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Abstract

Spatial pyramid matching (SPM) is a simple yet effec-

tive approach to compute similarity between images. Sim-

ilarity kernels at different regions and scales are usually

fused by some heuristic weights. In this paper,we develop

a novel and fast approach to improve SPM by finding the

optimal kernel fusing weights from multiple scales, loca-

tions, as well as codebooks. One unique contribution of our

approach is the novel formulation of kernel matrix learn-

ing problem leading to an efficient quadratic programming

solution, with much lower complexity than those associated

with existing solutions (e.g., semidefinite programming). We

demonstrate performance gains of the proposed methods by

evaluations over well-known public data sets such as natu-

ral scenes and TRECVID 2007.

1. Introduction

In the image classification field, much recent work has

followed the framework of ”bag of words”, representing

an image as a collection of local features [5, 4, 9, 1, 2].

Among them, spatial pyramid matching (SPM) has shown

impressive results [2] by incorporating the spatial layout in-

formation of local features. SPM repeatedly subdivides the

images to finer resolution and computes the histograms of

local features at each grid point of each resolution, then

measures similarity of two images by computing the his-

togram intersections. The final similarity of two images is

obtained via summing all grid-level similarities with prede-

fined weights.

The fusion weights set in SPM are usually diadic (wl =
1

2L−l+1 , where L is the total number of levels and l is the

level index), or constant (wl = 1). The former empha-

sizes matching results at higher resolutions while the latter

treats contributions from each level uniformly. However,

neither approach explores variation of weights over differ-

ent spatial locations. In this paper, we hypothesize spatially

adaptive weighting is important in discovering key features

that characterize image difference between distinct classes.

Take natural scene recognition task as an example. If the

task is to classify ”coast” from ”open country”, then the up-

per regions of images would be less useful, because in both

classes upper regions are often about sky or cloud. But the

bottom regions in images of ”coast” are often about water,

while the bottom regions in images of ”open country” are

often about grass, road, etc. So in this case, the bottom re-

gions are more discriminative and hence should have higher

weights. In this paper, we focus on efficient methods for au-

tomatically discovering the most discriminative weights for

supervised learning tasks such as image classification. With

our method, SPM is improved by finding the optimal kernel

that fuses inputs from multiple scales, locations, and code-

books.

The main contributions of our paper are

1. We proposed the idea of discriminative SPM (DSPM)

within a kernel matrix learning framework;

2. We developed a fast and effective approach to solve

the kernel matrix learning problem based on quadratic

programming;

3. The proposed method can be readily applied to find

optimal fusion of inputs from a large variety of ker-

nels, including spatial regions, resolutions, as well as

codebooks constructed from different visual features.

Our paper is organized as follows: in section 2, we intro-

duce the background and some related work; our main algo-

rithms are discussed in section 3; experiments and analysis

on several public data sets are shown in section 4; finally,

discussions on extending our method to SPM with multiple

codebooks are provided in section 5.

2. Related work

Local features (such as SIFT [20]) are becoming pop-

ular in recent image classification systems [5, 4, 11, 9, 1,

2, 6, 8, 7, 3]. One typical approach [5, 1, 2, 3] is to con-

struct image similarity kernels by using local features, and

then use kernel based classification methods such as SVM

978-1-4244-2243-2/08/$25.00 ©2008 IEEE



for recognition. Grauman and Darrell proposed pyramid

matching kernel in [1]. It measures the similarity of two

images by computing weighted sum of feature matches, i.e.,

intersection of features fallen into the same bin in the fea-

ture space. Pyramid matching kernel has one disadvantage:

it discards all spatial information. To overcome this prob-

lem, the SPM approach is proposed in [2]. It also performs

pyramid matching, but in the two-dimensional image space

instead of the feature space. Features are clustered at first to

construct a codebook of codewords. SPM computes the grid

similarity of two images by counting codeword matches,

i.e., intersection of codewords fallen into the same grid in

the two-dimensional image space. Grid similarities are then

fused with predefined weights to obtain the image similar-

ity. In [3], different fusion weights other than the heuristic

ones in SPM are discussed based on a cross-validation strat-

egy. However, in [3], weights are not spatially adaptive, i.e.,

their weights are still set to be uniform over different spatial

locations and thus do not capture contributions of unique

local features to specific classes (e.g., sky regions in the top

of the ”Open Country” class). Moreover, there is no effi-

cient procedure for determining the optimal weights. Only

a naive cross-validation approach is proposed, which can

only deal with few parameters and would increase the com-

putation complexity a lot.

