
Optimised KD-trees for fast image descriptor matching

Chanop Silpa-Anan Richard Hartley
Seeing Machines, Canberra Australian National University and NICTA.

Abstract

In this paper, we look at improving the KD-tree for a spe-
cific usage: indexing a large number of SIFT and other types
of image descriptors. We have extended priority search, to
priority search among multiple trees. By creating multiple
KD-trees from the same data set and simultaneously search-
ing among these trees, we have improved the KD-tree’s
search performance significantly. We have also exploited the
structure in SIFT descriptors (or structure in any data set)
to reduce the time spent in backtracking. By using Princi-
pal Component Analysis to align the principal axes of the
data with the coordinate axes, we have further increased
the KD-tree’s search performance.

1. Introduction

Nearest neighbour search is an important component in
many computer vision applications. In this paper, we look
at the specific problem of matching image descriptors for an
application such as image retrieval or recognition. We de-
scribe and analyze a search method based on using multiple
randomized KD-trees, and achieve look-up results signifi-
cantly superior to the priority KD-trees suggested by Lowe
in [10] for this purpose. The randomized KD-tree approach
described here has been used recently in [15] for feature
lookup for a very large image recognition problem.

The SIFT descriptor (Scale invariant feature) [11] is of
particular interest because it performs well compared with
other types of image descriptors in the same class [13]. A
SIFT descriptor is a 128-dimensional vector normalised to
length one. It characterises a local image patch by captur-
ing local gradients into a set of histograms which are then
compacted into one descriptor vector. In a typical applica-
tion, a large number of SIFT descriptors extracted from one
or many images are stored in a database. A query usually
involves finding the best matched descriptor vector(s) in the
database to a SIFT descriptor extracted from a query image.

A useful data-structure for finding nearest-neighbour

1This research was partly supported by NICTA, a research centre
funded by the Australian Government as represented by the Department of
Broadband, Communications and the Digital Economy and the Australian
Research Council through the ICT Centre of Excellence program.

queries for image descriptors is the KD-tree [4], which is
a form of balanced binary search tree.

Outline of KD-tree search. The general idea behind
KD-trees is described now. The elements stored in the
KD-tree are high-dimensional vectors in Rd. At the first level
(root) of the tree, the data is split into two halves by a hyper-
plane orthogonal to a chosen dimension at a threshold value.
Generally, this split is made at median in the dimension with
the greatest variance in the data set. By comparing the query
vector with the partitioning value, it is easy to determine to
which half of the data the query vector belongs. Each of the
two halves of the data is then recursively split in the same
way to create a fully balanced binary tree. At the bottom of
the tree, each tree node corresponds to a single point in the
data set; though in some implementation, the leaf nodes may
contain more than one point. The height of the tree will be
log2 N where N is the number of points in the data set.

Given a query vector, a descent down the tree requires
log2 N comparisons and leads to a single leaf node. The data
point associated with this first node is the first candidate for
the nearest neighbour. It is useful to remark, that each node
in the tree corresponds to a cell in Rd, as shown in figure 1.
And a search with a query point lying anywhere in a given
leaf cell will lead to the same leaf node.

The first candidate will not necessarily be the nearest
neighbour to the query vector; it must be followed by a
process of backtracking, or iterative search, in which other
cells are searched for better candidates. The recommended
method is priority search [2, 4] in which the cells are
searched in the order of their distance from the query point.
This may be accomplished efficiently using a priority tree
for ordering the cells; see figure 1 in which the cells are num-
bered in the order of their distance from the query vector.
The search terminates when there are no more cells within
the distance defined by the best point found so far. Note that
the priority queue is a dynamic structure that is built while
the tree is being searched.

In high dimensions to find the nearest neighbour may re-
quire searching a very large number of nodes. This prob-
lem may be overcome at the expense of an approximate
answer by terminating the search after a specified number
of nodes are searched (or earlier if the search terminates).

