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Abstract

Most current 3D face recognition algorithms are de-
signed based on the data collected in controlled situations,
which leads to the un-guaranteed performance in practical
systems. In this paper, we propose a Robust Local Log-
Gabor Histograms (RLLGH) method to handle the uncon-
trolled problems encountered in 3D face recognition. In
this challenging topic, large expressions and data noises
are two main obstacles. To overcome the large expressions,
we choose Log-Gabor features (LGF) to extract the distinc-
tive and robust information embedded in 3D faces, which
will be represented as 3D Log-Gabor faces. Data noises
are summarized as distorted meshes, hair occlusions and
misalignments. To overcome these problems, we introduce
a Robust Local Histogram (RLH) strategy, which takes ad-
vantage of the robustness of the accurate local statistical
information. The combination of LGF and RLH leads to
RLLGH. The novelties of this paper come from 1) Our work
aims at studying 3D face recognition performance in uncon-
trolled environments; 2) We find that embedding LGF into
the LVC framework leads to robustness in handling large
expression variations; 3) The RLH strategy gives a promis-
ing way to solve the data noises problem. Our experiments
are based on the large expression subset in FRGC2.0 3D
face database and the expression subset in CASIA 3D face
database. Experimental results show the efficiency, robust-
ness and generalization of our proposed method.

1. Introduction

Automatic identification of human faces is a very chal-
lenging research topic, which has gained much attention
during the last few years. Most of this work, however, was
focused on intensity or color images of faces [1]. Because
of the robustness of 3D face recognition to pose and illu-
mination variations, recently with the development of 3D
acquisition system, a great deal of research effort has been
devoted to this topic [2].

Earlier research in this field focused mainly on curvature
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Figure 1. The difficulties encountered in uncontrolled environ-
ments. The first pair shows the images in controlled situations,
while the other pairs show the images with large expressions and
data noises, which are the main obstacles in uncontrolled environ-
ments.

analysis. Gordon et al. [3] adopted Gaussian and mean cur-
vatures to characterize delicate features in 3D faces. Chua
et al. [4] treated face recognition as a 3D non-rigid sur-
face matching problem and divided the human face into
rigid and non-rigid regions. They also proposed point-
signature to describe 3D free-form surfaces. The rigid parts
of faces were represented by point-signatures, and recog-
nition was achieved by matching these signatures. Tanaka
et al. [5] treated 3D face recognition as a 3D shape recog-
nition problem of free-form curved surfaces. Each face in
both input image and the model database was represented
as an Extended Gaussian Image (EGI), and recognition was
achieved by evaluating the similarities among these con-
structed EGIs. The methods based on curvature analysis
make good use of 3D properties of the data, however, they
usually require a high computation cost. In addition, be-
cause of the sensitivity of curvature based features, these
methods also need high quality 3D face data.

Recently because of the excellent performance of princi-
pal component analysis (PCA) in 3D face recognition [6],
many appearance based methods have been adopted in this
field. Lu et al. [7] constructed many 3D models as regis-
tered templates, then they matched 2.5D images (original
3D data) to these models using iterative closet point (ICP).
Jamie et al. [8] adopted LGF to represent 3D faces, then
the recognition was achieved by combining the scores in
both spatial and frequency domain. Zhong et al. [9] intro-
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Figure 2. The flowchart of the proposed RLLGH method.

duced the Learned Visual Codebook (LVC) method into 3D
face recognition. In their method, each 3D face was com-
posed by some learned face codes, then according to this
mapping, histogram vectors were obtained to represent the
faces. Mian et al. [10] proposed a fusion system to han-
dle the expression problem. In their system, three kinds of
methods, spherical face representation, SIFT based match-
ing and a modified ICP were combined to achieve the fi-
nal recognition. Their results show the potential of appear-
ance based methods to solve the expression problem in 3D
face recognition. However, all the above methods [6] [7] [8]
[9] [10] choose neutral faces as registered templates, which
can be viewed as 3D face recognition in controlled environ-
ments. As Fig.1 shows, recognizing uncontrolled faces is
much more difficult than recognizing neutral faces. Thus,
can we accurately recognize the un-cooperative individuals
when we only have their corresponding uncontrolled faces
as registered templates?

