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Abstract

Texture information in images is coupled with geometric
macrostructures and piecewise-smooth intensity variations.
Decomposing an image f into a geometric structure com-
ponent u and a texture component v is an inverse estimation
problem, essential for understanding and analyzing images
depending on their content. In this paper, we present a novel
combined approach for simultaneous texture from structure
separation and multiband texture modeling. First, we for-
mulate a new, variational decomposition scheme, involving
an explicit texture reconstruction constraint (prior) formed
by the responses of selected frequency-tuned linear filters.
This forms a ‘u + Kv’ image model of K + 1 components.
Subsequent texture modeling is applied to the estimated v
component and its consistency is compared to using the
complete, initial image f . The decomposition step, func-
tioning as an advanced texture-front end, improves cluster-
ing and classification performance, for various multiband
features. The proposed method can be generalized to other
texture models or applications.

1. Introduction

Visual texture is perceived as small-scale intensity vari-
ations and patterns that represent the finer characteristics of
depicted scenes. Such information in natural images coex-
ists with geometric macrostructures such as object contours,
shapes and boundaries, or is embedded in coarser struc-
tures formed by lighting and shading conditions or smooth
area/volume variations. Image decomposition is the process
of separating an image in conceptually and theoretically dif-
ferent components, primarily under two perspectives i) ad-
dressing content-specific vision applications (e.g. separate
structure and detail analysis) and ii) studying image pattern
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(a) Image (b) ‘Cartoon’ and texture (detail)

Figure 1: Painting (a) is a mixture of geometric structures (‘car-
toon’) and textural patterns (“The Kiss”, Gustav Klimt, 1908)

formation (e.g. multilevel representations, atomic decompo-
sitions). Inverse problems such as diffusions, scale-spaces
and simplification techniques [4, 19], wavelet projections
[14, 16, 17] and representations in bases [8, 20] or learned
dictionaries (textons, primitives) [11], may be considered
special cases of decompositions.

In the u + v models for structure-texture decomposition
[3, 20, 21], images are composed by a smoothly-varying,
geometry-containing part and a small-scale, oscillatory part
capturing textures, details and noise (Fig. 1). The two dif-
ferent in nature components require content-specific mod-
eling and representations, and motivate an analysis in two
parallel channels. The texture component can be used
for texture segregation and classification, surface analy-
sis, shape/orientation from texture, while the structure part
for 1D feature detection (edges, ridges), segmentation, ob-
ject recognition and shape analysis. In addition to emerg-
ing applications like digital inpainting [5], image abstrac-
tion and computational photography [4], decomposition has
provided solutions to problems like image restoration [10],
matching, compression, segmentation, classification [2, 21]
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and face recognition [7].
In treatises of image texture, linear filter models aug-

mented by appropriate nonlinear operators constitute pri-
mate texture detectors, in par with biologically motivated
mechanisms [9, 14]. Multifrequency representations inter-
pret texture as a linear combination of multiple frequency
and orientation selective components [6, 17, 18]. Such nar-
rowband components have been further modeled by spatial
modulations of the image function [15].

Motivated by the conceptual analogy of texture defined
as an oscillating function [16, 21] (Sec. 2) and modeled
by spatial modulations [12, 13, 15] (Sec. 3), we propose
a novel decomposition scheme, building on the u + v im-
age models, formulated as constrained total variation min-
imization (Sec. 4). This is shown to be a special case of
decomposition in K + 1 components (u, v1, ...vK). An ex-
plicit model prior is included to penalize the dissimilarity
between the texture part and reconstruction from a sum of
narrowband image components. This is achieved from the
responses of Gabor filters in multiple frequency bands with
variants of the scheme depending on the component selec-
tion method (Sec. 4.2). Model fitting proves to be more
consistent on the estimated texture component and results
in more descriptive features for classification (Sec. 5).