978-1-4244-2243-2/08/$25.00 ©2008 IEEE

Figure 1. [Priority search of a KD-tree] In this figure, a query
point is represented by the red dot and its closest neighbour lies
in cell 3. A priority search first descends the tree and finds the cell
that contains the query point as the first candidate (label 1). How-
ever, a point contained in this cell is often not the closest neigh-
bour. A priority search proceeds in order through other nodes of
the tree in order of their distance from the query point – that is,
in this example through the nodes labelled 2 to 5. The search is
bounded by a hypersphere of radius r (the distance between the
query point and the best candidate). The radius r is adjusted when
a better candidate is found. When there are no more cells within
this radius, the search terminates. KD-tree diagram thanks to P.
Mondrian.

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600 700 800 900 1000

p
(e

rr
or

)

Maximum number of searched nodes

KD-tree’s error

priority search
standard search

Figure 2. [Search performance] When a search is restricted to
some maximum number of searched nodes, the probability of find-
ing the true nearest neighbour increases with the increasing limit.
Priority search increases search performance, compared with a
tree backtracking search.

This graph and subsequence graphs are made by searching
SIFT descriptors from a data set of size approximately 500 000
points. A query is a descriptor drawn from the data set and cor-
rupted with Gaussian noise. A nearest neighbour query result is
compared with the true nearest match.

0
0.2
0.4
0.6
0.8

1
1.2
1.4

0 100 200 300 400 500 600 700 800 900 1000

−
lo

g
p
(e

rr
or

)

Maximum number of searched nodes

Negative log of KD-tree’s error

priority search
wish

Figure 3. [Diminished returns] This figure is essentially the same
as figure 2 (lower curve), but on a negative logarithmic scale.
Suppose each search of m nodes is independent and has a fail-
ure probability pe. By searching n nodes the error rate reduces to
pe

n/m. On a logarithmic scale, this is a straight line with a slope
of (n/m) log pe. The figure shows that increasing the number of
searched nodes for KD-tree does not lead to independent searches,
and gives diminished returns.

The best candidate may be the exact nearst neighbour with
some acceptable probability that increases as more nodes
are searched (see figure 2).

Unfortunately, extending the search to more and more
nodes leads to diminishing returns, in which we have to
work harder and harder to increase the probability of find-
ing the nearest neighbour. This point is illustrated in fig-
ure 3. The main purpose of this paper is to propose methods
of avoiding this problem of diminishing returns by carrying
out simultaneous independent searches in different trees.

The problem with diminishing returns in priority search
is that searches of the individual nodes in a tree are not inde-
pendent, and the more searched nodes, the further away the
nodes are from the node that contain the query point. To ad-
dress this problem, we investigate the following strategies.

1. We create m different KD-trees each with a different
structure in such a way that searches in the different
trees will be (largely) independent.

2. With a limit of n nodes to be searched, we break the
search into simultaneous searches among all the m
trees. On the average, n/m nodes will be searched in
each of the trees.

3. We use Principal Component Analysis (PCA) to rotate
the data to align its moment axes with the coordinate
axes. Data will then be split up in the tree by hyper-
planes perpendicular to the principal axes.

By either using multiple search-trees or by building the
KD-tree from data realigned according to its principal axes,
search performance improves and even improves further
when both techniques are used together.

Previous work

The KD-tree was introduced in [5] as a generalisation of a
binary tree to high dimensions. Several variations in building
a tree, including randomisation in selecting the partitioning
value, were suggested. Later on, an optimised KD-tree with a
theoretic logarithmic search-time was proposed in [7]. How-
ever, this logarithmic search-time does not apply to trees of
high dimension, where the search time may become almost
linear.

Thus, although KD-trees are effective and efficient
in low dimensions, their efficiency diminishes for high-
dimensional data. This is because with high dimensional
data, a KD-tree usually takes a lot of time to backtrack
through the tree to find the optimal solution. By limiting the
amount of backtracking, the certainty of finding the absolute
minimum is sacrificed and replaced with a probabilistic per-
formance. Recent research has therefore aimed at increas-
ing the probability of success while keeping backtracking
within reasonable limits. Two similar approximated search
methods, a best-bin-first search and a priority search were
proposed in [2, 4], and these methods have been used with
significant success in object recognition ([10]).

