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Abstract

Sparse representation in compressive sensing is gain-
ing increasing attention due to its success in various ap-
plications. As we demonstrate in this paper, however, im-
age sparse representation is sensitive to image plane trans-
formations such that existing approaches can not recon-
struct the sparse representation of a geometrically trans-
formed image. We introduce a simple technique for obtain-
ing transformation-invariant image sparse representation.
It is rooted in two observations: 1) if the aligned model im-
ages of an object span a linear subspace, their transformed
versions with respect to some group of transformations can
still span a linear subspace in a higher dimension; 2) if a
target (or test) image, aligned with the model images, lives
in the above subspace, its pre-alignment versions would get
closer to the subspace after applying estimated transfor-
mations with more and more accurate parameters. These
observations motivate us to project a potentially unaligned
target image to random projection manifolds defined by the
model images and the transformation model. Each projec-
tion is then separated into the aligned projection target and
a residue due to misalignment. The desired aligned pro-
jection target is then iteratively optimized by gradually di-
minishing the residue. In this framework, we can simulta-
neously recover the sparse representation of a target image
and the image plane transformation between the target and
the model images. We have applied the proposed method-
ology to two applications: face recognition, and dynamic
texture registration. The improved performance over previ-
ous methods that we obtain demonstrates the effectiveness
of the proposed approach.

1. Introduction

The sparse representation theory has shown that sparse
signals can be exactly reconstructed from a small number of
linear measurements [4, 5, 7, 8, 17]. It leads to the problem:

given the linear measurements y ∈ R
m of a sparse signal

x ∈ R
n, y = Ax, how to reconstruct the sparse signal x

from its linear measurements y ? Obviously, this problem
can be formulated with l0 minimization:

x0 = argmin‖x‖0 while y = Ax (1)

where ‖ · ‖0 denotes the l0-norm that counts the number of
nonzero entries in a vector. This problem is NP-hard. In
the general case, no known procedure can correctly find the
sparsest solution more efficiently than exhausting all sub-
sets of the entries for x. Recent developments in compres-
sive sensing [6] show that if the original signal x is sparse
enough, the above l0-minimization problem is equivalent to
the following l1-minimization problem:

x0 = argmin‖x‖1 while ‖y − Ax‖2 < ε (2)

where ε denotes the noise level. If the solution is really
sparse and has k nonzero entries, it can be efficiently solved
by the homotopy algorithms in O(k3 + n) time [8]. If the
signal has k nonzero entries, m = O(k ∗ log(n/m)) linear
measurements are sufficient to reconstruct the original sig-
nal exactly with high probability [4, 6]. Moreover, if the sig-
nals are not exactly k sparse but can be represented by k of
active elements as well as contaminated with noise, sparse
representation theory in compressive sensing can also han-
dle this case with random projection analysis.

A novel and comprehensive approach for face recogni-
tion is recently proposed based on the sparse representation
theory. [21]. The assumptions are that the training images
of a single object span a subspace and that a target test im-
age can be sparsely represented by the entire set of training
images. Therefore, the face recognition problem is treated
as searching for a sparse representation of a given test im-
age. This treatment dexterously casts recognition as a glob-
ally sparse representation problem, and the sparse presen-
tation theory in compressive sensing can then be utilized to
efficiently solve it. Experimental results [21] showed that
the sparse representation recognition approach achieved fa-
vorable performance compared with other state-of-the-art
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methods under various conditions. It further demonstrates
the power of sparse representation via l1 minimization. One
limitation of the method, however, is that it only handles
cases in which all training images and the test image are
well aligned and have the same pose. While the training im-
ages can be easily aligned off-line, aligning each test image
to model images is a difficult task in practical applications.
It is thus desirable to develop a transformation-invariant im-
age sparse representation to overcome the difficulty.