2. Image decompositions

Variational decomposition and u+v models: In the
‘u + v’ framework, an image f : Ω ⊂ �2 → � is modeled
by the sum of two independent components: a piecewise
smooth function u, the ‘cartoon,’ with quasi-flat intensity
plateaus and jump discontinuities, that contains geometric
information (edges, contours, large-scale features and illu-
mination effects) and an oscillating function v that captures
texture variations and small-scale features, e.g. Fig. 6 (c).
A scale parameter controls the amount of detail in the two
perceptually complementary components (Fig. 1).

The partial-differential equation (PDE-based) approach
[1, 3, 10, 21], that generalizes the Mumford-Shah and
Rudin-Osher-Fatemi (ROF) models [19], solves the inverse
component estimation problem by minimization of a gen-
eral convex functional

inf
(u,v)∈(U×V )

{E(u, v)=J(u)+λF (u, v)+µL(v)} , (1)

given f = u + v, where U, V ⊂ Ω are functional spaces
fit for each component and λ, µ ≥ 0 tuning constants. The
first, regularizing term is normally the Total Variation (TV)
norm J(u) =

∫
Ω
||∇u||dxdy, minimized for functions in

the space of Bounded Variation (BV ). A second, fidelity
term F (u, v) = ||f − u − v||2X penalizes the approxima-
tion of f by u + v and L(v) is a metric of texture variations
in a normed functional space. The decomposition coeffi-
cients λ, µ control respectively, the amount of detail in u,
i.e. scales larger than 1/λ, and the amount of variation in v.

The texture component was defined by Meyer [16] in a
Banach space G of oscillating functions that satisfy v =
div(�g) = ∂1g1 + ∂2g2, where g1, g2 ∈ L∞(�2). Space
G is in some sense the dual of the BV space and equipped
with a norm ‖ · ‖G, computed as the infimum of the L∞

norms of |�g| of all possible decompositions. Norm ‖v‖G

was approximated computationally by Vese and Osher [21]
using Sobolev norms Lp, 1 ≤p≤∞ in the functional

E(u,�g)=
∫

Ω

(‖∇u‖+λ|f−u−div(�g)|2)dxdy+µ‖�g‖p (2)

with (u, v)∈BV×Lp, leading to a three-part decomposition
where the residual w = f −u−v models image noise. Let-
ting λ, p → ∞ the solution approximates Meyer’s model.

Aujol et al. [1] approached Meyer’s model using the ex-
act definition of ‖ · ‖G and the indicator function of the set
‖v‖G ≤ µ as a constraint. Whereas, a selective decomposi-
tion w.r.t. texture frequency and orientation [3] was formu-
lated by minimizing

E(u, v) =
∫

Ω

||∇u||dxdy + λ||v||2H, (3)

where (u, v)∈BV ×H and the Hilbert norm ‖f − u‖H is
estimated by the projection of v = f − u onto predefined
Gabor wavelets gk, i.e. ‖f − u‖H = 〈f − u, gk ∗ (f − u)〉.

Multifrequency decomposition: Image decomposi-
tions in multiple spectral bands [6, 14] have been exten-
sively studied in early vision and low level processing due
to similarities with biological mechanisms [9, 14], infor-
mation coding efficiency and descriptive capabilities of the
representation [17, 18]. They are obtained via linear trans-
formations, wavelet projections or filtering by a set of fre-
quency and orientation tuned functions. Gabor filters are
optimum w.r.t. uncertainty in space-frequency localization
[6] and their complex responses come in quadrature pairs

gk(x, y)=
1

2πσ2
k

exp
(
−x2+y2

2σ2
k

)
exp (jwk1x+jwk2y) ,

(4)
where σk determines the spatial support and bandwidth of
the isotropic filter and �wk = (w1k, w2k) the spatial fre-
quency tuning. Arranged in polar tessellations, of geomet-
rically progressing frequencies with octave bandwidths [9],
the filters cover densely the spectral domain [12].