In the vision community, interest in large scale nearest-
neighbour search has increased recently, because of its evi-
dent importance in object recognition as a means of looking
up feature points, such as SIFT features in a database. No-
table work in this area has been [14, 15]. It was reported in
[15] that KD-trees gave better performance than Nister’s vo-
cabulary trees [14] as an aid to K-means clustering. In this
paper therefore we concentrate on methods of improving
the performance of KD-trees, and demonstrating significant
improvements in this technique.

Our KD-tree method is related to randomized trees, as
used in [9], based on earlier work in [1]. However, our meth-
ods are not directly comparable with theirs, since we ad-
dress different problems. Randomized trees are used in [9]
for direct recognition, whereas we are concerned with the
more geometric problem of nearest-neighbour search. Sim-
ilarly, more recent work of Grauman [8] uses random hash-
ing techniques for matching sets of features, but their algo-
rithm is not directly comparable with ours. Finally, locality-
sensitive hashing (LSH) [6] is based on similar techniques
as ours, namely projection of the data in different random di-
rections. Whereas LSH projects the data onto different lines,
in our case we consider randomly reorienting the data, which
is related to projection onto differently oriented linear sub-
spaces. Like KD-trees, LSHs also have trouble dealing with
very high dimensional data, and have not been used exten-
sively in computer vision applications.

2. Independent multiple searches

When examining priority search results in a linear or a
logarithmic scale (figure 2 and 3), it is clear that increas-
ing the number of searched nodes increases the probability
of finding the true nearest neighbour. Any newly examined
cell, however, depends on previously examined cells. Sup-
pose each search is independentwith a failure probability p e.
Searching independently n times reduces the failure proba-
bility to pn

e . This is a straight line on a logarithmic scale. It
is clear that searches of successive nodes of the tree are not
independent, and searches of more and more nodes become
less and less productive.

On the other hand, if KD-trees are built with different
parameters, with different ways to select partitioning value
for example, the order of search node and search results on
these KD-trees may be different. This leads to the idea of
using multiple search-trees to enhance independence.

Rotating the tree. Our method of doing independent
multiple searches is to create multiple KD-trees with dif-
ferent orientations. Suppose we have a data set X = {x i}.
Creating KD-trees with different orientations simply means
creating KD-trees from rotated data Rxi, where R is a rota-
tion matrix. A principal (a regular) KD-tree is one created
without any rotation, R = I. By rotating the data set, the re-
sulting KD-tree has a different structure and covers a differ-
ent set of dimensions compared with the principal tree. An
algorithm for searching on a rotated KD-tree is essentially
searching a rotated tree with a rotated query point Rq.

Once a rotated tree is built, the rotated data set can be
discarded because all the information is kept inside the tree
and the rotation matrix. Only the original vector is needed in
order to compute the distance between a point in the data set
and a query. Under a rotation, the original distance ‖q − x i‖
is the same as the rotated distance ‖Rq − Rxi‖.

Are rotated trees independent? To test whether searches
of differently rotated trees were independent, we carried out
successive searches over the same data set successively on
multiple trees. First, we searched the 20 closest nodes in
one tree, then the closest 20 on the next tree, and so on, to
a total of 200 nodes searched. The total cumulative (empir-
ical) probability of failure was computed and plotted on a
negative logarithmic scale. If the searches on different trees
were independent, this would give a linear graph. The re-
sults are shown in figure 4, and support the hypothesis that
the searches are independent. This test was done with ran-
domly generated vectors. Tests done also with real SIFT fea-
tures showed major improvements of using multiple search
trees, compared with a single tree, as reported in figure 6.
However in that case the hypothesis of independent searches
was not quite so strongly sustained. Nevertheless, using mul-
tiple trees goes a long way towards enabling independent

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70 80 90

−
lo

g
p
(e

rr
or

)

Maximum number of searched nodes

Negative log of KD-tree’s and NKD-tree’s error – synthetic data

KD-tree
NKD-tree

Figure 4. [Independence of searches] This graph shows the re-
sult of successive independent searches of 20 nodes on each of 9
trees, showing the (empirical) negative log-likelihood of error. If
the searches on individual trees are independent, then this will be
a straight-line through the origin. Visibly, the graph is approxi-
mately linear, which supports a hypothesis of independence. For
comparison we show the results for a single KD-tree as well.

searches, even if they are not completely independent.