In this paper, we propose a new algorithm to make
sparse representation invariant to image-plane transforma-
tions. The proposed approach aims to simultaneously re-
cover the image plane transformation and sparse representa-
tion when a test image is not aligned with the model images.
It is inspired by two simple observations: 1) if the model
images span a linear subspace, their transformed versions
w.r.t. some group of small transformations still can span a
linear subspace in a higher dimension; 2) if a transformed
version of the test image, which is aligned with the model
images, lives in the above subspace, the test image after
applying more and more accurately estimated transforma-
tions will get gradually closer to the subspace. When the
transformation between the test image and model images is
small, the first observation motives us to convert a nonlin-
ear model representation to a linear one by increasing the
dimensionality of the model representation. However, this
scheme is no longer effective in the presence of large trans-
formations. To resolve this problem, we turn to the second
observation and recent developments in random projection
manifolds [2, 13], by iteratively projecting the unaligned
test image to random-projection manifolds of an extended
linear model. The projections can then be separated into
the aligned projection target and some residue due to mis-
alignment. The more accurate the estimated transformation
parameters are, the closer the transformed version of the test
image should be to the linear sparse representation. Under
this framework, we can simultaneously recover the sparse
representation of the target image based on the model im-
ages and the image plane transformation between the target
image and the model images.

The remainder of the paper is organized as follows. Sec-
tion 2 introduces the related work and the interested prob-
lem. Problem formulation and solution are detailed in sec-
tion 3. Section 4 presents the experimental results when
applying the proposed method to face recognition and dy-
namic texture registration, respectively. We conclude this
paper in section 5.

2. Related Work

2.1. Sparse solution by l1 minimization

As introduced above, sparse solutions can be obtained
by performing l1 minimization instead of l0 minimization

[6]. Thus, efficient l1 minimization becomes the core of the
sparse representation problem. Recently, several efficient
algorithms are developed and they only require matrix-
vector products operations [8, 15, 10].

The l1-magic package implements the algorithms intro-
duced in [5, 8]. The l1 minimization is recasted as a second-
order cone program and then a primal log-barrier approach
is applied. In the process, only multiplications by A (eqn.
2) and its transpose are required. One l1 regularization al-
gorithm is developed for a large-scale least squares recon-
struction problem [15]. A specialized interior-point method
is employed to solve this problem, which uses precondi-
tioned conjugate gradient method to approximately solve
linear systems in a truncated-Newton framework. Each
search step requires only multiplications by A and its trans-
pose. The proposed l1-ls package is reported to outper-
form all previous implementations for l1 minimization, in-
cluding the l1-magic package. Gradient Projection for
Sparse Reconstruction (GPSR) is another interior point ap-
proach, which considers the sparse presentation reconstruc-
tion problem as a bound-constrained quadratic program.
In order to accelerate convergence, a variant of Barzilai-
Borwein steps is optionally applied when the projected gra-
dient steps are used. Their experiments show the GPSR ap-
pears to be faster than state-of-the-art algorithms,including
l1-ls, especially in large-scale settings. Moreover, it does
not require application-specific tuning. Considering these
advantages, the l1 minimization in our algorithm is based
on their GPSR-4.0 package.

2.2. Randomfaces

A pioneering attempt was conducted to use the sparse
representation theory for face recognition and the proposed
”Randomfaces” algorithm obtained very good face recogni-
tion results [21]. We briefly review their method here.

First, each image with size w × h is stacked as a vector
Ii,ni

∈ R
m, where i is the subject number and ni is the

image number of each subject. The whole training image
model can be represented as follows:

A = [I1,1, I1,2, ..., I1,n1 , ..., Ik,nk
] ∈ R

m×n (3)

Here, k is the total number of the subjects and n is the total
number of training images. Based on the assumption that
the vectors of each subject span a subspace for this subject,
the new test image y ∈ R

m of subject i can be represented
as a linear combination of the training images of subject i:

y =
ni∑

j=1

αi,jIi,j (4)

where αi,j , j = 1, ..., ni are weights. Then the test image
y of subject i can be sparsely represented in terms of all



training images:

y = Ax0 ∈ R
m (5)

where x0 = [0, ..., 0, αi,1, ..., αi,ni
, 0, ..., 0] ∈ R

n is a coef-
ficient vector whose entries are zero except those associated
with subject i. The sparse representation is obtained if sub-
ject number k is reasonably large. The only problem is that
the dimension of the data is very high. Motivated by the the-
oretical results in [4, 6], random projection is used to reduce
the data dimension:

ỹ = Ry = RAx0 = Ãx0 ∈ R
d (6)

where R ∈ R
d×m with d � m is a random projection

matrix. Until now, the face recognition is dexterously for-
mulated as the linear sparse representation problem:

x0 = argmin‖x‖0 while ỹ = Ãx (7)

As introduced above, this problem is equivalent to the l1

minimization problem in equation 2, which can be effi-
ciently solved. The remaining problem is to identify the
test image y by encoding x0 after l1 minimization:

identity(y) = argminiE[ri], E[ri] = 1
l

∑l
t=1 rt

i (8)

where ri is the residual and ri(y) = ‖ỹ − Ãδi(x)‖2. In the
new vector δi(x), the entries in x associated with subject i
keep unchanged and others are set as zeros.