The main technical problem addressed in this paper is to

answer what is the optimum convex combination of prede-

fined kernels when a set of labelled training data is avail-

able. Our work is inspired by previous work in kernel

matrix learning field [12, 13, 14], which performs semi-

definite programming (SDP) to align the combined kernel

to the ideal kernel, i.e., the label similarity kernel. However

these methods have the limitation of high computation com-

plexity [?]. Other related work includes distance (metric)

learning [7, 8], and semi-supervised kernel matrix learning

[15, 16, 17, 18], which incorporates information from unla-

belled data.

3. Fast kernel learning for spatial pyramid

matching

3.1. Spatial pyramid matching

In SPM, we first extract local features, such as SIFT fea-

tures for images, then we quantize all feature vectors into M

types, each of which is called a code word in the codebook.

It is assumed that features of the same code word can be per-

ceived equivalent to one another. Spatial Pyramid matching

works in L levels of image resolutions. In level 0, there is

only one grid for the whole image, in level 1, the image is

partitioned to 4 grids of the same size, and in level l, the

image is partitioned to (2l)2 grids of the same size, etc. For

two images I1 and I2, spatial pyramid matching kernel Kis

defined as:

K(I1, I2) =

L∑

l=1

Gl∑

i=1

wl,iKl,i(I1, I2) (1)

Kl,i(I1, I2) =
M∑

m=1

min(Hm
l,i

(I1), H
m
l,i

(I2)) (2)

Here, wl,i is the weight for the i-th grid in the l level. In

[2], it is chosen as:

l > 0, wl,i =
1

2L−l+1
; l = 0, wl,i =

1

2L
. (3)

L is the total number of levels and Gl is the total number

of grids in level l. Hm
l,i

(I1) is the number of code word m

appearing in i-th grid of l-th level in image I1. In practice,

it is reported that L = 2 or L = 3 is enough [10].

3.2. Fast kernel learning for spatial pyramid match
ing

For unsupervised tasks such as image retrieval, weights

in equation (3) seem reasonable. However, for supervised

learning tasks such as image classification, besides the fea-

ture information, we also know the label information for

each picture. Instead of using spatially uniform weights in

equation (3), we would like to find the optimum weights

wl,i that are most discriminative in separating images of dis-

tinct classes.

With a proof similar to that in [1], it is easy to see that

each region-level similarity Kl,i in SPM is a Mercel kernel

matrix. So finding optimal weight in SPM is actually equiv-

alent to the problem of fusing predefined kernels according

to the label information, which is a standard kernel matrix

learning problem. We proposed a new fast and effective

method to solve it.

For clarity and simplicity, we rewrite equation (1) as:

K =

J∑

j=1

ujKj (4)

where Kj is the similarity kernel in one grid of one reso-

lution level and J = 1 + ... + (2L)2. K is used to repre-

sent the similarity among data. In the field of kernel matrix

learning (or multiple kernel learning), it is believed that the

target similarity matrix should be close to the label similar-

ity. Therefore, we would like to find uj , such that K is close

to label similarity Y . Usually there are two ways to define

label similarity:

Yi,j = δ(yi, yj) (5)

where δ(yi, yj) = 1 if yi = yj ; δ(yi, yj) = 0, otherwise.

Or

Y = yyT (6)



where y is the vector consisting of all the labels. Depending

on the label convention, the actual label value may be dif-

ferent. If we set yi to be {+1,−1}, then the label similarity

matrix in equation (6) may have negative value elements. In

SPM, all elements in K are non-negative, so we choose the

non-negative Y defined in equation (5).