A saving using Householder matrices. Computation of
Rx in d dimensions has complexity O(d2). The underlying
idea of using a rotation matrix is to transform the data set
onto different bases while preserving the norm. Almost any
orthogonal transformationmatrix can achieve this. A House-
holder matrix of the form Hv = I − 2vv�/v�v is an or-
thonormal transformation; it is a reflection through a plane
with normal vector v. Multiplication of a vector and Hv can
be arranged such that it has complexity of O(d) instead of
O(d2). With the Householder transformation, m trees can
be built in O(mdN log N) time.

Searching multiple trees. With multiple trees, we need to
expand the concept of a priority search on a single tree. Con-
ceptually, searching m trees with a limitation of n search
nodes is simply searching each tree for n/m nodes. This can
be easily implemented by searching trees sequentially. How-
ever, this is not optimal, and besides does not scale to a case
where we impose no limitation on the number of searched
nodes (searching for the true nearest neighbour) because we
would already find the best solution and would not be re-
quired to search extra trees.

We prefer to search multiple trees in the form of a concur-
rent search with a pooled priority queue. After descending
each of the trees to find an initial nearest-neighbour candi-
date, we select the best one from all the trees. We then pool
the node ranking by using one queue to order the nodes from
all m trees. In this way, nodes are not only ranked against
other nodes within the same tree, but also ranked against
other nodes in all trees. As a result, nodes from all the trees

are searched in the order of their distance from the query
point simultaneously.

With these modifications, we use the term NKD-tree for
a data structure of multiple KD-trees with different orienta-
tions.

Space requirements. For large data sets it is important to
consider the space requirements for holding large numbers
of trees. We have implemented our KD-trees as pointerless
trees, in which the nodes are kept in a linear array. The two
children of node n are the nodes at positions 2n and 2n + 1
in the array. Only the number of the splitting dimension (one
byte) and the splitting value (one byte for SIFT descriptors
containing single byte data, or 4 bytes for floating point data)
need to be stored at internal nodes in the tree. The leaf nodes
must contain an index to the associated point. In total this
means 6N bytes for a tree with N elements. In addition, the
actual data vectors must be stored, but only once. Thus, with
one million data vectors of dimension 128, the storage re-
quirement is 128MB for the data vectors (or 512MB if float
data is used), and for each independent tree only 6MB. Thus,
the storage overhead for having multiple trees is minimal.

A different randomisation: RKD-tree. The purpose of
the rotation is to create KD-trees with different structures.
Instead of explicitly rotating the tree, using randomness on
parameters can also alter the tree structure. In fact, the parti-
tioning value was originally selected randomly [5] while the
partitioning dimension was selected in cyclical order. This
approach was later on abandoned in an optimal KD-tree [7]
and in other splitting rules [3].

In accordance with the principle of selecting a partition-
ing value in the dimension with the greatest variance, we
considered creating extra search trees with the following
idea. In the standard KD-tree, the dimension which the data
is divided is the one in which the data has the greatest vari-
ance. In reality, data variance is quite similar in many of the
dimensions, and it does not make a lot of difference in which
of these dimensions the subdivision is made. We adopt the
strategy of selecting at random (at each level of the tree)
the dimension in which to subdivide the data. The choice is
made from among a few dimensions in which the data has
high variance. Multiple trees are constructed in this way, dif-
ferent from each other in the choice of subdivision dimen-
sions. By using this method, we retain high probability that
a query can be on either half of the node, and at the same
time maintain backtracking efficiency.

In this randomisation strategy, in contrast to rotating the
data explicitly, the data set stays in the original space, thus,
saving some computation on data projection while building
the tree. In searching SIFT descriptors, this randomised tree
(RKD-tree) performs as well as NKD-tree. Also note that the
RKD-tree has the same complexity level in storage as the
NKD-tree.

3. Modelling KD-trees.

The following argument is meant to give an intuitive idea
of why using differently rotated trees will be effective. It is
difficult to model the performance of a KD-tree mathemat-
ically, because of the the complexity of the priority search
process. In this section, it will be argued that the perfor-
mance of a KD-tree is well modelled by projecting the data
into a lower dimensional space followed by testing the data
in the order of its distance from a projected query point. It
will be seen that modelling a KD-tree’s performance in this
way gives rise to performance graphs that strongly resemble
the actual performance of KD-trees on SIFT data.