3. Texture modeling

Through the multiple filter model, texture is modeled
as a composition of simpler, scale and orientation eclec-
tic formations. This set of narrowband signals, have highly
concentrated spatial frequency content [6, 14] and account
for the periodicity, directionality, spatial extent and texture
scale. A filterbank performs a rough decoupling of the com-
ponents and its design specifies a-priori their number, loca-



tion and frequency extend. For small filter overlaps, com-
ponents are assumed to be globally isolated and form a mul-
tidimensional representation in the response space [12].

Modulation components: Narrowband texture compo-
nents are modeled in the AM-FM framework [12, 13] by
nonstationary amplitude and frequency-modulated sines

tk(x, y) = αk(x, y) cos(�ωk0 · (x, y) + φk(x, y)), (5)

where the amplitude modulating signal αk(x, y) accounts
for the component spatial extend and local contrast and the
instantaneous frequency vector �ωk(x, y) = ∇φ(x, y) for
the local scale and orientation. A component is assumed
to dominate pointwise a filter response (gk ∗ t)(x, y) ≈
(gk ∗ tk)(x, y), ∀(x, y)∈Ω, and under certain approxima-
tions, its parameters can be equivalently estimated from that
response using image demodulation [12].

A robust demodulation approach was proposed in [13]
based on the energy separation algorithm [15] and a reg-
ularized version of the image energy operator Ψ(f) �
‖∇f‖2− f∇2f . The amplitude and instantaneous frequen-
cies are estimated by energy ratios√

Ψ(tk,x)/Ψ(tk) ≈ |ωk1|,
√

Ψ(tk,y)/Ψ(tk) ≈ |ωk2| (6)

Ψ(tk)/
√

Ψ(tk,x) + Ψ(tk,y) ≈ αk (7)

where tk,x = ∂tk/∂x and tk,y = ∂tk/∂y are the partial
derivatives of component tk and Ψ(·) is the regularized en-
ergy operator

Ψ(tk)=Ψ(t∗gk) = ‖tk∗∇gk‖2−(tk∗gk)(tk∗∇2gk), (8)

that bypasses the finite difference approximation of the spa-
tial derivatives through regularization tk,x = tk ∗ gk,x.

Dominant component: Analysis by dominant compo-
nents (DCA) [12] assumes that a single component dom-
inates locally the image spectrum. The texture dominant
component, is a locally narrowband in space, smoothly
varying function d(x, y) = αd(x, y) exp{jφd(x, y)}, de-
rived by reconstructing the image at each x = (x, y) from a
single component (5)

d(x)={ti(x) : i(x)=arg max
k

{Γk(x)}, k∈ [1, K]}. (9)

Function d maximizes an energy criterion Γk(x, y) which
is either the channel amplitude envelope Γk = |αk(x, y)|
[12] or the complex energy operator response Γk = Ψ(t ∗
gk)(x, y) [13]. The latter results in a more coherent com-
ponent, with improved localization in texture and object
boundaries, and is better-suited for scale-selective texture
separation (Sec. 4.2).

The modulation functions of d(x, y) result from the K-
to-1 backward mapping of the estimated channel parameters
(ak,∇φk)(x, y) to the dominant

αd(x, y) = αi(x,y)(x, y), �ωd(x, y) = �ωi(x,y)(x, y). (10)

which is theoretically equivalent to directly demodulating
the dominant component. DCA reduces the description
from the K-dimensional Gabor response space (or the 3×K
modulation space) to the low-dimensional (αd,∇φd) vec-
tor, while retaining essential texture information like extent,
scale and orientation.

4. u + Kv: cartoon & texture subcomponents

Consider an arbitrary image function f : Ω →�, with
Ω an open and bounded subset of �2, and the model f =
u + v. Vaguely stated, u ∈ Ω is a piecewise smooth, image
approximation and v ∈ Ω a low amplitude oscillating func-
tion. To integrate multifrequency and content decomposi-
tion, we formulate the following minimization w.r.t. (u, v)
functional

E(u, v)=
∫

Ω

(‖∇u‖+λ|f−u−v|2+µ|v−
K∑
k

tk|2) (11)

where u ∈ BV (Ω) and v ∈ H(Ω) where H some Hilbert
space . The additional texture constrain is a proximity term
of v to reconstruction by a set of narrowband components
tk of a function t ∈ L2(Ω), given a set of frequency-tuned
functions {gk, k ∈ {1 · · ·K}} ∈ L2(Ω). We define func-
tion t to be a linear t = Tf or non-linear f �→ t image
mapping. Thus, the extra term requires v to be close, in the
L2 sense, to a multifrequency decomposition of t.

