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Abstract

The images of an outdoor scene collected over time are
valuable in studying the scene appearance variation which
can lead to novel applications and help enhance existing
methods that were constrained to controlled environments.
However, the images do not reflect the true appearance of
the scene in many cases due to the radiometric properties
of the camera : the radiometric response function and the
changing exposure. We introduce a new algorithm to com-
pute the radiometric response function and the exposure of
images given a sequence of images of a static outdoor scene
where the illumination is changing. We use groups of pixels
with constant behaviors towards the illumination change for
the response estimation and introduce a sinusoidal lighting
variation model representing the daily motion of the sun to
compute the exposures.

1. Introduction

There are millions of webcams worldwide providing
videos of streets, buildings, natural sites such as mountains
and beaches, and etc. The images of an outdoor scene
collected over time provide a rich source of information
and can lead to novel computer vision applications such as
computing intrinsic images [21], building webcam synop-
sis [17], and geolocating webcams [7]. They are also valu-
able in studying the scene appearance variation which can
help develop more novel computer vision applications and
enhance existing computer vision methods that were con-
strained to controlled indoor environments. For this pur-
poses, Narasimhan et al. introduced a database of images
of a fixed outdoor scene with various weather conditions
captured every hour for over 5 months in [16]. Another
database of images were introduced by Jacobs et al. in [6]
where they collected more than 17 million images over 6
months from more than 500 webcams across the United
States. In their work, it was shown that the image sets from
static cameras have consistent correlations over large spatial

Figure 1. Effect of auto-exposure. (Top) Images taken at different
times with auto-exposure (Middle) Images taken with exposure
fixed (Bottom) Pixel values of a point over time.

and temporal extents.
The scene appearance depends on multiple factors in-

cluding the scene geometry and reflectance, illumination
geometry and spectrum, and the viewing geometry. For
outdoor scenes, the weather has a large effect on the scene
appearance. An important factor for determining the im-
age appearance of a scene that is often not considered is
the radiometric properties of the camera. In many com-
puter vision systems, an image of a scene is assumed to
directly reflect the appearance of the scene. However, this
is not the case for most cameras as the camera response
function is nonlinear. In addition, cameras usually operate
in the auto-exposure mode where the exposure settings are
automatically adjusted according to the dynamic range of
the scene which may change the appearance of the scene in
the images. Note also that this is often a necessity for out-
door scenes undergoing significant lighting variation dur-
ing the day. The effect of the auto-exposure on the images
is illustrated in Fig. 1 where pixel values of a point over
time recorded with auto-exposure are compared with those
recorded with a fixed exposure value. The sun is moving
away from the scene so the radiance of the points in the
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scene are decreasing as shown by the pixel values of the
fixed exposure sequence. But the camera compensates for
the decrease in the overall brightness of the scene resulting
in increase of the pixel values. While this behavior is good
for the viewing purposes, it has an ill effect on many com-
puter vision methods that rely on the scene radiance mea-
surement such as photometric stereo, color constancy and
also on the methods that use image sequences or time-lapse
data of a long period of time such as in [6], [7], and [21]
since the pixel values do not reflect the actual scene radi-
ance.

In this paper, we introduce new algorithms to compute
the radiometric response function of the camera and the ex-
posure values of images given a sequence of images of a
static outdoor scene taken at a regular interval for a period
of time. While the underlying assumption for our method
is that the surfaces are Lambertian, our method deals with
non-Lambertian surfaces such as windows and specular ma-
terials by filtering out those points in the system. Radiomet-
ric calibration on this type of data is a challenging problem
because the illumination for each image is changing causing
the exposure of the camera to change. Most of the previous
radiometric calibration methods cannot be applied because
they are based on using differently exposed images taken
with constant illumination. In particular, exposures will
only change in response to lighting changes which makes it
hard to separate the effect of both. We solve the problem of
lighting change by first selecting groups of pixels that have
constant behaviors with regard to the illumination change.
This means that the pixels in a group are either all in the
shadows or in the non-shadow regions at a certain time in
addition to having the same surface normal. The effect of
the exposure and the lighting is constant for the selected
pixels and the intensity difference between these pixels are
due to their albedo difference assuming Lambertian surface
which should remain constant over time since the albedo
is a property of the material. We exploit this property to
compute the response function using images with varying
illumination. Estimating the exposure value for each image
in the sequence after linearizing the images with the com-
puted response function is still a difficult problem because
the change in the intensity is due to the change in both the
exposure and the illumination. There are countless com-
binations of the exposure and the illumination change that
results in the same intensity change. To solve this problem,
we model the illumination variation according to the motion
of the sun since we are dealing with outdoor scenes.