Figure 1(c) shows several sparse representation exam-
ples by the Randomfaces algorithm [21]. We implemented
the algorithm according to their paper as there is not public
code available. The images are also from the Extended Yale
B database [12]. This database consists of 2,414 frontal-
face images of 38 individuals. The image size 192 × 168.
All images are aligned and normalized. We randomly select
half of the images for training (32 images per subject), and
the other half for testing. In Figure 1, different rows repre-
sent different subjects. In each row, Column (a) shows one
of training images of the subject. Column (b) shows one test
image of this subject, whose sparse reconstruction based on
sparse solution and the model images by Randomfaces al-
gorithm is shown in column (c). Very good reconstruction
results were obtained using their approach, which demon-
strates the effectiveness of sparse representation.

However, the current Randomfaces algorithm can not
handle the case where the test images are not aligned with
the training images. In an experiment, we introduced small
translations (15 pixels in both horizontal and vertical direc-
tions) to a set of test images so that they are not aligned with
the model training images. Then all the images are cropped
to the size 177 × 153. Several sparse representation results
by the Randomfaces algorithm on the unaligned test images
are shown in Figure 2(c). One can clearly see that there

(a) (b) (c) (d)

Figure 1. Sparse representation results on aligned images. One of
training images (a), the test image (b), the linear sparse represen-
tation result [21] (c), and the sparse representation result using the
proposed method.

are ghost effects due to the misalignment between the test
images and the model images, which shows that the cur-
rent linear sparse image representation approach depends on
correct alignments and lacks of invariance to images plane
transformations.

3. Transform-invariant Sparse Representation

In this section, we describe a sparse representation in-
variant to image-plane transformations.

3.1. Problem formulation

When there exist image plane transformations between
the test images and the model images, the problems (1) and
(2) can be reformulated as follows:

(x0, β0) = argmin‖x‖1, T (y, β0) = Ax (9)

where β0 is the parameter of the image transformation be-
tween the test image y and model images A. Here, A is
assigned according to equation 3 and T (y, β0) represents
the transformed version of image y with parameter β0. In
this problem, given the model A and the unaligned image
y, we attempt to simultaneously recover the sparse solution
x0 and the image plane transformation β0. It is a typical
Chicken-and-Egg problem. If we know the exact image
plane transformation, the sparse solution can be easily ob-
tained by l1 minimization in problem (2) just as done in a
previous approach [21]. If we know the exact sparse solu-
tion, we can obtain the sparse representation according to
the sparse solution, and then the image plane transforma-
tion can be easily estimated by classical motion estimation



methods [3]. However, we know neither the image plane
transformation nor the sparse solution. We therefore face a
highly ill-posed problem.

(a) (b) (c) (d)

Figure 2. Sparse representation results given unaligned test im-
ages. Training images (a), test images (b), results by Randomfaces
[21] (c), results by the proposed approach.

3.2. Algorithm

Our task is to simultaneously recover the image plane
transformation and the sparse representation while the
model images are aligned but the test image is not aligned
to the model images. For convenience, we use face recog-
nition as an example to introduce our algorithm below.

We consider the translation transformation first. Let I(x)
be an image where x = (x1, x2). I(x + β) represents its
translated version with parameter β = (a1, a2). When the
transformation parameter β is small, we have:

T (I, β) = I(x + β) ≈ I(x) + a1Ix1 + a2Ix2 (10)

where Ix1 is ∂I
∂x1

and Ix2 is ∂I
∂x2

.
Similarly, the affine transformed version of I can be rep-

resented as:

T (I, β) ≈ I(x) + a1Ix1 + a2x1Ix1 + a3x2Ix1

+a4Ix2 + a5x1Ix2 + a6x2Ix2 (11)

where β = (a1, a2, a3, a4, a5, a6). Now, let us consider the
problem in equation 9.