Previous kernel matrix learning approaches try to max-

imize cos(K, Y ) = <K,Y >F

<K,K>F <Y,Y >F
, leading to a semi-

definite programming (SDP) problem [12, 14] with a very

high computation complexity. In the following, we present

a fast method for learning the optimal kernel matrix.

We use the following criteria to minimize the distance

between K and Y , which would lead us to a quadratic pro-

gramming problem as shown later :

||K − Y ||2F (7)

Here ||X||2F = tr(XXT ), where tr means trace operation.

More intuitively, ||K−Y ||2F is the sum of element-wise dis-

tance of K and Y , i.e., ||K − Y ||2F =
∑
i

∑
j

(Ki,j−Yi,j)
2.

We will encounter a scale problem if we use the above

formulation directly. Because the elements in K are not

limited within [0, 1], minimizing ||K − Y ||2F may not guar-

antee a good result 1. For example, suppose image i and j

are from the same class, i.e., Yi,j = 1. If Ki,j > 1, the

higher Ki,j is, the more penalty is given in equation (7).

But in fact this case should be encouraged, because the two

images are from the same class and their features are simi-

lar.

In order to solve the scaling problem, we constrain all

the elements in K within [0, 1] as: 2

1A criteria similar as in equation (7) was proposed in [19]. But the

scaling problem is not addressed. Moreover, unlike in our paper, their

approach was not proposed for optimal combination of predefined kernels.
2 If we do not constrain all the elements in K within [0, 1], an alterna-

tive approach is to use hinge loss, which will lead to a linear programming

problem as follows:

min
u,K

∑
p,q

εp,q

s.t.

K =
J∑

j=1

ujKj ,

Kp,q ≥ Yp,q − εp,q, ifYp,q = 1
Kp,q ≤ Yp,q + εp,q, ifYp,q 6= 1
εp,q ≥ 0,

uj ≥ 0, j = 1, ..., J,

However there are N2 constraints in this linear programming problem (N

is the number of the data), making it much slower than the one based on

quadratic programming. So this paper focuses on the quadratic program-

ming based approach.

min
u,K

||K − Y ||2F

s.t.

K =
J∑

j=1

ujKj ,

uj ≥ 0, j = 1, ..., J,
J∑

j=1

uj = 1,

(8)

Here Kj is a normalized variant of Kj , namely Kj divided

by the largest absolute value in Kj . Since each element

in Kj is between [0,1] and
J∑

j=1

uj = 1, all the elements

in K are also within [0, 1]. Additionally, as pointed out in

[1], positive scaling or positive linear combination of kernel

matrices are still kernel matrices. Kj and K are always

kernel matrices, since they are positive scaling or positive

linear combination of kernel matrices Kj , j = 1, ..., J .

To prevent overfitting in our learning procedure, a regu-

larization term ||u||2 can be added to equation (8), i.e.,

min
u,K

||K − Y ||2F + λ||u||2 (9)

instead of min
u,K

||K − Y ||2F . Actually, the regularization

term prefers more uniform solutions, but note that in the

original SPM the weights are (spatially) uniform. So we

specifically add this term to make sure we do not over-

depend on the learned weights in the case of too few (or

unbalanced) training data and unreliable learned weights.

Thus, conceptually the regularization term is used to ex-

plore the tradeoff between trusting the learned optimal

weights and favoring the uniform weights like those from

the original SPM. λ is a tradeoff parameter chosen by

users. In our experiments, the parameter λ is chosen

within [0.05tr(K0K
T
0 ), 0.5tr(K0K

T
0 )], where K0 is the

kernel matrix of SPM. In most cases, we choose λ as

0.1tr(K0K
T
0 ).

Note that

||K − Y ||2F

= ||
J∑

j=1

ujKj − Y ||2F

= tr((
J∑

j=1

ujKj)
T (

J∑
j=1

ujKj) − 2Y T
J∑

j=1

ujKj + Y T Y )

= uT Au − 2bT u + c

where

Ai,j = tr(Ki
T
Kj),

bj = tr(Y T Kj)

c = tr(Y T Y )



So optimal solution u can be obtained as following:

min
u

uT (A + λI)u − 2bT u

s.t.,

uj ≥ 0, j = 1, ..., J
J∑

j=1

uj = 1

(10)

Here, I is the identical matrix with the same size of A.