The components (number, localization, tuning, band-
width) are controlled by the parameters of the gk functions.
Choosing Gabor filters (4), arranged in a filterbank manner
and setting t = f (T = I), then tk form the multiband
representation, i.e. the set of narrowband components of f .
Each component, the projection of t onto each of the K
basis, is given by convolution of t with the filter response
tk = (t ∗ gk)(x, y).

The functional E(u, v) =
∫
Ω Φ(u, v, ux, uy)dxdy is for-

mally minimized by the associated pair of Euler-Lagrange
equations. By imposing natural boundary conditions, the
gradient-descent flow solution is

∂u

∂t
+ u = (f − v) +

1
λ

div
( ∇u

|∇u|
)

, (12)

∂v

∂t
+ v =

λ

µ + λ
(f − u) +

µ

µ + λ

K∑
k=1

tk, (13)

(u, v)(x, y, 0) = (f, 0), ∂u/∂ �N = 0, u ∈ ∂Ω

where �N the outward unit normal on the boundary ∂Ω and
κ(u) = div (∇u/|∇u|) the level curvature of u = u(x, y).
Note that equation (12) is the minimizer of the ROF model
[19]. The steady-state solutions are given by eliminating v



(a) Image (b) Cartoon (c) Texture (d) Subcomponents (detail)

Figure 2: Image (a) decomposition in cartoon (b) and texture (c) components, using the K + 1 equations scheme. Four of the k texture
subcomponents are shown in (d) for the lower right image detail

from (12) as

u = f −
K∑

k=1

tk +
µ + λ

2µλ
κ(u), (14)

v =
1

µ + λ

(
λ(f − u) + µ

K∑
k=1

tk

)
, (15)

from which we make the following observations: a) The
solution is given by PDE (14) alone, with the second equa-
tion giving the texture component as an enhanced, weighted
residual. b) As the residual f −∑k tk, approximates the
lowpass image component g0 ∗ f where g0 a Gaussian, the
cartoon (14) is approximately u ≈ g0 ∗ f + λ′κ(u), which
reads as the sum of the slow intensity variations and the
curvature-based edge regularization. c) Texture equation
(15) can be seen as the ROF residual, enhanced by the nar-
rowband sum.

The constant parameters λ, µ > 0 control the decompo-
sition and modeling residuals. Large values of λ result in
small residuals as u + v → f for λ → ∞ with finer scales
included in u. In any case, the residual w = f − u − v
is considered highpass noise, excluded from v. In analogy
µ penalizes the texture modeling error and for large values
µ → ∞ this error is almost identically zero as v →∑

k tk.
Existence, uniqueness, convergence: For problem (11)

exists a unique solution and the approximating sequence
converges. Existence is proved by convexity and coercive-
ness of the functional [3]. Strict convexity implies that a so-
lution (û, v̂) of (11) is unique, except in direction (u,−u),
where by inequalities it is verified that ∀τ �= 0, (û+τû, v̂−
τû) = (û, v̂). A minimizing sequence u(n) that solves (12)
or (14), converges to the unique solution since E(u(n), v(n))
is non-increasing and convergent in�.