In the case of translation transformation, let β0 =
(a1, a2) represent the transformation between the model
images and the test image y of subject i. Then, the trans-
lated version of the test image y′, with parameter β0, can be
represented as:

y′ = T (y,−β0) =
ni∑

j=1

αi,jIi,j (12)

Considering that translating y toward y′ is equivalent to
translating the aligned model images toward y, we can
rewrite the above equation:

y = T (y′, β0) =
ni∑

j=1

αi,jT (Ii,j , β0)

=
ni∑

j=1

[αi,jIi,j + αi,ja1Ii,j,x1 + αi,ja2Ii,j,x2 ] (13)

where Ii,j,x1 is ∂Ii,j

∂x1
and Ii,j,x2 is ∂Ii,j

∂x2
. The equations form

a linear system:

y = Bx,B = [A0, A1, A2], x = [z0, z1, z2]T

z0 = [0, ..., 0, αi,1, ..., αi,ni
, 0, ..., 0]

z1 = [0, ..., 0, a1αi,1, ..., a1αi,ni
, 0, ..., 0]

z2 = [0, ..., 0, a2αi,1, ..., a2αi,ni
, 0, ..., 0]

A0 = [I1,1, I1,2, ..., I1,n1 , ..., Ik,nk
]

A1 = [I1,1,x1 , I1,2,x1 , ..., I1,n1,x1 , ..., Ik,nk,x1 ]
A2 = [I1,1,x2 , I1,2,x2 , ..., I1,n1,x2 , ..., Ik,nk,x2 ] (14)

where we now obtain the linear image model B ∈ R
m×3n

for translation transformations 1, as similarly done in [18].
In this way, the unaligned image y of subject i can be
sparsely represented in terms of all training images and their
derivatives. The random projection is used to reduce the
data dimensionality:

ỹ = Ry = RBx = Ãx ∈ R
d (15)

where R ∈ R
d×m with d � m is a random projection

matrix. l1 minimization instead of l0 minimization is per-
formed to derive the sparse solution:

x0 = argmin‖x‖1 while ‖ỹ − Ãx‖2 < ε (16)

With the computed sparse solution x0 = [z0, z1, z2]T , the
random projection ỹ can be separated into the aligned pro-
jection target ˜y′

est and the residue ỹ′′:

Ry′
est = ˜y′

est = Ã0z0 = RA0z0 (17)

where y′
est is the estimation of the aligned version y′ of the

test image y. The recent developments [2, 13] in random
projection manifolds provide the following scheme for esti-
mating the aligned target y′ from equation 17.

Lemma 1 Let M be a compact k dimensional manifold
in R

m having volume V and condition number 1/τ . Fix 0 <
ε < 1 and 0 < ρ < 1. Let R be a random orthoprojector
from R

m toR
d and

d � O(
k ∗ log(mV τ−1)log(ρ−1)

ε2
) (18)

1Similarly, we can obtain B ∈ R
m×7n for affine transformations.



suppose d < m, then, with probability 1 − ρ, the following
statement holds: for every pair of points x, y ∈ M, and
i ∈ {1, 2},

(1 − ε)

√
d

m
≤ ‖Rx − Ry‖i

‖x − y‖i
≤ (1 + ε)

√
d

m
(19)

A fundamental connection between this Lemma and the
sparse representation theory has been identified in compres-
sive sensing [1, 2]. It states that, when the projections of two
points in a random projection manifold are close, then the
two original points are also close, only if these two points
live in the same compact manifold. According to this, we
can get:

‖ ˜y′
est − Ã0z0‖2

‖y′
est − A0z0‖2

≈
√

d

m
(20)

Then, y′
est ≈ A0z0 can be obtained from equation 17 and

20. Since y′
est is the estimation of the aligned version y′ of

the test image, we can optimize the translations between y
and y′

est by a model based approach [3]:

�β = argminβ‖T (y, β) − y′
est‖2 (21)

With the estimated transformation parameters, the test im-
age y is warped towards y′

est. Then, the warped image is
projected again onto the manifolds defined by the model
matrix B and the random projection matrix; this process re-
peats until the residue is gradually reduced to a certain level.
The complete procedure is summarized in algorithm 1.

It is worth noting that, the above process can also be im-
plemented in a coarse-to-fine framework, where the proce-
dure is applied at each level of the pyramid.

3.3. Simultaneous Face Alignment and Recognition

The proposed approach can be useful in face detection
followed by identification, where the target image obtained
by the detection module is possibly not aligned with the
model images although all the model images are already
aligned. In this scenario, Algorithm 1 can be directly used
for simultaneous face alignment and recognition. Moreover,
alignment and recognition can interact in a loop to improve
each other’s performance. Better alignment leads to more
accurate sparse solution, which in turn makes possible bet-
ter recognition performance. On the other hand, more accu-
rate sparse solution allows to perform better alignment.