Consider a KD-tree in a high-dimensional space, such as
dimension 128 for SIFT features. If the tree contains one
million nodes, then it has height 20. During a search with a
query point in the tree, no more than 20 of the of the entries
of the vector are considered. The other 108 entries are irrel-
evant for the purposes of determining which cell the search
ends up in. If q is the query vector and x is the vector asso-
ciated with the leaf cell that the query vector leads to, then
q and x are close in 20 of their entries, but maybe no others.

The virtual projection. Typically only a small number n
of the data dimensions will be used to partition the tree. The
other 128 − n dimensions will be unused, and irrelevant.
Exactly the same tree will be obtained if the data is first
projected by a projection π onto a subspace of dimension
n before building the tree. The subspace is aligned with the
coordinate axes. Since no actual projection takes place, we
refer to this as a virtual projection – but since such a projec-
tion would make no difference to the method of searching
the KD-tree we may assume that this projection takes place,
and the tree is built using the projected data.

Under priority search in the KD-tree, leaf nodes in the tree
are searched in the order of the distance of the correspond-
ing cells from the projected query point π(q). The points as-
sociated with the cells are tested in that order to find the one
that is closest to q. Since the structure of the KD-tree may
be complex, we simplify the analysis by make a simplifying
assumption that searching the cells in this order is the same
as testing the points xi in the order of the distance of their
projection π(xi) from the projected query point π(q). Since
the tree is virtually built from the projected data, this is the
best search outcome that can be achieved. Thus it provides
a best-possible performance for search in the KD-tree.

To summarise this discussion: in our model, the order in
which points xi are tested to find the closest match to q is
the order of the distance of π(xi) from π(q) where π is a
projection onto a lower dimensional space.

Probability analysis. We have argued that KD-tree search
in high dimensions is closely related to nearest-neighbour
search after projection into a lower dimensional space. The

essential question here is whether the nearest neighbour to
a query point in the high dimension will remain an approx-
imate nearest neighbour after projection. Consider a large
number of points x in a high-dimensional space, suppose q
is a query point and xbest is the closest point to it. Now, let
all points be projected to a lower dimensional space by a pro-
jection π, and denote by p(n) the probability that π(xbest) is
the n-th closest point to π(q). We would expect that the most
likely outcome is that π(xbest) is in fact the closest point
to π(q), but this is not certain. In fact, it does not happen
with high probability, as will be seen. It may be possible to
compute this probability directly under some assumptions.
However, instead we computed the form of this probability
distribution empirically; the resulting probability distribu-
tion function is shown in figure 5. The most notable feature
is that this distribution has a very long tail. Also shown is
the cumulative probability of failure after testing m nodes,
given by f(m) = 1 −

∑m
i=1 p(i).

The simulation of figure 5 shows that the nearest-
neighbour point to the query may be a very long way down
the list of best of closest matches when projected to low di-
mension. Consequently the probability of failure f(m) re-
mains relatively high even for large m. This indicates why
searching the list of closest neighbours in the KD-tree may
require a very large number of cells to be searched before
the minimum is found.

On the other hand, the strategy of using several indepen-
dent projections may give better results. If the data is rotated,
then the virtual projection to a new n-dimensional subspace
will be in a different direction aligned with the new coordi-
nate axes. If q and x are close to each other in the full space,
then they will remain close under any projection, and hence
will belong to the same or neighbouring leaf cells in any
of the rotated KD-trees. On the other hand, points that are
not close may belong to neighbouring leaf cells under one
projection, but are unlikely to be close under a different pro-
jection. We model the probability of failure using k trees as
the product of the independent probabilities of failure from
searching approximately m/k cells in each of the k trees.
More exactly, if a = mmodk and mi = (m − a)/k, then
the probability of failure when searching m i cells in k − a
trees and mi + 1 cells in a trees (a total of m cells in all) is
fm,k = f(mi)k−a f(mi + 1)a. The graphs of these prob-
abilities are shown in figure 5 for several different values
of k. They clearly show the advantage of searching in sev-
eral independent projections. Using independent projections
into lower dimensional spaces boosts the probability that
the closest point will be among the closest points in at least
one of the projections. The results obtained from this model
agree quite closely in form with the results obtained using
independent KD-trees. This supports our thesis that closest
point search in high dimensional KD-trees is closely related
to nearest neighbour search in a low dimensional projection,

and that the long tail of the probability distribution p(n) is
a major reason why searching in a single KD-tree will fail,
whereas using several KD-trees with independently rotated
data will work much better.