4.1. Multiple texture subcomponents

Generalizing the decomposition problem (11), we con-
sider a f = u +

∑
k vk model that assigns to texture a set

of frequency-localized narrowband subcomponents vk. We
seek this u + Kv model of K + 1 image components by

minimizong

E(u, {vk}) =
∫

Ω

(‖∇u‖+λ|f−u−v|2)+µ

K∑
k

∫
Ω

|vk−tk|2

(16)
where k ∈ {1, K} and (u, {vk}) = (u, v1, · · · , vK) are
K+1 unknown variables. Solution by Euler-Lagrange, gives
the set of K + 1 steady state equations

u = (f −
K∑

k=1

vk) +
1
2λ

κ(u) (17)

vk =
λ

µ
(f − u −

K∑
k=1

vk) + tk, k ∈ {1, K}. (18)

The texture component v is reconstructed by summation
of the K individual subcomponent equations (18)

K∑
k=1

vk =
1

µ − Kλ

(
Kλ(f − u) + µ

K∑
k=1

tk

)
. (19)

According to this set of equations: (a) The PDE for u is
given in closed analytic form by substituting (19) in (17)
and depends only on (f, u, tk). Each individual vk can be
directly estimated from the solution u using reconstruction
(19) in (18). (b) Letting µ � λK , equation (19) gives∑K

k=1 vk ≈ ∑K
k=1 tk, i.e. the reconstruction of v from the

respective reconstruction of t, which can also be seen in-
versely. Suppose in the u + v scheme of (14, 15) the sub-
components are fixed to some of the filterbank responses,
i.e. vk = gk ∗ v. Then at iteration step n of a numerical so-
lution, the term

∑
k tk can be approximated by projection

of the most recent texture estimate v(n) onto the specified
set of filters. (c) Problem (11) for the f = u + v model
is derived as a special case of the general decomposition in
K + 1 components (u, v1, ...vK) and v =

∑
k vk .

Theoretical comparison with TV-Gabor: In the model
(3), the projection of the residual v = f−u is minimized on
specific Gabor wavelets g′k, tuned to non-texture frequen-
cies [3]. Noting that 〈f −u, g′k ∗ (f −u)〉 = ‖(f −u) ∗
(δ(x, y)−gk)1/2‖2

2, we parallelize with the filtering formu-



lation here

‖f−u‖H=‖f−u‖2
2−‖(f−u)∗gk‖2

2 =‖v‖2
2−‖v∗gk‖2

2 (20)

where the Gabor kernel gk is a-priori chosen. Multiple ori-
entations are accounted for by summing over a set of pro-
jections, i.e. ||f − u||H = K||v||22 −

∑K
k ||v ∗ gk||22. In the

u + Kv scheme, if we set t = f , meaning that tk = gk ∗ f ,
and approximate the texture subcomponents by vk ≈ gk ∗v,
then the constraint in (16) becomes∑

k

‖vk−tk‖2
2≈
∑

k

‖(f −v)∗gk‖2
2 =
∑

k

‖u∗gk‖2
2. (21)

Thus, while TV-Gabor minimizes the L2-energy difference
between v and its projection on the chosen ‘texture chan-
nels,’ the proposed u + Kv minimizes the energy of the
cartoon projection on them. One obvious advantage of the
latter then is that in a three-part model, where f−v = u+w,
the residual noise w energy will be minimized on the tex-
ture channels along with u, while in TV-Gabor it will in
some amount be included in v, especially for white noise.

4.2. Texture reconstruction

The sum
∑

k tk in formulation (11) is, in its crudest
form, a reconstruction of t from the set of responses to the
filters gk, with the number of components K defined by the
filterbank design. Different model-based methods are pro-
posed here to select a mapping f :�→ t and a subset of the
K components, appropriate to reconstruct texture-specific
information, in order to ‘guide’ the decomposition process
and remove redundancy.