The remainder of the paper is organized as follows. We
begin by reviewing previous works on radiometric calibra-
tion in the next section. In section 3, we introduce a method
for computing the camera response function using images
with illumination change. Then we develop methods for
computing the exposure value for each image in a sequence

in section 4. We evaluate our methods with experiments in
section 5 and conclude with discussion about our algorithm
and future works.

2. Related Works

Majority of existing radiometric calibration methods
uses multiple images taken with different exposure values to
compute the camera response function. Assuming constant
irradiance value which implies constant illumination, the
change in intensity is explained just by the change in expo-
sure. Using this property to solve for the response function,
different models for the response function such as gamma
curve [13], polynomial [15], non-parametric [1], and PCA
model [5] were proposed. These methods required both the
scene and the camera to be static. Some methods relieve
these restrictions using the intensity mapping from one im-
age to other computed by relating the histograms of differ-
ently exposed image [4] and by dynamic programming on
the joint histogram built from correspondences [8].

A different framework for radiometric calibration was
introduced by Lin et al. in [10]. In this work, a single
image was used instead of multiple images by looking at
the color distributions of local edge regions. They compute
the response function which maps the nonlinear distribu-
tions of edge colors into linear distributions. Lin and Zhang
further extended the method to deal with a single grayscale
image by using the histograms of edge regions [11]. In [14],
Matsushita and Lin use the asymmetric profiles of measured
noise distributions to compute the response function which
complements the edge based methods which may be sensi-
tive to image noise.

Closely related to this paper are the works that use dif-
ferently illuminated images to compute the radiometric re-
sponse function. In [12], Manders et al propose a radiomet-
ric calibration method by using superposition constraints
imposed by different combinations of two (or more) lights.
Shafique and Shah also introduced a method that uses dif-
ferently illuminated images in [18]. They estimate the re-
sponse function by exploiting the fact that the material prop-
erties of the scene should remain constant and use cross-
ratios of image values of different color channels to com-
pute the response function. The response function is mod-
eled as a gamma curve and a constrained non-linear mini-
mization approach is used for the computation. Compared
to these works, the algorithm proposed in this paper is more
general in that the we use natural lighting condition and al-
low exposure changes compared to the method in [12]. In
addition, we allow for more general model of the response
function, do not require information across different color
channels, and the response function is computed linearly as
compared to the method in [18].



3. Computing the Radiometric Response Func-
tion with Illumination Change

In this section, we first introduce a method for computing
the response function of a camera given multiple images of
a static scene (dominantly Lambertian surface) with illumi-
nation change. The following equation explains the image
formation process.

Iit = f(ktaiMit) (1)

The response function f transforms the product of the ex-
posure value k, the illumination M , and the albedo a to the
image intensity I . The indexes i and t denote pixel loca-
tion and time respectively. The illumination M is the inner
product between the surface normal N and the directional
light L which in our case is the sunlight. The illumination
also includes ambient lighting Lambient.

Mit = Ni · Lt + Lambient (2)

Eq. (1) can also be written as follows.

f−1(Iit) = ktaiMit (3)

g(Iit) = Kt + αi + log(Mit) (4)

where g = logf−1, K = log(k), and α = log(a).
If two points in the image have the same surface nor-

mals and both points are either both in a shadow or a non-
shadow region, the amount of lighting is the same for the
two points (Mit = Mjt)1. Then the relationship between
the two points can be stated as follows.

g(Ijt)− g(Iit) = αj − αi (5)

By using the points with same lighting conditions, the re-
lationships between the image intensities of the points are
explained only with the albedos of the points. Since the
albedo of a point is constant over time, we can use Eq. (5)
to compute the response function g from multiple images
with different illumination.