Figure 5. Top left: Distribution of rank of best fit after projec-
tion to low dimensions. 100, 000 random points in a hypercube in
R128 are projected by a projection π into R20. The nearest point
xbest to a query q in R128 may become n-th closest after projec-
tion onto R20. The x-axis is the ranking n and the y-axis shows the
probability that the projection π(xbest) will be n-th closest point
to π(q) in R20. The graph shows that the most likely ranking is
first, but the graph has a long tail.
Top right: Top line shows the cumulative failure rate. It rep-
resents the probability of failure to find the best fit in R128

by examining the n best fits in R20. . Subsequent graphs show
the probability of finding the best fit by examining the clos-
est n fits in m different independent projections for m =
2, 3, 4, 5, 10, 20, 50, 100, 200, 1000. As may be seen, the more in-
dependent projections are used, the better the chance of finding
the best fit xbest in R128 among the n points tested.
Bottom left: Negative log likelihood of cumulative failure rate
for the same number of projections as above. If each independent
query (point tested) has independent probability of being the opti-
mum point xbest, the lines will be straight. Bottom right: Close
up of the previous graph showing curvature of the graphs, and
hence diminished returns from examining more and more pro-
jected points.

4. Principal Component Trees

It has been suggested in the discussion of section 3 that
one of the main reasons that KD-trees perform badly in high
dimensions is that points far from the query point q may
be projected (via a virtual projection) to points close to the

best match xbest. It makes sense therefore to minimize this
effect to project the data in its narrowest direction. Since
in a KD-tree the data is divided up in the directions of the
coordinate axes, it makes sense to align these axes with the
principal axes of the data set. Aligining data with principal
axes has been considered previously in, for instance [12].
We show in this section that by combining this idea with the
KD-tree data structure gives even better results.

To be precise, let {xi|i = 1, . . . , N} be a set of points in
Rd. We begin by translating the data set so that its centroid is
at the origin. This being done, we now let A =

∑N
i=1 xixi

�.
The eigenvectors of A are the principal axes of the data set,
and the eigenvalues are referred to as the principal moments.
If A = UΛU� is the eigenvalue decomposition of A, such that
the columns of U are the (orthogonal) eigenvectors, then the
mapping xi �→ U�xi maps the points onto a set for which
the principal axes are aligned with the coordinate axes. Fur-
thermore, if U1:k is the matrix consisting of the k dominant
eigenvectors, then U1:k

� projects the point set into the space
spanned by the k principal axes of the data.

Generally speaking if the data is aligned via the rota-
tion U�, the dimensions along which data is divided in the
KD-tree will be chosen from among the k principal axes of
the data, where k is the depth of the tree (though this will
not hold strictly, especially near the leaves of the tree). The
effect will be the same as if the data were projected via the
projection U1:k

� and the projected data were used to build
the tree. In a sense the data is thinnest in the directions of the
smallest principal axes, and projection onto the space of the
k dominant axes will involve the smallest possible change in
the data, and will minimize the possibility of distant points
projecting to points closer to xbest than π(q).

We therefore suggest the following modifications to the
KD-tree algorithm.

1. Before building the tree, the data points x i should be
rotated via the mapping U� to align the principal axes
with the coordinate axes.

2. When using multiple trees, the rotation of the data
should be chosen to preserve the subspace spanned by
the k largest principal axes.

The resulting version of the KD-tree algorithm will be called
the PKD-tree algorithm. The second conditions is reason-
able, since it makes no sense to rotate the data to align it
with the coordinate axes and then unalign it using random
rotations while creating multiple trees.