Finer scales: Intuitively and experimentally, texture is
associated with the middle-higher frequency bands (finer
scales), and important edges, corresponding to salient ob-
ject contours, with the lower bands (coarse scales). This
motivates a rough partition of scales in small, texture-
important and large, structure-important ones. By rewriting
the sum in terms of the R scales and P orientations of the
filterbank

K∑
k=1

tk(x, y)=
σR∑

σ=σ1

θP∑
θ=θ1

tσ,θ(x, y), k = R(θ−1)+σ, (22)

where σ, θ are the scale and orientation indices, the recon-
struction is rendered an ‘iso-scale’ sum of ‘iso-orientation’

(a) Image (b) scale 2, (σ = 9) (c) scale 4, (σ = 3)

Figure 3: Sum of components over all orientations for a coarse
(b) and one fine (c) scale

(a) Image (b) Finer scales (c) Amplitude weights

(d) Lower-order (e)Dom. component (f) vVO

Figure 4: Component selection from a 40-filter bank (5 scales, 8
orientations). Image (a) and reconstruction from (b) finest 3 scales
(K = 24), (c) amplitude weights (K = 40), (d) lower-order
dominant components (D = 9), (e) dominant component, (f) tex-
ture component from Vese-Osher u + v model.

narrowband components. Such reconstruction sums are
given for a wideband texture image in Fig. 3.

For Gabor filter channels gσ,θ = GσCσ,θ, each compo-
nent is tσ,θ = f ∗ gσ,θ, with Gσ the Gaussian of standard
deviation σ that defines component scale and Cσ,θ the com-
plex carrier of angle θ that controls its orientation. In or-
der to primarily reconstruct texture information the lower-
frequency components, below a certain scale are omitted

K∑
k=1

tk �
σR∑

σ=σT

(Gσ ∗ f)
θP∑

θ=θ1

Cσ,θ. (23)

This scale range selection can be thought as a scale-based
‘component shrinkage.’ The choice of the coarsest texture
scale, the threshold σT , can be done by spatially adaptive
scale measures [10, 13]. We restrict the case to choosing
globally a fixed range of scales, above a heuristic threshold,
as in the reconstruction example of Fig. 4 (b).

Amplitude weights: Narrowband components fk =
f ∗ gk contain contributions by both the texture and non-
texture image part, i.e. fk = u ∗ gk + v ∗ gk. In a weighted
reconstruction scenario, each response is weighted by a spa-
tially adaptive measure that enhances locally the contribu-
tions of the texture part. A plausible measure, is the com-
ponent amplitude envelope (7), available through channel
demodulation

K∑
k=1

tk �
∑

k

αk(f ∗ gk)∑
k αk

. (24)

Thus the reconstruction sum results in a weighted average
component. The amplitude αk(x, y) attains large values in



(a) Image (b) up (c) ud (d) uw (e) uVO

(f) f − uROF (g) vp (h) vd (i) vw (j) vVO

Figure 5: Top: Cartoon components of (a) by the proposed u + Kv with alternative reconstruction sums in (b)-(d) and the Vese-Osher
scheme in (e). Bottom: residual of ROF (f) and texture components. (up, vp) denotes the higher-frequency partial sum (23), (uw, vw) the
amplitude weighted (24) and (ud, vd) lower-order dominant reconstruction (25). Parameters (λ, µ) = (10, 5) and (λVO, µVO) = (5, 0.1).

high contrast regions that signify large oscillations tuned
at the component frequency and orientation, and small in
smooth areas. Amplitude weighting then penalizes the con-
tribution of the piecewise-smooth u by αku. Sharp edge
transitions, ‘seen’ by the model as small-extend oscilla-
tions, may also give high amplitude values, however they
are removed from v by the regularization process.

As opposed to keeping the finer scales (spectral selec-
tion), amplitude weighting enhances texture components
at each image point, without thresholds. It performs an
automatic energy-based selection, by suppressing locally
the weakly-oscillating components. Further the normalized
weights α2

k/
∑

k α2
k approximate the analysis by dominant

component (9), for if ∀(x, y) ∃k : αk(x, y) � αk′ , ∀k′ �=k,
then tk is the texture dominant component.

Lower-order dominant components: Using the DCA
criterion as a measure of representational importance at
each image location, a hierarchical ordering of components
is constructed, in which increase in order equals a decrease
in dominance. The mapping from the narrowband to the
dominant space is FD = F · W, where F = [f1, · · · , fK ]
and FD = [d1, · · · , dK ] the arrays of filtered and domi-
nant image vectors and W a transformation matrix. It is
defined by the criterion that is maximized across channel
responses, with d1 = d being the dominant component (9).
Since Γk+1(dk+1(x) < Γk(dk(x), ∀(x), the ordering rela-
tion among the components arises naturally.