3.1. Finding Pixels with Same Lighting Conditions

The first step necessary to compute the camera response
function is to find pixels that have the same lighting condi-
tions in all images that are used for the radiometric calibra-
tion. For different pixels to have the same lighting con-
ditions, the surface normals of the points have to be the
same and if one point is in the shadows, the other points
also have to be in the shadows at that time. We modify
the method proposed in [9] by Koppal and Narasimhan in
which they cluster the appearance of the scene according to

1We assume that the ambient lighting is the same for all points within
a patch at a specific time

Figure 2. Using appearance profile to cluster pixels with same
lighting conditions : (Top) Images used to compute the camera
response function (Bottom) Appearance profiles of points with the
same lighting conditions. Note that even though all the points have
the same normal in the example, they have different profiles due
to shadows.

Figure 3. (Left) Pixels clustered by the appearance profile with
k-means algorithm using 4 images shown in Fig. 2. (Right) Re-
gions with non-uniform clusters are filtered out. Most of the non-
Lambertian regions are filtered out at this stage.

the surface normals. The key observation is that appearance
profiles for iso-normal points exhibit similar behaviors over
time (Fig. 2). An appearance profile is a vector of measured
intensities at a pixel over time and they use the extrema lo-
cation in the profiles to cluster the appearance. In this pa-
per, we compute the similarity of the lighting between two
pixels by simply computing the normalized correlation be-
tween the appearance profiles of the two points. With this
similarity measure, we use the k-means algorithm to clus-
ter pixels with same lighting conditions over time (Fig. 3).
The clusters at this point may contain errors due to non-
Lambertian regions, motions in the scene, and reflections.
To deal with these errors, we then divide the image into
blocks of the same size and filter out regions where all the
pixels do not fall into the same cluster as illustrated in Fig. 3.
Blocks with uniform intensity such as in sky are also filtered
out since they don’t provide valuable information for the ra-
diometric calibration.

3.2. Pixel Selection

After clustering the pixels, we then select pixels from
each cluster for the response function estimation. First, we
randomly pick a number of points (300 points in our exper-
iments) from each cluster. Due to image noise and non-
uniform surface, the appearance profiles for the selected
pixels will be significantly disturbed by noise as shown in



Figure 4. Pixel profiles for two frames (Left) Originally selected
pixels and their profiles (Right) Profiles after postprocessing.

Fig. 4. Profiles of two pixels under the same lighting con-
ditions crossing each other means that the albedo difference
between the two points changed even though it should stay
constant throughout. It is essential to filter out these outliers
which can otherwise have a serious effect on the estimation
results.

To remove outliers from the selected pixels for each clus-
ter, we use the order of the pixels as the cue. The idea is that
if a pixel has the lowest intensity in one frame, the inten-
sity of that pixel should also be the lowest in the following
frames. Assuming that there are n points selected for a clus-
ter, we build a vector dit of size n for each pixel i at time t
where each element is :

dit(j) =

 +1 if Iit > Ijt

−1 if Iit < Ijt

0 if Iit = Ijt

(6)

The dot product between dit and dit+1 gives us how
much support the pixel i has in terms of orders from other
pixels in the cluster. We iteratively remove pixels with
the worst support until all the pixels are in order between
frames. An example of this process is shown in Fig. 4.

3.3. Radiometric Response Function Estimation

To model the response function g, we use the Empirical
Model of Response (EMoR) introduced by Grossberg and
Nayar in [5]. The model is a PCA based mth order approx-
imation :

g(I) = g0(I) +
m∑

s=1

cshs(I) (7)

where the g0 is the mean function and the ck’s are the coef-
ficients for the basis functions hk’s. Combining Eq. (5) and
Eq. (7), we have

m∑
s=1

cs(hs(Ijt)− hs(Iit))− αji = g0(Iit)− g0(Ijt) (8)

where αji = αj − αi.
For n pixels in the same cluster l at time t, we have n−1

linear equations Atlxt = btl as follows.