Almost equivalent is to project the data to a lower dimen-
sional subspace using the PCA projection U1:k

�, and then
use this projected data to build multiple trees. (The only dif-
ference is that in this way, the splitting dimension is strictly
constrained to the top k principal axis directions.) An im-
portant point which we emphasize is that the original unpro-
jected data must still be used in testing the distance between
the query point q and candidate closest neighbours. The ef-

0

0.1

0.2

0.3

0.4

0.5

0.6

100 200 300 400 500 600 700 800 900 1000

p
(e

rr
or

)

Maximum number of searched nodes

NKD-tree’s error

Figure 6. [An NKD-tree] This figure shows some search results
using an NKD-tree. From the top-most graph to the bottom-
most graph are NKD-trees using from 1 to 6 search trees. The
NKD-tree’s performance increases with the increasing number of
searched nodes and the increasing number of trees.

0

0.1

0.2

0.3

0.4

0.5

0.6

100 200 300 400 500 600 700 800 900 1000

p
(e

rr
or

)

Maximum number of searched nodes

RKD-tree’s error

Figure 7. [An RKD-tree] In a similar setting to that of figure 6,
the RKD-tree performs as well as the NKD-tree in searching SIFT

descriptors.

fect of projecting the data is only to constrain and guide the
structure and alignment of the KD-trees. The projected data
is discarded once the tree is built.

5. Experimental results

For comparison, we use a data set of approximately
500 000 SIFT descriptors, computed from 600 images. Of
these descriptors, 20 000 descriptors are randomly picked
for nearest neighbour queries; however, they are corrupted
with some small Gaussian noise with standard deviation
0.05 in all 128 dimensions. Note that SIFT descriptors are
normalised to length 1 including ones used for queries;
therefore the expected norm of the distance from the original
to the corrupted point is 0.5.

Figure 6 shows search results with an NKD-tree. The
number of search trees ranges from one to six trees; the lim-

0

0.1

0.2

0.3

0.4

0.5

0.6

100 200 300 400 500 600 700 800 900 1000

p
(e

rr
or

)

Maximum number of searched nodes

PKD-tree’s error (128 dimensions)

Figure 8. [Multiple PKD-tree trees with unconstrained rotation]
The PKD-tree with full 128 dimensions performs better than both
NKD-tree and RKD-tree. There is a significant improvement over
a KD-tree when a single search tree is used. For multiple search
trees, we allow the rotations of the data to be arbitrary. The per-
formance continues to improve but is not so marked, because the
rotation of the data undoes the PCA alignment.

0

0.1

0.2

0.3

0.4

0.5

0.6

100 200 300 400 500 600 700 800 900 1000

p
(e

rr
or

)

Maximum number of searched nodes

PKD-tree’s error (30 dimensions)

Figure 9. [A PKD-tree created with 30 dimensions] The
PKD-tree’s performance is at its best when rotations are con-
strained to the optimal number of dimensions. This figure shows
the PKD-tree’s results when the data is projected by a projection
U1:k using PCAonto 30 dimensions. This constrains the rotations
used to build multiple trees so that they preserve the space spanned
by the k = 30 principal axes. There are significant improvements
compared with the results shown in figure 8.

itation of searched nodes ranges from 100 to 1000 nodes.
Clearly, the error reduces when we search more nodes. At
the same number of search nodes, using more search trees
also reduces the error. In a similar setting, an RKD-tree per-
forms as well as an NKD-tree; figure 7 shows these results.

For a PKD-tree, figure 8 shows results when the data is
aligned using PCA, but multiple search trees are built with
unconstrained rotations. In a single search tree case, there is
a significant improvement over an ordinary KD-tree (com-
pare the top most lines between figure 6 and figure 8). The

PKD-tree still performs better with an increasing number of
trees, however with a smaller increment.

We next explored the strategy of aligning the data using
PCA and then building multiple trees using rotations that fix
(not pointwise) the space spanned by the top k = 30 prin-
cipal axes. Our experiments showed that 30 is the optimal
number for this purpose. In figure 9, we simply project the
data onto a subspace of dimension 30 using PCA, and then
allow arbitrary rotations of this projected data. It is a clear
that using multiple search trees with the trees built from an
optimal number of dimensions improves the result. There is
a significant difference when six search trees are used.