The lower-order components are the most important for
representing the information conveyed by the choice of Γk.
Rejecting the higher-order components of the ordering (e.g.

by minimal contribution to the total variance)

K∑
k=1

tk(x, y) �
D∑

k=1

dk(x, y), D :
Var{dk}
Var{f} > ε, ∀k<D,

(25)
where ε a constant near unity (e.g. ε > 0.8), results to a
reduced-dimension representation compared to using the to-
tal number of components, simultaneously with a better re-
construction of f compared to DCA that employs only the
dominant component d1 (Fig. 4 (d), (e)). The use of the en-
ergy operator as opposed to the amplitude criterion, gives
fewer maximally contributing variance components.

4.3. Image examples

Decomposition in Fig. 1 was obtained by the two equa-
tion scheme (12, 13) and the weighted reconstruction sce-
nario (24), while in Fig. 2 the K + 1 equation scheme was
employed. Comparisons of the proposed u + Kv, with the
various texture reconstruction terms, are presented in Fig. 5
with an implementation of the Vese-Osher (VO) reference
scheme (2). Image (a) is characterized by oriented, high fre-
quency texture oscillations, captured in the texture compo-
nents by all the alternative reconstruction schemes. Percep-
tually the smoother, yet sharp cartoon with highly-localized
edges is obtained by the partial reconstruction scenario (b).
The crisper oscillatory texture is given by the weighted
scheme (i). Such reconstruction however retains some vis-
ible texture elements in (d), the same way DCA maintains
some contrast structures in v (h). However, both were de-
rived without heuristics and performed superior in images
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Figure 6: Decomposition (307× 307)by u + Kv with amplitude
weighted texture reconstruction. (b) Cartoon with edges extracted
from u superimposed, (c) 1D component profiles (row 154).

of mixed frequency, strength and orientation textures.

5. Texture classification

Component v is free from albedo discontinuities, inten-
sity transitions, shading and luminance variations and more
consistent with subsequent texture modeling. Thus, for
content-oriented image analysis, texture features and statis-
tics can be pooled explicitly from v. This will be demon-
strated for texture classification, by comparing texture mod-
eling, i.e. extracted features, on v and on full image f .

Feature extraction: Five feature vectors, all based on
multiband filtering are considered:

a) DCA(4×1): dominant modulation components (10)
from v, augmented by the intensity of the cartoon
�VD = [αd(v), �ωd(v), u].

b) Gabor(K×1): quadrature energies of the outputs �VG =
[{(Re{gk} ∗ v)2 + (Im{gk} ∗ v)2}k=1:K ].

c) Teager(K×1) nonlinear complex operator [13] applied
on the filter responses �VT = [{Ψ(gk ∗ v)}k=1:K ].

d) Pooled((K + 4)×1): augmented �VP = [�VD, �VG].
e) Pooled/PCA: feature selection (PCA) on pooled vector.

Full-component vectors �VG and �VT are K-dimensional en-
ergy features by nonlinear operators, while DCA is a dense,
low-dimensional description of the texture signal [13].

Experiments & discussion: Four Brodatz-pair images,
i.e. photographic images of surfaces and materials, from
[18] were considered for classification. In a supervised sce-
nario, train and test regions are non-overlapping and five
classifiers (parametric and non-parametric) are employed:
Maximum Likelihood quadratic (Bayes NQ), nearest mean

(NM), 1-nearest neighbor (1-NN), Fisher linear discrimi-
nant (FLD), mixture of (2) Gaussians (MoG) and support
vector classifier (SVC). Clustering was also performed by
k-means with the number of clusters a-priori defined.