Atl = [A′
tl In−1] (9)

A′
tl(y, x) = hx(Iy+1,t)− hx(I1t), 1≤y≤n−1, 1≤x≤m,

(10)
btl(y) = g0(I1t)− g0(Iy+1,t), 1 ≤ y ≤ n− 1 (11)

xt = [c,al]T (12)

where In−1 is an identity matrix of size n − 1 by n − 1,
c = [c1, c2, . . . , cm] and al = [α21, α31, . . . , αn1].

Since we have m+n-1 unknowns with n-1 equations, the
system above is underconstrained. We can add more equa-
tions to the system by incorporating the temporal informa-
tion of multiple frames. The number of points n is typi-
cally bigger than the number of basis functions (m = 5 in
this paper), so as few as two frames are enough to solve
for the response function. Since one cluster typically does
not provide enough range of intensities for accurate estima-
tion, we combine equations from different clusters. Adding
multiple clusters at multiple frames, we can compute the re-
sponse function by solving the following least squares prob-
lem Ax = b with (assuming we are using 3 clusters from 2
frames for simplicity)

A =


A′

11 In−1 0 0
A′

21 In−1 0 0
A′

12 0 In−1 0
A′

22 0 In−1 0
A′

13 0 0 In−1

A′
23 0 0 In−1

 (13)

b = [b11,b21,b12,b22,b13,b23]T (14)

x = [c,a1,a2,a3]T (15)

In practice, rows of A and b are weighted according to
the intensity of the pixel used for the row. The weights
are included because response functions typically have a
steep slope near the extreme intensities causing the data to
fit poorly in those regions. We used a Gaussian function
centered at the intensity of 128 with the standard deviation
ranging from 0.25 to 2.0 as the weighting function.

The solution to the problem Ax = b above suffers from
the exponential (or scale in the log space) ambiguity [4]
which means that the whole family of γx are the solutions
to the problem. To fix the scale of the response function, we
set the value of the response function at the image value 128
to a value τ . We will discuss this ambiguity later in Section
4.

4. Exposure Estimation from Images with Dif-
ferent Illumination

By using the computed response function, we can lin-
earize the images as in Eq. (3). While the images taken at
different times are now linearly related, the images may not
reflect the true appearance of the scene due to the exposure



Figure 5. Relationship between lighting, exposures, and image ap-
pearance. We need at least two pixel profiles to compute exposures
since many combination of lighting and exposure can result in a
same profile.

change in the camera. However, there is an inherent ambi-
guity in computing the exposures from images with differ-
ent illumination similar to the exponential ambiguity men-
tioned in the previous section. As can be seen from Eq. (3),
there is an infinite number of combinations of the exposure
and the lighting that result in the same image intensity. To
compute the exposure, assumptions on the lighting have to
be made.

In this section, we introduce a method to estimate the
exposure values given a sequence of images of an outdoor
scene taken over a period of time. For the outdoor scenes,
the dominant source of lighting is the sun. We model the
lighting change according to the motion of the sun and use
the model to compute the exposures. We make the assump-
tion that the sunlight was not blocked by clouds when the
images were taken.

4.1. Modeling the Illumination with the Motion of
the Sun

The direction of the sunlight (Lt) at time t and the sur-
face normal of a point i (Ni) can be expressed in Cartesian
coordinates as in the following equation where θ’s are the
azimuth angles and φ’s are the elevation angles.

Lt = [cos φt cos θt, cos φt sin θt, sinφt]T

Ni = [cos φi cos θi, cos φi sin θi, sinφi]T
(16)

The lighting due to the sun at point i is then

Ni · Lt = cos φt cos φi cos(θt − θi) + sinφt sinφi (17)

Without loss of generality we rotate Lt and Ni so that φt =
0, Eq. (17) becomes

Ni · Lt = cos φ′i cos(θt − θ′i)
= cos φ′i(cos θ′i cos θt + sin θ′i sin θt)
= pi cos θt + qi sin θt (18)

where pi = cos φ′i cos θ′i and qi = cos φ′i sin θ′i. Accord-
ing to Eq. (18), the lighting variation at a point due to the
sun over time is a sinusoidal function with the scale and the
phase being the parameter.