Figure 1(d) shows several sparse representation exam-
ples by the proposed algorithm on aligned test images. For
the first and second subjects, there are almost no differ-
ences between the sparse representation results by the pro-
posed approach and the Randomfaces algorithm. For the
third subject, there exists slight rotation between the test im-
age and the model images. Our result using the translation

Algorithm 1. Transform-invariant Sparse Representation (TSR)

1: Input: The training image matrix A0 from k subjects,
a test image y ∈ R

m and iteration number s.
2: Build the model matrix B = [A0, A1, A2] ∈ R

m×3n

(For affine model, B = [A0, A1, A2, A3, A4, A5, A6] ∈
R

m×7n)
3: Generate l random projections R1, ..., Rl ∈ R

d×m.
4: for all p = 1, ..., l do
5: β = 0
6: for all q = 1, ..., s do
7: Compute y′

est = T (y,−β)
8: Compute ỹ = Rpy and Ã = RpB, normalize ỹ

and columns of Ã
9: Perform l1 minimization:

x0 = argmin‖x‖1 while ‖ỹ − Ãx‖2 < ε

10: Compute y′
est = A0z0, here z0 = x0(1 : n).

11: Compute �β = argminβ‖T (y,−β) − y′
est‖2.

12: Compute β = β + �β until �β small enough.
13: end for
14: Compute rp

i = ‖ỹ − Ãδi(x0)‖ for i = 1, ..., k
15: Compute βp = β
16: end for
17: Compute identity(y) = argminiE[ri]
18: Compute transform(y) = E[β]
19: Output: identity(y) and transform(y).

model is not perfect, but it is still better than that by Ran-
domfaces, which produces severe ghost effects. This further
confirms our conclusion: simultaneous transformation and
sparse representation recovery is very important. We also
tested our approach using test images that are not aligned
with model images (15-pixels shift in both horizontal and
vertical directions). Figure 2(d) shows several examples.
The results are very promising and we were able to obtain
both the sparse representation and the translation motion;
this demonstrates that the proposed approach can generate
transformation invariant sparse representation.

3.4. Online Dynamic Texture Registration

Online video registration is required by many video anal-
ysis applications when a video sequence is captured by
a moving camera. Traditional methods generally make
the brightness constancy assumption [3]: I(x1, x2, t) =
I(x1, x2, t − 1), where (x1, x2) denotes the spatial coor-
dinates and t represents the time frame. However, this as-
sumption is often violated in dynamic scenes.

Fitzgibbon [11] proposed to perform dynamic scene reg-
istration by minimizing the entropy function of an auto re-
gressive process, which results in a difficult non-linear opti-
mization problem. Dynamic Texture Constancy Constraint



(DTCC) is introduced in [20] to solve this problem, in-
stead of the brightness constancy. In [14], another solution
is proposed by jointly optimizing over registration param-
eters, the average image, and the dynamic texture model
according to certain prior models. These three methods in-
volve complex optimization and do not suit well the needs
of online video registration. One online video registration
method proposed in [16] attempts to solve two independent
subproblems: 1) the extrapolation of the preceding frames
using block based video synthesis techniques; 2) the align-
ment of a new image frame to best fit the above extrapola-
tion [3].

In this paper, we propose a new online dynamic texture
registration approach, based on the sparse representation
constancy assumption instead of the traditional brightness
constancy assumption. The sparse representation constancy
assumption states that, given a new frame, its aligned ver-
sion should be represented as a linear combination of as
few preceding image frames as possible. As we know, a
dynamic scene is called a dynamic texture when it is cap-
tured by a static camera and its temporal evolution exhibits
certain stationarity [9]. Thus, our assumption is reason-
able for dynamic-texture image sequences. Our experimen-
tal results in the next section also confirm the validity of
this assumption. As a matter of fact, the traditional bright-
ness constancy assumption seeks that the aligned version of
the current image frame can be best represented by a single
preceding frame, while the proposed sparse representation
constancy assumption seeks that the aligned version of the
current image frame can be best represented by all preced-
ing image frames via l1 minimization. Thus, the former can
be thought as a special case of the latter.