In this paper, we introduce a RLLGH method aimed at
handling this uncontrolled problem encountered in 3D face
recognition. The flowchart of RLLGH is shown in Fig.2.
Our method can be divided into two parts: to overcome
the large expressions and to overcome the data noises. In
expression module, first we select the relative robust face
area to reduce the influence of the expressions, as shown in
Fig.3. Then LGF is extracted from each face. The obtained
3D Log-Gabor faces are stored into a 3rd-order tensor. In
noise module, first each tensor is divided into some local
sub-tensors to reduce the complexity of noises. Then the

LVC framework [9] is adopted to convert each sub-tensor
into a LVC histogram vector. We also use robust estimation
to choose the most robust local histograms for final recog-
nition.

The contributions of this paper are as follows. First,
a RLLGH method is proposed to recognize 3D faces in
uncontrolled environments. Second, we embed the Log-
Gabor filters into the LVC framework, which is efficient
to characterize the individuals and robust to large expres-
sions. Third, a RLH strategy is introduced to overcome the
data noises. We also make a detailed comparison between
RLLGH and some commonly used appearance based meth-
ods, such as PCA, Gabor features(GF), LGF, Local Binary
Pattern (LBP), Local Gabor Binary Pattern Histogram Se-
quence (LGBPHS) and LVC [11] [12] [8] [13] [14] [9]. Ex-
perimental results show the effectiveness of our method to
recognize 3D faces in uncontrolled environments.

The remainer of this paper is organized as follows. In
Section 2, we give our motivation of 3D face recognition
in uncontrolled environments. In Section 3, our RLLGH
method is described in details. We describe our experimen-
tal results in Section 4. Finally, the paper is concluded in
Section 5.

2. Motivation

FRGC2.0 database constructs an ideal platform for re-
searchers to compare their algorithms. However, this
database aims to test the influence of time lapse to recog-
nition performance, which is the main difference of ROCI,



ROCII and ROCIII [15]. As to 3D face recognition, how
to overcome the expression variations is also a challenging
topic. Based on this, Geometrix gives a widely used pro-
tocol to divide the FRGC2.0 data into three subsets: neu-
tral, small expression and large expression [16]. Neutral and
small expression subsets can be viewed as 3D face recogni-
tion in controlled environments, while large expression sub-
set can be viewed as 3D face recognition in un-cooperative
environments. Recently, most work [10] is based on the
neutral registered templates, such as neutral/neutral (neu-
tral faces as gallery set and neutral faces as probe set), neu-
tral/small expression (neutral faces as gallery set and small
expression faces as probe set) and neutral/large expression
(neutral faces as gallery set and large expression faces as
probe set).

Because of the rapid development in 3D face recogni-
tion, the recognition performance of neutral faces has been
improved substantially. We give the verification perfor-
mances of RLLGH based on two protocols: ROCIII of
FRGC2.0 and Geometrix neutral expression subset [15]
[16]. In ROCIII of FRGC2.0, RLLGH can give a verifi-
cation performance at 90.6% when FAR is 0.1%. In neutral
subset of FRGC2.0, RLLGH can give a verification perfor-
mance at 99.1% when FAR is 0.1%. These results are com-
parable to the state-of-art recognition performance. There-
fore, in this paper we only aim at testing 3D face recognition
performance in large expression subset [16].

3. Introduction of RLLGH

3D face recognition in uncontrolled environments has
many unexpected factors. In this paper we address two is-
sues: large expressions and data noises, as Eqn.1 shows.

I=P+E+N (1)

where I is the face image, P refers to the characteristics of
the person, E means the large expressions and N means the
uncontrolled data noises. Our main target is to eliminate
the expressions and noises embedded in the face image and
preserve the main characteristics of the person. Therefore,
our proposed RLLGH is composed of two modules, namely
expression module and noise module, in which the former
is to deal with the large expressions and the latter is to over-
come the uncontrolled data noises. Next we will describe
these two modules in details.