The total number of the unknowns in our optimization

problem is J . Recall that J = 1 + ... + (2L)2. Usually

in SPM, L is chosen as 2, hence J is 21. So the above

optimization only needs to solve a quadratic programming

problem with 21 unknowns, which is quite fast, efficient,

and easy to implement.

4. Experiments

In this section, we report experiment results using two

datasets: natural scene and TRECVID 2007.

4.1. Natural scene data set

Our first dataset is the natural scene data set of thirteen

scene categories provided by Fei-Fei and Perona in [9].

There are 200 to 400 images with average image size of

300 × 250 pixels in each category. Some example images

are shown in figure 1. Here, we consider several binary

”one vs. one” classification problems, e.g., ”Open Coun-

try vs. Coast”, ”Open Country vs. Forest”, etc., so that

we can discover the most discriminative regions and fea-

tures between two classes, and show them in an intuitive

way. In this experiment, 50 images for each class is used as

training data, and the rest as test data. SIFT descriptors are

computed from each 16 x 16 overlapping pixel patch with

uniform spacing of 8 pixels. Then K-means clustering is

used to form the visual codebook over a randomly selected

subset of patches.

Example weights of each region obtained by our fast ker-

nel learning approach is shown in the first row of figure 2.

As a comparison, weights obtained by the SDP methods

in [13] with the same experiment setup are shown in the

second row of figure 2. Note L = 2 is used and thus the

highest resolution of grids is 4 × 4 . The results are very

encouraging – the discovered weights by our approach are

more informative and intuitive. They indicate the specific

regions and features that capture the most salient difference

between two image classes. For example, the first image

in the first row of figure 2 shows the most important feature

distinguishing ”Open Country” and ”Coast” are in the lower

part of the images (corresponding to grass field or beach).

Likewise, the most important regions distinguishing ”Open

Country vs. Forest” are in the upper area of an image, as

shown in the second image in the first row of figure 2. Clas-

sification accuracy of SVM using SPM kernels with differ-

ent weights are shown in table 1. Not surprisingly, the more

discriminative weights obtained by our method do improve

the classification performance.

4.2. Trecvid 2007 data set

We also apply SPM and our method on a more diffi-

cult problem: concept detection on TRECVID 2007 data

set [21]. In TRECVID 2007 data set, each image is labelled

with one or several labels from a list of 36 concepts, such

as ”Indoor/Outdoor”, ”People”, ”Speech”, ”Mountain” and

so on. Some example pictures are shown in figure 3. For a

classification task, TRECVID 2007 data set is much more

difficult than natural scene or Caltech 101 data set. First of

all, it is a multi-labelled problem. Secondly the images are

from different sources with various quality. Moreover, un-

like in Caltech 101 data set, objects in TRECVID images

are often small, sometimes incomplete. Finally, some con-

cepts in TRECVID 2007 represent some high-level knowl-

edge, such as ”people marching”, ”police”, or ”studio”, and

hence are quite hard for classification. Nontheless, it would

be interesting to test the performance of our method on this

challenging problem.

17520 images are used to form the training set, 4012 im-

ages are used as the test set. Because the number of im-

ages and the number of clusters are both huge, K-Means

is too slow for clustering in this case. Instead, we apply

a fast clustering method similar to that discussed in [24]

for codebook construction. We construct a codebook with

about 5000 codewords based on SIFT features. ”One vs

all” strategy is performed: for each concept, 100 positive

images, i.e. those labelled with the concept, 100 negative

images, i.e. those not labelled with the concept, are ran-

domly selected as the training set. We apply SVM as the

classifier after obtaining the similarity kernel. Inferred av-

erage precision (IAP) [22], the standard evaluation measure

in TRECVID 2007 data set [23], is used to evaluate the per-

formance. The above experiment is repeated 5 times and

mean and standard deviation of the accuracy are computed.