Testing features were extracted both from the full f and
the estimated with u + Kv component v. The performance
was quantified in terms of the overall classification error
(supervised) and overall probability of error (clustering), af-
ter minimum-error cluster alignment. Table 1 lists the errors
and relative change after decomposition. As the choice of
(λ, µ) affect the classification performance, by controling
the passing of details between components, the errors on v
are the minimum per classifier and feature vector, achieved
over a quantized range (l, m) = 10 log10(λ, µ) ∈ {−3, 2}.
Note especially the minimum errors per analyzed compo-
nent (bold), the average (over method) supervised error and
the clustering error. Except for the DCA vector, feature ex-
traction from v improved average performance, reaching a
22.7% error decrease over all methods. For clustering by k-
means, the results are consistent across all vectors with the
best performance of 4.24% error for the pooled vector and
a maximum error decrease of 41% on Gabor features. Al-
though DCA features on v did not improve average super-
vised performance, they gave consistently the best trained
classification results in both f and v.

Figure 7, shows the k-means labeling in two of the test
images, with the clusters on v on the last column. These
are the minimum error (top) and the maximum relative er-
ror decrease (bottom) cases. In the difficult D5D92 image,
the DCA vector decreases the error when extracted from v.
The same experiments were run on the 5-texture patches
from [18] (e.g. Fig. 8), where improvement by decomposi-
tion was similarly observed, reaching for the pooled vector,
a 15.9% maximum relative clustering error decrease.

6. Conclusions

A novel u + v model for image decomposition was pro-
posed using explicit texture reconstruction constraints, in
an approach to incorporate modeling priors in the inverse
variational estimation problem. In addition, the scheme can
further separate texture in narrowband subcomponents, a
u + Kv model, and texture scale can be automatically or a-

(a) Image (b)Pooled {vd} (c) DCA {vd}
Figure 8: Clustering on 5-texture image using features from v.



Classifier Feature vectors, analyzed components & relative error change
(supervised/ DCA Gabor Teager Pooled PCA(Pooled)
clustering) {f} {v} D {f} {v} D {f} {v} D {f} {v} D {f} {v} D

MoG, SVC, 1-NN 13.4 16.6 24.0 29.0 25.4 -12.7 28.6 24.9 -12.9 23.5 20.3 -13.5 49.5 39.4 -20.3
Bayes NQ 18.2 18.1 -0.37 36.5 27.4 -24.9 37.4 28.3 -24.5 26.9 21.5 -20.0 48.6 41.1 -15.5

NM 17.4 16.9 -3.09 31.9 26.8 -16.1 32.2 27.1 -15.8 18.8 19.6 4.42 48.1 29.9 -37.8
FLD 16.4 19.5 18.3 37.1 30.7 -17.4 40.4 31.9 -21.2 30.2 25.7 -15.0 45.5 34.4 -24.3

average 15.1 17.3 15.8 31.7 26.6 -15.6 32.1 26.7 -16.1 24.3 21.2 -12.1 48.6 37.6 -22.7

k-means 18.6 11.8 - 36.6 8.76 5.17 -41.0 9.06 6.18 -31.8 7.11 4.24 - 40.4 7.16 4.34 -39.4

Table 1: Average Classification Errors (%) on 2-texture images (min-error (λ, µ) for each case)

(a) Brodatz,D12D17 (b) Cartoon ud (c) Texture vd, (λ, µ) = (0.1, 0.1) (d) Labels, Pooled/PCA {vd}, e=1.1%

(e) Brodatz, D5D92 (f) Labels, DCA {f}, e=36.4% (g) Texture vd, (λ, µ) = (100, 0.1) (h) Labels, DCA {vd}, e=19%

Figure 7: Classification (k-means clustering) results in 2-texture images ([18]). Top row corresponds to the minimum-error result, over
all parameter values and feature vectors. Bottom row to the maximum relative error decrease results, when using v for feature extraction.

priori defined. Various content-oriented applications can be
fertilized by component-wise processing like texture classi-
fication from v, or edge detection from u (shown in Fig. 6),
while the combined approach can be generalized to other
decomposition or texture modeling schemes.
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