3.1. Expression module

This module contains two parts: robust area selection
and Log-Gabor features extraction.
3.1.1 Robust area selection

All face areas will be influenced when large expressions
happen. However, some facial components, such as nose,

cheeks and eyebrows, have smaller variations than other fa-
cial components, such as mouth and chin. Therefore, to
reduce the complexity of large expressions, we first select
these relative robust areas as shown in Fig.3. To test the
efficiency of this strategy, we define a rule called mean dis-
tance per pixel (MDP),

MDP = f(I = I,)/N )

In Eqn.2, f is the distance function (L is used here), I; and
I, are the images to be matched, NV is the number of pixels
of I; and I». From Fig.2, we find that MDP is effectively
reduced because of the robust area selection strategy.

MDP= 9. 68

Figure 3. The relative robust face area. The MDP of selected face
area (9.68) is smaller than that of the whole face area (15.47).

3.1.2 Log-Gabor features extraction

Fig.4(a) shows the Fourier spectrum in frequency domain
of a 3D face. Although most of the energy is distributed in
the low frequency area, they only reflect the global intensity
distribution of the original image. And the more detailed
discriminative information is embedded in the middle and
high frequency area. Therefore, we need filters which can
cover more bands in the middle and high frequency area.

Gabor filters have been used to many face recognition
works because of its selectivity on orientation and spatial
frequency [12] [9], as Eqn.3 shows.

\I/u,v(z) _ ||k’u,;1||2 e(—i“kug!z“z“z ) [eiku,vz _ 6_§] (3)
o
where u and v denote the orientation and scale of Gabor
kernels. However, as Fig.4(b) shows, the limited bandwidth
of Gabor filters become the drawback of GF to represent 3D
faces.
In [17] an alternative method was proposed to overcome
this problem, which is the Log-Gabor filters, as Eqn.4,
Eqn.5 and Eqn.6 show.

LGF(fo,angle) = GT Frogcavor (fo) © Spread(angle)
(€))

GTFLogGabor(fO) - exp((—log(f/fO)Q)/(2log(01)2))
()
Spread(angle) = exp((—F(angle)?)/(203))  (6)
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Figure 4. Gabor and Log-Gabor features of 3D face. (a): the

Fourier spectrum of 3D face; (b)(c): the Gabor filter response and
3D Gabor Faces respectively; (d)(e): the Log-Gabor filter response
and 3D Log-Gabor Faces respectively.
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where f is the spatial frequency, fj is the center frequency
of the filter, o1 and o are the standard deviation of Gaus-
sian function, angle is the polar angle in the frequency do-
main, £ is a function which makes Spread to be a Gaussian
which is centered at the polar angle, A ® B means multiply
each element in matrix A with its corresponding element
in matrix B [18]. The main difference between Gabor and
Log-Gabor is the Gaussian transfer function(GTF). When
we convert Gabor representation (Eqn.3) into frequency do-
main, its GTF is shown as Eqn.7:

GT Faavor (fo) = exp(—(f/f0)*)/(2(01)%) (1)

From the comparison of Eqn.5 and Eqn.7, we can find that
in Log-Gabor filters, GTF is Gaussian when viewed on the
logarithmic frequency scale. While in Gabor filters, GTF is
Gaussian when viewed on the linear frequency scale. There-
fore, the frequency response of Log-Gabor filters can cover
more bands in the middle and high frequency area, which
gives it the ability to capture more discriminative infor-
mation embedded in the 3D faces, as shown Fig.4(d) and
Fig.4(e).

The Log-Gabor representation of 3D face, called 3D
Log-Gabor faces, as shown in Fig.4(e), can be obtained as

follows:

3DLGF (fo,angle) = IFT(FT(I) ® LGF(fy,angle))

®)
where I is a 3D face image, LGF(fo, angle) is the Log-
Gabor filter with center frequency fj and polar angle angle,
FT means the Fourier transform and /F'7T means the in-
versed Fourier transform, A @ B refers to multiply each
element in matrix A with its corresponding element in ma-
trix B. From the comparison of Fig.4(c) and Fig.4(e), it is
clear that 3D Log-Gabor faces contain more detailed tex-
ture information than 3D Gabor faces. In our experiment
we choose one center frequency (one scale) and three polar
angles (three orientations) for the Log-Gabor filters. There-
fore, each 3D face corresponds to three 3D Log-Gabor
faces, which will be stored as a 3rd-order tensor.