Experiment results are shown in figure 4. The classifica-

tion accuracy is improved by the proposed method on most

concepts, especially on those related to spatial layout such

as ”sky” (by 10% relatively), ”road” (by 15% relatively),

and ”building” (by 26% relatively). The overall mean av-

erage precision (MAP) across all concepts is increased by

around 10% relatively. Surprisingly, performance is also

improved significantly on concepts like ”crowd” (by 30%
relatively) ”TV-Screen” (by 50% relatively), ”Car” (by 20%
relatively), etc., which do not have consistent spatial layout.

One possibility is that those concepts benefit from the con-

text spatial information. For example, ”Car” is usually on

the ”road”, and ”road” is usually located at the bottom part

of the images.



(a)Open country

(b) Coast

(c) Forest

(d) Highway

Figure 1. Examples of pictures in the natural scene dataset

(a)Open Country vs. Coast (b)Open Country vs. Forest (c) Open Country vs. Highway

Figure 2. Comparison of optimal weights obtained by our method and by SDP based method in [13] for some one vs. one classification

on natural scene data set. Images of the first row show the weights computed with our method, while images of the second row show

the weights obtained by the kernel learning method in [13]. The brighter the region is, the higher weight it has and the more influence

it has on distinguishing the image classes. Our method is able to reveal discriminative regions, such as the upper part of the images for

distinguishing ”Open Country” and ”Forest”, while the method in [13] provides more random weights.

5. Discussion on multiple codebooks

Up to now, SPM is based on single codebook, usually

constructed with SIFT features. Though SIFT has impres-

sive advantages such as robust to illumination, viewpoint

change, etc., for some regions which is not geometrically

salient, other features may be more effective. For example,

for regions about ”sky”, color might be the most impor-

tant feature, and for regions about ”grass”, texture would

be more useful. Hence, instead of using one code book, we

can build spatial pyramid matching on multiple codebooks,

for example, one code book created with SIFT features, one

with color features, and one with texture features,etc. Then

we can extend the SPM kernel fusion model in equation

(1) to combine kernels computed based on different code

books:

K(I1, I2) =
L∑

l=1

Gl∑

i=1

D∑

d=1

wl,i,dKl,i,d
(I1, I2) (11)

Kl,i.d(I1, I2) =
M∑

m=1

min(Hm
l,i,d

(I1),H
m
l,i,d

(I2)) (12)

where Hm
l,i,d

(I1) is the total number of code word m in i-th

grid of l-th level in image I1 when using d-th codebook.

Our proposed optimization approach can be readily ap-

plied to handle this case to obtain the optimal weights. We



Open Country vs. Coast Open Country vs. Forest Open Country vs. Highway

Heuristic weights in SPM [2] 0.811 ± 0.008 0.875 ± 0.002 0.802 ± 0.018
Weights by the method in [13] 0.804 ± 0.008 0.874 ± 0.004 0.815 ± 0.018
Weights by our method 0.824 ± 0.005 0.881 ± 0.005 0.822 ± 0.010

Table 1. Classification accuracy of SVM using SPM kernels with different weights. The experiment is repeated 5 times, and average

accuracy and standard deviation is reported.

 

Figure 3. Example images from TRECVID 2007 data set. Most images in this data set are multi-labelled. For example, the first image of

the first row is labelled as: ”office, face, person, TV screen”;the first image of the second row is labelled as: ”outdoor, building, vegetation,

road, sky”; the first image of the third row is labelled as: ”face, person, crowd, police, military”.

would like to further investigate whether multiple code-

books would be helpful for SPM in the future work.

6. Conclusion

A fast kernel matrix learning approach for spatial pyra-

mid matching has been developed in this paper. In image

classification tasks, it improves SPM by revealing the most

discriminative scales and locations. We only need to solve a

quadratic programming problem with few unknowns, lead-

ing to a very fast solution.

However, similar as in other kernel matrix learning meth-

ods, problems may occur when the training data is heavily

unbalanced. For example, if positive examples dominate

the training data, then the optimal kernel fusion process

in our approach may be dominated by the positive class,

resulting in inaccurate and non-discriminative weights. In

this case, reweighing the loss on positive and negative data

might be helpful. Another possible improvement is the ex-

tension of our method to multi-labelled data. Especially we

will study methods to take advantage of the concept corre-

lation in multi-labelled data.
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