Suppose a video sequence consists of frames I1, ..., In ∈
R

m. Without loss of generality, we can assume that the
first k frames have already been aligned to the kth frame.
Let A0 = [I1, ..., Ik] ∈ R

m×k. Considering the transla-
tion model, our task is to estimate the translation motion
between the (k + 1)th frame and the preceding frames:

(x0, β0) = argmin‖x‖1, T (y, β0) = A0x (22)

where β is the motion parameter. Obviously, this problem
is equivalent to the problem in equation 9 and can be effi-
ciently solved by Algorithm 1. After recovering the motion
β between the (k+1)th frame and preceding frames, we can
warp all preceding frames toward the (k + 1)th frame ac-
cording to the estimated motion parameter β. The same pro-
cedure can be applied to aligning with the (k + 2)th frame,
and so on.

For long video sequences, it is impractical to build a
model matrix A0 = [I1, ..., It−1] ∈ R

m×(t−1), where t de-
notes the current frame number. In order to cope with this
case, we can set a time window width parameter τ . We then
build the model matrix, A0 = [It−τ , ..., It−1] ∈ R

m×(t−τ),

for the tth frame, which can avoid the memory requirement
blast for a long video sequence. The complete algorithm for
online dynamic texture registration is summarized below.

Algorithm 2. TSR Based Online Dynamic Texture Registration

1: Input: The video sequence I1, ..., In, the number k
which means 1st ∼ kth have been aligned to kth frame,
the time window width τ ≤ k

2: for all t = k + 1, ..., n do
3: Set A0 = [It−τ , ..., It−1]
4: Set y = It and iteration number s.
5: Perform Algorithm 1, βt = TSR(B, y, s)
6: Warp I1, ..., It−1 toward It according to βt

7: end for
8: Output: The registered I1, ..., In and βk+1, ..., βn.

4. Experiments

The proposed transformation invariant sparse representa-
tion is applied to face recognition and online dynamic tex-
ture registration respectively.

4.1. Face Recognition

In this section, we validate respectively the identifica-
tion and verification performance of Algorithm 1 for face
recognition using a public face database, namely, the Ex-
tended Yale B database [12]. This database consists of
2,414 frontal-face images of 38 individuals. The image size
is 192 × 168. We randomly selected 20 subjects, half of
whose images are used for training (32 images per subject),
and the other half for testing. There are a total of 640 im-
ages from the 20 subjects for training. In the identification
experiment, there are 640 images for testing. In the verifi-
cation experiment, there are 1198 test images, half of which
are true outliers.

All images are aligned and normalized in the Extended
Yale B database. To evaluate the identification performance
of the proposed approach, we generated shifted test images
according to different shift values. For example, if the shift
value is 7, each test image is shifted with random parame-
ters between 0 and 7 pixels in both horizontal and vertical
directions. The training images are kept unchanged. For
fair comparison, the implementations of the Randomfaces
algorithm and the proposed algorithm use the same param-
eters as those introduced in [21] (random projection matrix
number is l = 5, error distortion ε = 0.05, and the re-
duced dimension d is 504). Figure 3(a) shows the recog-
nition performance of the proposed algorithm and the Ran-
domfaces algorithm, as a function of shift values. One can
see that the proposed algorithm outperforms the Random-
faces algorithm. When the shift value is smaller than 2 pix-
els, our results are slightly better than Randomfaces. When



Affine Group 1 Group 2 Group 3

Eigenfaces [19] 75.16% 49.38% 38.75%

Randomfaces [21] 75.94% 49.69% 38.28%
Proposed 91.56% 89.22% 81.25%
Table 1. Identification rates under affine transformations

the shift value exceeds 2 pixels, the Randomfaces recogni-
tion performance is much degraded, which further demon-
strates that the previous sparse image representation is sen-
sitive to image plane transformations. In comparison, the
proposed transform-invariant sparse representation achieves
better and more stable recognition performance.
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Figure 3. Identification results and ROC curves

The verification performance of the proposed algorithm
is evaluated using 1198 shifted test images with the shift
value 7. Among the 1198 images, 558 images are true out-
liers. Since the role of verification is to reject test images
that are difficult to classify, we also use the Sparse Concen-
tration Index (SCI) [21] as an indication of confidence:

SCI(x0) =
k ∗ maxi‖δi(x0)‖1/‖x0‖1 − 1

k − 1
< σ (23)

where k is the subject number, σ ∈ [0, 1] is a preselected
threshold, and δi(x0) represents the entries in x0 associated
with subject i keep unchanged and others are set as zeros.
We plot the Receiver Operating Characteristic (ROC) curve
according to different σ values in Figure 3(b). As expected,
the proposed algorithm outperforms Randomfaces.