3.2. Noise module

HAR

Distorted Hair Mis—
mesh occlusion alignment

Figure 5. Three kinds of data noises: distorted mesh, hair occlu-
sion and mis-alignment.

Besides large expression variations, data noises is an-
other obstacle in uncontrolled environments. Here we sum-
marize the data noises into three categories: Noises from
3D acquisition system, such as the distorted meshes; Noises
from the subject, such as the hair occlusions; Noises from
the registration, such as the mis-alignments. In our ap-
proach, RLH is adopted to overcome the data noises. The
main steps of RLH can be divided into three parts: local
sub-tensors division, LVC histograms construction and ro-
bust estimation.

3.2.1 Local sub-tensors division

Figure 6. Dividing the 3D Log-Gabor faces into many local sub-
tensors.

Local sub-tensors division is a kind of “divide and con-
quer” method. In this step, we divide the 3rd-order tensor,
3D Log-Gabor faces, into many local sub-tensors according
to their spatial coordinates, as shown in Fig.6. It is the basic



step of our RLH strategy. For distorted meshes and mis-
alignments, the dividing work largely reduces the complex-
ity of noises. For hair occlusions, we assign the occluded
face areas to only a few local sub-tensors, which will be
filtered out in the next steps.

3.2.2 LVC histograms construction

Learned Visual
Codebook

Log-Gabor filter responses
for local patches

Training Stage

arowty el imﬁﬁ;

Converting

Histograms

Figure 7. The LVC strategy.

As Fig.7 shows, we use k-means to learn the codes from
each local sub-tensors in training, and these codes com-
pose the learned visual codebook. Based on the constructed
codebook, each local sub-tensor can be converted into a lo-
cal histogram vector [9]. To handle distorted meshes and
mis-alignments, the histogram representation will be more
robust and efficient than appearance representation because
of its statistical property.

3.2.3 Robust estimation

il bl

Cl: MDP=13.75 Cl: MDP=14.73

C2: MDP=20.32 C2: MDP=16. 93

Figure 8. An example of robust estimation to overcome hair occlu-
sion.

This step is to handle hair occlusions. In [19], several
measures of robustness are mentioned in robust estimation,
in which the most common is the breakdown points-the
minimum fraction of outliers that can deteriorate the esti-
mate accuracy. Local patches with hair occlusions are just
such breakdown points when we compute the matching dis-
tance between individuals. An example of robust estima-
tion is shown in Fig.8. Left pair is from the same indi-
vidual, right pair is from different individuals. CI is the

case when we use the efficient local patches for compari-
son (when breakdown points are discarded), C2 is the case
when we use all local patches for comparison. MDP is de-
fined as Eqn.2. For C2, because of the influence of hair
occlusions, the MDP of left pair is even larger than that
of right pair, which is an error in verification. While for
C1, thanks to the robust estimation (only the efficient lo-
cal patches are adopted), the MDP of left pair is reduced
from 20.32 to 13.75. Now it is smaller than that of right
pair, which is only reduced from 16.93 to 14.73. Therefore,
robust estimation can improve the recognition performance
by overcoming hair occlusions.

To guarantee the robustness of our method, we need
to combine the accurate distances between the local his-
tograms to achieve recognition. Therefore, the local his-
tograms with lower matching scores are viewed as break-
down points. Only the local histograms with higher match-
ing scores are labeled as efficient and adopted for face
recognition.

3.3. RLLGH framework

Our RLLGH framework can be concluded as follows:

e Expression module.

— Select the relative robust face areas.

— Extract Log-Gabor features to represent 3D
faces, which called 3D Log-Gabor faces.

e Noise module.

— Divide the 3D Log-Gabor faces into many local
sub-tensors.

— Apply LVC strategy to compute the statistical in-
formation of each sub-tensor and construct the
LVC histograms corresponding to these local
sub-tensors.

— Select robust LVC histograms with higher match-
ing scores for further recognition.

