) of [14] and fixed quantization of [18]. In the case of
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Figure 5. Comparing matching results with and without soft-

assignment. The query image and region is shown on the left with

the results of matching after spatial verification shown to the right.

When soft-assignment is used, many more inliers are found and

the object is better localized in the target image.

HKM we used the L2 distance with 1 and 2 levels of hier-

archical scoring (L1 was found to degrade performance on

this dataset [15]). Results are summarized in table 3. The

soft-assigned vocabulary performs the best when trained ei-

ther on the Oxford or Paris datasets. Note however, the drop

in performance (consistent for all methods) when the vocab-

ulary is trained on images of a different city (Paris) than the

test dataset (Oxford).

The fixed quantization method [18] performs signifi-

cantly worse as it is not suitable for specific object retrieval.

Training data

r σ2 Oxford Paris

3 5,000 0.671 0.495

3 6,250 0.673 0.494

3 7,500 0.672 0.493

5 5,000 0.674 0.502

5 6,250 0.673 0.499

5 7,500 0.673 0.496
Table 2. Comparison of different parameter settings for the de-

scriptor based soft-assignment on the Oxford dataset. These re-

sults are for a 1M vocabulary, tested on D1.

Training data

Method Oxford Paris

Fixed Quantization [18] 0.164

HKM [14] (1 level) 0.422 0.401

HKM [14] (2 level) 0.410 0.340

Hard [15] 0.614 0.403

Soft 0.673 0.494
Table 3. Comparison of soft- and hard-assigned vocabularies with

the hierarchical k-means and fixed quantization. The performance

is evaluated on the Oxford dataset. Except for the fixed quantiza-

tion method (which does allow for altering vocabulary size) all the

methods used 1M visual words.

We believe that this method splits dense regions of the de-

scriptor space arbitrarily along dimension axes, and the bins

do not equally split the unit hypersphere which SIFT covers,

resulting in a wildly uneven distribution of points.

Effect of vocabulary size: We now evaluate the efficacy of

soft-assignment for different vocabulary sizes. The results

are shown in figure 6. It can be seen that soft-assignment

produces a much greater benefit when larger vocabularies

are used. We attribute this performance boost to the ability

of soft-assignment to overcome some over-quantization of

the space when large vocabularies are used.

We employ high levels of compression within our index

(which stores the bag-of-visual-words histograms) to re-

duce runtime memory usage. Unfortunately soft assignment

seems to reduce the predictability of the data and slightly

lowers our compression ratios. For the D1 dataset with 1M

vocabulary and hard assignment, the index was 36MB. Us-

ing the same data but with soft assignment to 3-NN, the size

of the index increased to 108MB.

6.1. Spatial re­ranking

In this section, we examine the performance of the sys-

tem when spatial re-ranking and query expansion is used

with soft-assignment.

Spatial verification: Here, we experiment with several dif-

ferent functions for scoring hypotheses in the spatial re-

ranking stage. A candidate hypothesis is scored by sum-

ming a score computed from the weights of the two features

partially assigned to the same word. We find that this allows
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Figure 6. Comparing the performance of hard assignment and soft

assignment for differing vocabulary sizes, training and testing on

D1.

Normalization, n Similarity, s mAP

No spatial 0.673

L1 Dot product 0.731

L1 Histogram intersection 0.722

L2 Dot product 0.730
Table 4. Comparing different scoring methods for spatial verifica-

tion. These results are for a 1M vocabulary, trained on D1, tested

on D1.

the verification to use more visual information at matching

time and gives improved robustness in challenging scenes.

Table 4 shows the results of using different similarity

measures and normalizations, for scoring functions. The

score of a hypothesis is computed as
∑

s(n(wx), n(wy))
where the sum is over the inliers, s is the similarity mea-

sure, and n the normalization of the r-vectors for a corre-

spondence between features x and y. It can be seen that

changing the similarity and normalization has little effect

on the overall mAP. From now on we use an L1 normaliza-

tion with a dot product similarity.

Query expansion: The goal here is to test whether the

soft-assigned vocabulary can be effectively combined with

spatial verification (section 4.2) and query expansion (sec-

tion 2). Results are summarized in table 5. The soft-

assigned vocabulary consistently outperforms the hard-

assigned vocabulary even when combined with spatial veri-

fication and query expansion (from 0.801 to 0.825, i.e. a re-

duction in error by 12.1%). The benefit of soft-assignment

is even more obvious when the vocabulary is trained on

the Paris dataset (from 0.654 to 0.718, a reduction in error

by 18.5%). This suggests that soft-assignment deals better

than hard-assignment with situations where the distribution

of training descriptors differs significantly from the testing

data.

Figure 5 shows some matching examples with and with-

out soft-assignment, including spatial verification. Soft-

assignment generally increases the number of inliers and the

quality of the object localization in the target image. This

helps to reduce confusion and boost performance.