4.2. Exposure Estimation

Combining Eq. (2), Eq. (3), and Eq. (18) we have

1
kt

f−1(Iit)− p′i cos θt − q′isinθt = 0. (19)

In the above equation, p′i and q′i are considered to include
the albedo term a from Eq. (3). Additionally, we assumed
that the effect of ambient lighting is constant over time.
Note that at least two appearance profiles of different sur-
face normals are necessary to compute the exposures kt’s
using Eq. (19) as shown in Fig. 5.

For simplicity, it is assumed that we have a sequence of
η images (1 ≤ t ≤ η) with pixel values (Iit and Ijt) of two
points with different surface normals. From Eq. (19), the
exposure kt for each time t is computed by solving a linear
least squares problem Uy = 0 with

U =
(

S 0η×2 Fi

0η×2 S Fj

)
, (20)

S =


cos θ1 sin θ1

cos θ2 sin θ2

...
...

cos θη sin θη

 , (21)

Fi =


f−1(Ii1) 0 · · · 0

0 f−1(Ii2) · · · 0
. . .

0 0 · · · f−1(Iiη)

 , (22)

y = [p1, q1, p2, q2, k′1, k
′
2, · · · , k′η] (23)

where k′t = 1/kt, θt = 2πt( 1
24

smin

60 ), and smin is the sam-
pling interval in minutes.

A set of pixels used to solve the equation above are ran-
domly selected from the clusters used for the response func-
tion estimation (Section 3). It is important not to use pixel
values at time t in the above equation when the pixels fall
into shadows since the lighting model does not apply to
shadow regions. From the appearance profile of a pixel, we
detect whether the pixel is in shadow by a simple threshold-
ing as in [20]. We also remove the pixels from the equation
if the average intensity is too low meaning that the pixels
were probably always in the shadow.

4.3. Exponential Ambiguity

In Section 3 we discussed the inherent ambiguity in com-
puting the response function where the elements in Eq. (3)
are related exponentially as follows.

(f−1(Iit))γ = kγ
t aγ

i Mγ
it (24)

We resolved this exponential ambiguity by arbitrarily fixing
the scale of the response function which is not a problem



Figure 6. Simulation of the effect of the exponential ambiguity.
The exposures and the lighting changes were estimated on the two
synthetically generated image profiles similar to Fig. 5 using 400
minutes of data (top) and 200 minutes of data (bottom). The cor-
rect γ is 1.0.

for applications that require image intensity alignment since
different γ’s still result in the same intensity value. However
the arbitrary scale causes problems in methods that require
accurate or linearly proportional photometric measurements
such as photometric stereo or motion blur simulation as in
[1]. It also affects our exposure estimation process since our
method is based on having the right scale for the response
function f . If the scale of the response function is incorrect,
then the system is trying to fit a sine function to a measure-
ment that is the exponent of a sine. As shown in [4], prior
knowledge about the response function f or k (also a or
M in our case) is necessary to find the right γ value. Ide-
ally, the error ‖Uy‖ in Section 4.2 gives us the information
about the γ. It should be the minimum when the correct
scale of the response function is used. However, the error
is not distinctive due to image noise and lack of time inter-
val when surfaces of different normals are both in the sun-
light as shown in Fig. 6. Alternatively, we need information
about the camera or the scene to find the right scale. In this
paper, we first estimate the exposures (kt) and the lighting
functions (p′i cos θt + q′isinθt in Eq. 19) using multiple γ
values. The recovered lighting functions will have different
phases with different γ’s as shown in Fig. 6. We select the
γ value that yields the lighting functions to have the peaks
at the right time of the day which can be inferred from the
orientations of shadows in the image sequence.