This form of PKD-tree with multiple search trees gives
a very substantial improvement over the standard single
KD-tree. By comparing the top line of figure 6 (single stan-
dard KD-tree) with the bottom line of figure 9 (PKD-tree with
6 trees), we see that the same search success rate achieved
in 1000 nodes with the standard tree is reached in about
150 nodes by the PKD-tree. Looked at a different way, after
searching 1000 nodes, the standard KD-tree has about 75%
success rate, whereas the multiple PKD-tree has over 95%
success.

6. Conclusions

In the context of nearest neighbour query in a high di-
mensional space with a structured data set – SIFT descrip-
tors in 128 dimensions in our application – we have demon-
strated that various randomisation techniques give enormous
improvements to the performance of the KD-tree algorithm.

The basic technique of randomisation is to carry out
simultaneous searches using several trees, each one con-
structed using a randomly rotated (or more precisely, re-
flected) data set. This technique can lead to an improvement
from about 75% to 88% in successful search rate, or a 3-
times search speed-up with the same performance.

Best results are obtained by combining this technique
with a rotation of the data set to align it with its principal
axis directions using PCA, and then applying random House-
holder transformations that preserve the PCA subspace of ap-
propriate dimension (d′ = 30 in our trials). This leads to a
success rate in excess of 95%.

Tests with synthetic high-dimensional data (not reported
in detail here) led to even more dramatic improvements, with
up to 7-times diminished error rate with the NKD-tree algo-
rithm alone.

References

[1] Y. Amit and D. Geman. Shape quantization and recognition
with randomized trees. Neural Quantization, 9(7):1545 –
1588, 1997. 3

[2] S. Arya and D. M. Mount. Algorithms for fast vector quan-

tization. In Proceedings of the data compression conference,
pages 381 – 390, 1993. 1, 3

[3] Sunil Arya, David M. Mount, Nathan S. Netanyahu, Ruth
Silverman, and Angela Y. Wu. An optimal algorithm for
approximate nearest neighbor searching in fixed dimensions.
Journal of the ACM, 45(6):891–923, 1998. 4

[4] Jeffrey S. Beis and David G. Lowe. Shape indexing using
approximate nearest–neighbour search in high–dimensional
spaces. In Proceedings of computer vision and pattern recog-
nition, pages 1000–1006, Puerto Rico, June 1997. 1, 3

[5] Jon Louis Bentley. Multidimensional binary search trees
used for associative searching. Communications of the ACM,
18(9):509–517, 1975. 3, 4

[6] M. Datar, N. Immorlica, P. Indyk, and V. Mirrokni. Locality-
sensitive hashing scheme based on p-stable distributions. In
Proceedings of the symposium on computational geometry,
pages 253–262, 2004. 3

[7] Jerome H. Freidman, Jon Louis Bently, and Raphael Ar-
ifinkel. An algorithm for finding best matches in logarithmic
expected time. ACM transactions on mathematical software,
3(3):209–206, september 1977. 3, 4

[8] K. Grauman and T. Darrell. Pyramid match hashing: Sub-
linear time indexing over partial correspondences. In Proc.
IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2007. 3

[9] V. Lepetit and P. Fua. Keypoint recognition using random-
ized trees. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 28(9):1465–1479, 2006. 3

[10] D. Lowe. Distinctive image features from scale invariant
keypoints. IJCV, 60(2):91 – 110, 2004. 1, 3

[11] David G. Lowe. Distictive image features from scale-
invariant keypoints. International journal of computer vi-
sion, 60(2):91–110, 2004. 1

[12] J. McNames. A fast nearest-neighbor algorithm based on
a principal axis search tree. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 23:964–976, September
201. 6

[13] Krystian Mikolajczyk and Cordelia Schmid. A performance
evaluation of local descriptors. In Proceedings of computer
vision and pattern recognition, 2003. 1

[14] D. Nister and H. Stewenius. Scalable recognition with a vo-
cabulary tree. In Proc. IEEE Conference on Computer Vi-
sion and Pattern Recognition, volume 2, pages 2161 – 2168,
2006. 3

[15] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisser-
man. Object retrieval with large vocabularies and fast spatial
matching. In Proc. IEEE Conference on Computer Vision
and Pattern Recognition, 2007. 1, 3