Figure 4 shows precision-recall curves for two queries

Testing D1 Testing D1+D2

Training data Training data

SP QE Oxford Paris Oxford Paris

Hard 0.614 0.403 0.498 0.290

Hard × 0.653 0.460 0.565 0.385

Hard × × 0.801 0.654 0.708 0.562

Soft 0.673 0.493 0.534 0.343

Soft × 0.731 0.598 0.620 0.480

Soft × × 0.825 0.718 0.719 0.605
Table 5. Performance of hard- and soft-assigned vocabularies with

spatial verification (SP) and query expansion (QE). The perfor-

mance is evaluated on the Oxford dataset with vocabularies built

from Oxford or Paris datasets. These results are for a 1M vocabu-

lary.

from the Oxford dataset. In both cases, the gain in per-

formance is large (ashmolean_3 goes from 0.626 AP to

0.874 AP, christ_church_5 increases from 0.333 to

0.813 AP).

Scaling-up to 100K images: Here we evaluate benefits of

soft-assignment when the testing database is scaled-up to

more than 100K images (D2 dataset). Results including

the spatial verification and query expansion are summarized

in table 5. It is evident that using soft-assignment always

boosts performance over using hard assignments, though

the difference is not as pronounced as for the D1 dataset.

6.2. Discussion

Soft assignment brings a performance boost over the

original hard assignment method – indeed the descriptor-

space soft assignment boosts every stage of the processing:

original returns, after spatial verification, and after query

expansion. It also offers some protection against a change

in vocabulary.

Before spatial verification, it seems that soft assignment

predominantly boosts recall so that the spatial verification

is able to increase precision over much more of the dataset.

This is the principal reason that the technique boosts perfor-

mance when using query expansion.

It is worth noting that HKM with hierarchical scoring

[14] is also a version of soft assignment since, for exam-

ple, scoring with one non-leaf level in a tree with branching

factor ten is an approximation of ten nearest neighbor soft

assignment. However, as demonstrated by the results in ta-

ble 3, it does not perform even as well as hard assignment.

There are several reasons for this: first, the HKM cluster-

ing method introduces decision boundaries on each level

of the tree, magnifying the quantization effects. Second,

the weights (relevance of each visual word) in this case are

not governed by the distance of the descriptor to the cluster

centers (but by the ten cluster centers associated with the

non-leaf node).



7. Image-space soft assignment

We also conducted experiments to address the problems

of quantization which are not local in the SIFT space. As

an example consider the orientation instability of SIFT. To

understand this instability we have to divide the SIFT ex-

traction into three steps: affine normalization up to rota-

tion, rotation estimation, and Euclidean description. The

first step is implemented as normalization of an ellipse to a

circle, the second as a dominant orientation detection, and

the last step computes the final weighted histograms of gra-

dient orientations. Noise changes the affine normalization

and histogram steps in a continuous way, but a change in the

selection of the dominant orientation (a change of mode) re-

sults in a discontinuous change in the final descriptor. The

result is a non-local change in SIFT space, and consequently

the assigned visual words are not neighbours.

In order to address this type of non-local change, we sim-

ulated possible image degradations including affine pertur-

bation of the image as well as additive noise. A similar strat-

egy has been used in [10] in learning classifiers for robust

pose estimation. Hessian affine features were then detected

in each image. These features were described by a SIFT

descriptor and assigned to an appropriate visual word. The

final image descriptor was an average over 50 perturbations.

Compared to descriptor-space soft-assignment, image-

space soft assignment is much more computationally ex-

pensive to generate (as new image features need to be com-

puted), but in principle can estimate complex distributions

beyond those determined by isotropic Gaussian weighting

amongst nearest neighbors in descriptor-space – for exam-

ple the distribution may be anisotropic – as well as non-

local wormholes to entirely different regions of the descrip-

tor space.

In our experiments, image-space soft assignment had in-

ferior mAP performance to the descriptor-space method, at

higher computational cost. The performance of the image-

space method, trained and tested on the D1 dataset was

0.640 mAP with spatial re-ranking turned off, and 0.746

mAP with query expansion. Despite the performance gap

of this approach to the descriptor-based method, the intu-

ition behind soft-assignment of features that are not adja-

cent in descriptor space may still be valid, and the poor per-

formance could have been due to our particular choices of

image perturbation. We believe this technique may reward

further research.

8. Conclusion

A new method of visual word assignment was intro-

duced: descriptor-space soft-assignment. It improves the

state of the art performance on standard datasets by collect-

ing information about image patches that is lost in the quan-

tization step of previously published methods. The perfor-

mance over using hard-assignment is outstanding when no

relevance feedback techniques are used, but the advantage

is less pronounced when the method is used in combina-

tion with query expansion. This is not surprising, since the

query expansion leaves less space for improvement. How-

ever, soft-assignment is still worthwhile even in the case of

query expansion and, in particular, when the vocabulary is

learnt on a different dataset to the one being tested.
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