In our experiments, the selected robust face area is
80%120 pixels. After Log-Gabor transformation, the size of
the obtained 3rd-order tensor is 80*120*3. In division, the
size of each sub-tensor is 20*%20*3. And 24(4*6*1) local
sub-tensors are obtained in this step. In LVC, we adopt 64
clustering centers for each sub-tensor, so 24 64-dimensional
histogram vectors are obtained to represent each 3D face.
For robust estimation, we adopt L1 distance for matching
and discard 4 histogram vectors with the lowest matching
scores. Finally the matching scores of the remaining 20 ef-
ficient histogram vectors are combined to achieve recogni-
tion.



Although both LVC [9] and RLLGH adopt the learned
visual codebook strategy, there are some notable differences
between them.

(1) LVC [9] is constructed based on Gabor filter re-
sponses. While RLLGH is constructed based on Log-Gabor
filter responses to overcome the expressions.

(2) In LVC [9], the clustering is based on the 20-
dimensional vectors (5 scales and 4 orientations). While in
RLLGH, the clustering is based on the 3-dimensional vec-
tors (1 center frequency and 3 angles). Because clustering
in higher dimensional space will introduce more noises into
clustering centers, so the codes learned in RLLGH can more
accurately reflect the original data distribution.

(3) In matching step, LVC [9] uses the all the local
matching scores, while RLLGH only uses the scores from
the local histograms which are estimated to be effective.
Therefore, RLLGH is more robust to data noises.

3.4. Other methods used for comparison

PCA, GF, LGF, LBP, LGBPHS and LVC are commonly
used appearance based methods in face recognition [11]
[12] [8] [13] [14] [9]. Next we will make detailed compar-
isons between RLLGH and the above methods to show the
efficiency, robustness and generalization of our proposed
method for 3D face recognition.

4. Experimental results and discussion

Our proposed method is evaluated in terms of its ro-
bustness to handle the large expressions and data noises on
two challenging databases: the large expression subset of
FRGC2.0 3D Face Database [15] and the expression subset
in CASIA 3D face database.

4.1. Experiments on large expression subset

Figure 9. Some example images in large expression subset of
FRGC2.0 3D Face Database. The images in the same black block
are from the same person.

There are 742 faces from 311 individuals in the large
expression subset of FRGC2.0 3D Face Database, which
contain many kinds of expressions, such as laugh, big sur-
prise, etc. [16]. To demonstrate the difficulty of this data
set, we show some example images in Fig.9. Our experi-
ments are arranged into two modes: verification mode and

classification mode. In verification, we calculate a 742%742
similarity matrix. ROC curve and the verification rate when
FAR = 1% are adopted to test the verification performance.
In classification, we adopt the first image of each individ-
ual as the gallery set, which contains 311 faces. The re-
maining images are left as probe set, which contains 431
faces. CMS curve and the rank one score are adopted to
test the classification performance. Our proposed method
is compared with some widely used methods, such as PCA,
GF, LGF, LBP, LGBPHS and LVC [11] [12] [8] [13] [14]
[9]. Because some methods need the training stage, we
use only 100 neutral faces from FRGC1.0 as the training
set. The verification performance when FAR=1% is shown
in Fig.10(a). The ROC curve is shown in Fig.10(b). The
Rankl classification rate is shown in Fig.10(c). The CMS
curve is shown in Fig.10(d).
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Figure 10. Recognition performance of the large expression subset
from FRGC2.0 database in both verification mode and classifica-
tion mode. (a) is the verification performance when FAR=1%. (b)
is the ROC curve. (c) is the Rank]1 classification performance. (d)
is the CMS curve.

4.2. Experiments on expression subset

SMILE LAUGH ANGRY SURPRISE  EYECLOSE

:m

Figure 11. Some example images in expression subset of CASIA
3D Face Database. The images in the same row from the same
person.