5. Experiments

We first evaluate our response function estimation
method introduced in Section 3. Two cameras used for the
experiments are Sony SNC-RZ30N PTZ camera and Point
Grey Dragonfly camera. For the Sony camera, we first com-
puted the response function by using the method introduced
in [8] with multiple images of a static scene with constant
illumination to test our method. We then computed the re-

Figure 7. Response function estimation result for Sony SNC-
RZ30N PTZ camera

Figure 8. Response function estimation result for Point Grey Drag-
onfly camera with two images used for our estimation.

sponse function with our method using four images shown
in Fig. 2 and the comparison of the computed response func-
tions is shown in Fig. 7. While only the green channel was
used for this example, we can easily combine all channels if
necessary. For the Point Grey Dragonfly camera, we com-
pare our result computed with two images with the known
linear response function which is shown in Fig. 8. The num-
ber of images for accurate estimation depends on the inten-
sity range of each image. While the method does not need
a large number of points, it is important to have a well dis-
tributed pixel intensities for an accurate estimation.

To evaluate our exposure estimation method, we
recorded images of a scene every minute for a little more
than 4 hours with the Point Grey camera when we could
observe surfaces with different normals being illuminated
by the sun. Some sample images as well as some of the
pixel profiles used for the estimation are shown in Fig. 9.
Our exposure estimates are compared to the ground truth
exposures reported by the camera in Fig. 10. Notice that the
exposure estimates start to deviate from the ground truth
starting around 1400. The cause for this is the change in
ambient lighting as a building in front of the scene started to
block the sunlight at that time. Since our method is based on
constant ambient lighting, the change in the ambient light-
ing caused errors in the exposure estimation. However, for
a long periods time when the ambient lighting was close to
constant, our estimation was accurate as shown in the fig-
ure. We can observe the function of the auto-exposure from



Figure 9. Exposure Estimation. (Top) Sample images from the input sequence and the pixel profiles of the dotted points (Bottom) Images
and profiles normalized to a fixed exposure. The 0 values in the profiles represent shadow.

Figure 10. Comparison of the estimation with the ground truth ex-
posure

Fig. 9. The camera adjusts to the brightness change by try-
ing to fix the intensity of dominant pixels constant. This
function prohibits images from being under-exposed or sat-
urated as can be seen from the exposure compensated im-
ages in the figure. While this is good for viewing, this could
affect vision algorithms that rely on photometric measure-
ments since the image intensities do not reflect true radi-
ance of the points. By computing the response function and
exposures using our method, we can convert the image in-
tensities to their actual radiance enabling further analysis of
the scene.

As our last experiment, we used one of the webcam
datasets introduced in [6] as shown in Fig. 12. The images
we used were captured every 30 minutes for 11 hours. The
estimated response function and the exposures are shown in
Fig. 11. Note that we do not have the ground truth for this
data since the camera is unknown. We can roughly evalu-
ate the results by comparing the input images and the pixel
profiles with the images and the profiles normalized with
the estimated exposures as in Fig. 12. Input profiles tend
to stay constant unless affected by shadows. However, after
normalizing the images with the estimated exposures, the

Figure 11. Estimated response function (left) and the exposures
(right) using dataset introduced in [6] (Fig. 12)

pixel values vary gradually as expected.

6. Conclusion
We have introduced a novel method for computing the

camera response function for outdoor image sequences in
which the illumination is changing. This is a challenging
problem because the image appearance varies due to the
changes in both the exposure of the camera and the light-
ing. Most previous methods cannot deal with the illumina-
tion change and the methods that deal with the change are
restrained to some special cases [12, 18]. Our approach also
computes the exposure values of the camera with the illumi-
nation in the scene changing and we believe this work can
serve as a basis for more exciting outdoor scene analysis
applications.

For the future, we would like to extend our method to
find the right scale of the response function automatically.
One possibility would be using high-order correlations in
the frequency domain such as in [2]. We also plan to en-
hance our algorithm to take into account the change in
ambient lighting as well as the change in lighting due to
weather. Additionally, we would also like to expand our
method to use images from commodity photo collections
such as in [19] and [3] which can be used for texture align-
ment and also help improve image matching.



Figure 12. (Top) Sample images from one of the dataset introduced in [6] and the pixel profiles of the dotted points. (Bottom) Images and
profiles normalized to a fixed exposure. The right side of the figure is to the east.
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