We also tested the proposed algorithm’s invariance and
robustness to the affine transformation model. We scaled up
the 640 test images by a factor of 1.02 and then rotated them
by 2◦, 4◦ and 6◦, respectively. This gave us 3 groups of
test images (640 in each). Table 1 tabulates the comparison
of the identification results, which shows our algorithm has
better invariance to affine transformations.

4.2. Dynamic Scene Registration

The first set of experiments uses the Escalator sequence
(shown in Figure 4). It includes 157 image frames. We re-
sized each image frame to 120 × 160 pixels. In order to
evaluate the proposed approach, we generated 3 new video
sequences by transforming each image frame with a known

Figure 4. The Escalator Sequence [22]

Generated Sequence 1st 2nd 3rd

Bergen’s [3] 22.55% 21.86% 23.25%
Proposed 1.39% 1.48% 1.36%

Table 2. FEF of horizontal cumulative motion

motion and record the motion as ground truth. For compar-
ison, we implemented the classic model-based motion esti-
mation method [3], which we call Bergen’s method. Since
the proposed method is an online registration method and
assumes that the beginning frames have been aligned, we
only compared the motion estimations from the 81st to the
last frame in this experiment. The comparison results on
one generated sequence are shown in Figure 5. The pro-
posed method almost performs perfect motion estimation,
while Bergen’s result is not as good. It is easy to interpret
these trends in these results. Bergen’s method is based on
the assumption of Brightness Constancy, thus it considers
that the local/nonrigid motion in dynamic textures is also
caused by camera motion. On the other hand, our approach
is based on the more accurate sparse representation con-
stancy assumption and seeks the optimal estimation in terms
of all preceding image frames via l1 minimization.
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Figure 5. The cumulative motion estimation

For quantitative evaluation, the false estimation fraction
(FEF) is used to indicate the difference between the ground-
truth MTrue and the estimated motion MEst: FEF =
|MEst −MTrue|/|MTrue|. Table 2 records the FEF of reg-
istration results on the three generated image sequences by
different implementations. Our algorithm gives very good
motion estimation results.

The moving flower bed sequence shown in Figure 6 has
been used as a registration example by [11, 20, 16, 14]. The
whole sequence includes 554 image frames. The camera
motion in this sequence is a horizontal translation. The
ground truth of the cumulative horizontal motion in the
whole sequence is 110 pixels based on manual motion la-
belling of one red flower. While quantitative motion es-
timation results were not reported in [11], the FEF of the



cumulative motion is 29.41% by Vidal’s approach on a sub-
sequence with 250 frames [20]. The FEF of the cumula-
tive motion on this sequence is reported as 1.7% in [16]
and 4.98% in [14]. For quantitative comparison with these
methods, we also tested the proposed algorithm on this se-
quence. The cumulative motion along the horizontal direc-
tion is estimated as 107.7 pixels by our approach, thus a
2.09% FEF of cumulative motion; this performance is close
to the reported result by the extrapolation based registration
approach [16]. Based on the efficient l1 minimization, our
algorithm takes less than 5 seconds to register each image
frame on a 1.5GHz laptop PC in MATLAB environment,
which is faster than extrapolation based registration using
block-based video synthesis.

Figure 6. A sequence of moving flower bed [11, 16, 20, 14].

4.3. Discussions

All of the above experimental results have validated the
proposed transformation invariant sparse representation al-
gorithm.

1. The sparse image representation, successfully ex-
tended to be invariant to a desired group of image-
plane transformations, is easily applied to image anal-
ysis related problems.

2. The sparse representation constancy assumption, pro-
posed in place of brightness constancy assumption for
motion estimation, has been validated and improves
performance.

3. Compared to previous algorithms, the proposed algo-
rithm can handle less constrained cases and promises
better performance at the cost of more memory usage
(3 and 7 times more for translation and affine transfor-
mations, respectively).

5. Conclusions

In this paper, we extend the sparse representation to be
invariant to a desired group of image-plane transformations
of an ensemble of unaligned images. By coupling the re-
cently emerged theories on compressive sensing and ran-
dom projection manifold, the proposed approach can ef-
ficiently recover not only sparse representation of a target
image but also the image plane transformation between the
target and the model images. Experiments on face databases
and real video sequences demonstrate the performance of
our method and show marked improvement over previous
approaches.
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