There are 615 faces from 123 individuals in the expres-
sion subset of CASIA 3D Face Database, which contain



many kinds of expressions, such as smile, laugh, surprise,
etc. The expressions here is not that large as to the data in
the first experiment, while there is more data noise in this
data set. Some example images are shown in Fig.11. Our
experiments are also arranged into two modes: verification
mode and classification mode. In verification, we calculate
a 615%615 similarity matrix. ROC curve and the verifica-
tion rate when FAR = 1% are adopted to test the verification
performance. In classification, we adopt the smile image
of each individual as the gallery set, which contains 123
faces. The remaining images are left as probe set, which
contains 492 faces. CMS curve and the rank one score are
adopted to test the classification performance. Some widely
used methods, such as PCA, GF, LGF, LBP, LGBPHS and
LVC[11][12] [8] [13] [14] [9] are adopted to compare with
RLLGH. For the methods which need the training stage, we
also use the same 100 neutral images from FRGC1.0 as the
training set. The verification performance when FAR=1% is
shown in Fig.12(a). The ROC curve is shown in Fig.12(b).
The Rankl classification rate is shown in Fig.12(c). The
CMS curve is shown in Fig.12(d).
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Figure 12. Recognition performance of the expression subset
from CASIA database in both verification mode and classification
mode. (a) is the verification performance when FAR=1%. (b) is
the ROC curve. (c) is the Rankl1 classification performance. (d) is
the CMS curve.

4.3. Discussion

From the experimental results we can find that: first,
LGF is more robust to expression variations than GF. Be-
cause the faces in the large expression subset of FRGC2.0
are manually aligned, thus the main obstacle in this experi-
ment is large expression variations. The example images in
Fig.9 demonstrate the difficulty of this data set. A notable
result is that LGF obtains a substantially superior perfor-
mance than PCA and GF, even LBP and LGBPHS, which

shows its promising potential to handle the expression prob-
lem.

Second, our RLH strategy is a good solution to overcome
the data noises. To test the robustness of algorithms, we
manually rotate some faces to add the registration errors and
select female faces with hair occlusions in the second exper-
iment. Therefore, how to deal with the data noises become
the main problem in this data set. For all the experimental
results in both modes, RLLGH gives better recognition per-
formance than LGF. Because RLLGH = LGF + RLH,
thus the main difference between these two methods is the
RLH strategy, which gives RLLGH the ability to handle the
data noises problem.

Third, RLLGH provides an ideal framework to handle
the problems encountered in uncontrolled environments for
3D face recognition. We summarize the difficulties in un-
controlled environments into two categories, large expres-
sions and data noises. Then two methods, LGF for large
expressions and RLH for data noises, are proposed to solve
the above two problems respectively. LVC is adopted to
combine LGF and RLH together, and this combination is
RLLGH. Because it integrates the robustness and efficiency
of LGF and RLH simultaneously, RLLGH obtains the best
recognition results, both in verification mode and in clas-
sification mode, which shows its potential to be applied in
uncontrolled environments.

Another outstanding advantage of RLLGH is its excel-
lent generalization ability. In our experiments, we use only
100 neutral faces in FRGCI1.0 as the training set. However,
these experiments are carried out on two challenging ex-
pression data sets, which are shown in Fig.9 and Fig.11
respectively. There are no neutral images in the above
two data sets. Therefore, our experiments can not only
be viewed as cross-expressions (neutral images for training
and expression images for testing), but also cross-databases
(FRGC images for training and CASIA images for testing in
the second experiment). Even worse, there are much more
data noises in the testing data. In such difficult situations,
RLLGH still gives the best recognition performance in all
of the experiments. The strong learning ability makes it to
be a good choice when we only have a limited number of
training images on hand.

4.4. Future work

Although RLLGH shows its potential to solve the un-
controlled problem, its recognition performance can not be
guaranteed when the expression is too large. The main rea-
son is that RLLGH still belongs to the appearance based
methods. Although we can choose the most robust features
to represent the faces, such as LGF, we can not handle all
the expressions. Some model based methods, such as de-
formable model [20] [21], can fit the learned model to the
desired expressions. In such a way, their performance is



guaranteed whatever expression happens. In the future, we
plan to solve the expression problems using the model fit-
ting strategy.

5. Conclusion

Our method has been proposed to address a challenging
topic, 3D face recognition in uncontrolled environments,
in which large expressions and data noises are two main
obstacles. We adopt LGF to overcome the large ex-
pressions and RLH to overcome the data noises. We
also effectively integrate these two methods using the
LVC framework, which leads to RLLGH. The promising
recognition performance shows its potential to deal with
the uncontrolled factors encountered in 3D face recognition.
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