
HISTOGRAM-BASED SEARCH: A COMPARATIVE STUDY

Mikhail Sizintsev, Konstantinos G. Derpanis
Department of Computer Science and Engineering

York University
Toronto, ON, Canada

{sizints,kosta}@cse.yorku.ca

Abstract

Histograms represent a popular means for feature representa-
tion. This paper is concerned with the problem of exhaus-
tive histogram-based image search. Several standard his-
togram construction methods are explored, including the con-
ventional approach, Huang’s method, and the state-of-the-art
integral histogram. In addition, we present a novel multi-
scale histogram-based search algorithm, termed the distribu-
tive histogram, that can be evaluated exhaustively in a fast
and memory efficient manner. An extensive systematic em-
pirical evaluation is presented that explores the computational
and storage consequences of altering the search image and
histogram bin sizes. Experiments reveal up to an eight-fold
decrease in computation time and hundreds- to thousands-
fold decrease of memory use of the proposed distributive his-
togram in comparison to the integral histogram. Finally, we
conclude with a discussion on the relative merits between the
various approaches considered in the paper.

1. Introduction
The histogram represents a popular feature representation

in computer vision. Example applications include: object
detection (e.g., [21, 9]), human detection (e.g., [8]), texture
analysis (e.g., [13, 14]) and tracking (e.g., [2, 6, 5]). His-
tograms encode the distribution of spatially unordered image
measurements in a region. More formally, a histogram is de-
fined as an array of numbers, where each element (termed
bin) corresponds to the frequency count of the range of val-
ues (e.g., image intensity, colour, gradient orientation, etc.)
in the given image or subset. From a probabilistic viewpoint,
the normalized histogram can be viewed as a probability dis-
tribution function. In the case of intensity and colour-based
histograms, these histograms exhibit invariance to translation,
in-plane rotation, and change slowly with out of plane ro-
tations, object distance change and occlusion. Additionally,
lighting invariance may be realized by transforming the input
image using a suitable transform prior to histogram construc-
tion (e.g., normalized RGB, HSV, YUV colour spaces).

The traditional major impediment in the use of histograms
in timely image search or real-time tracking applications is
the computational complexity in the construction of the his-

Andrew Hogue
Faculty of Business and Information Technology

University of Ontario Institute of Technology
Oshawa, ON, Canada

andrew.hogue@uoit.ca

0 500 1000 1500 2000 2500
10

0

10
1

10
2

10
3

Image size

x
tim

es
 fa

st
er

Huang
Integral
Distributive

0 500 1000 1500 2000 2500100

102

104

106

108

Image size (square)

x
m

or
e

st
or

ag
e

Huang
Integral
Distributive

(a) (b)

Fig. 1. Computational improvements (a) and storage require-
ments (b) of the various histogram methods compared to the
conventional approach. The target size is set at 5% of the im-
age size and 16-bin histograms were used in this experiment.
Note the logarithmic scale for the vertical axes. Decreases
in computation times among the methods are accompanied
by increases in memory requirements. The distributive his-
togram proposed in this paper is not only the fastest of the
alternative approaches, but represents the best speed-memory
trade-off (see Section 5 for details).

togram. Generally, to speed up image search computations,
common approaches include: performing localized searches
(e.g., mean-shift [6] and particle filtering [15]), restricting
computations to low resolution instances of the input im-
agery or pyramid methods (e.g., [4]), terminating the simi-
larity computation prematurely if the result does not meet a
threshold [1], and the use of specialized parallel computing
hardware, such as FPGA (e.g., [12]), GPU (e.g., [10]) and
dedicated hardware (e.g., [3]).

This paper is concerned with a comparative study be-
tween common histogram construction methods for exhaus-
tive image search. In addition, building upon recent advances
in median filtering, we present a new multi-scale exhaus-
tive histogram-based search algorithm – the distributive his-
togram. Figure 1 presents a snapshot of our results where
we compared four methods including the aforementioned new
method, which are described in detail in Sec. 2 and 3. Note
that we analyze both computational speed and storage re-
quirements as both criteria are important in practice. The
analysis shows a vivid trend for speed-memory tradeoff and
one may conclude that the proposed new method is not only
the fastest, but also entails low memory burden.

978-1-4244-2243-2/08/$25.00 ©2008 IEEE

+-

(a) (b)

Fig. 2. Common approaches for histogram-based search. (a)
conventional approach reinitializes histogram at each position
(O(r2) per pixel cost) and (b) Huang’s algorithm updates the
kernel histogram by adding the rightmost column histogram
and subtracting the leftmost (O(r) per pixel cost).

The organization of this paper is as follows. In Sec. 2,
a summary of the standard histogram constructions is pre-
sented. In Sec. 3, the distributive histogram formulation is
introduced. In Sec. 4, a comparative computational (time) and
memory (space) analysis of the histogram construction meth-
ods of concern is presented. In Sec. 5, systematic empirical
evaluation of the computational and storage differences be-
tween the approaches is presented. Finally, Sec. 6 discusses
the relative merits between the approaches.

2. Common histogram constructions
The conventional approach for exhaustive histogram-

based search entails the construction of histograms centred
at each possible position in the image (see Fig. 2(a)). The
per pixel cost is O(r2), where r denotes the diameter of the
target template; for ease of exposition we assume that the tar-
get is square. Although the conventional approach guarantees
the localization of the global optimum, it is at the expense
of significant computational effort that limits its usefulness in
real-time or timely applications.

The state-of-the-art integral histogram [17, 14] represents
a radical departure for computing histograms from the con-
ventional approach. It is based on an extension of the integral
image [22] (termed the summed area table in the graphics lit-
erature [7]). The integral image corresponds to a cumulative
image function that is defined such that each element of this
function contains the sum of all values to the left and above
the pixel including the value of the pixel itself (assuming that
the coordinate system is located at the top left corner of the
image with x running to the right and y down). As pointed
out in [17], the integral image can be computed in several
ways. Note that care must be taken to avoid overflow errors.
Given the integral image, a rectangular sum at any position
and scale may be computed by three arithmetic operations. In
[17, 14], the authors compute a separate integral image for
each bin of the histogram. In the exhaustive search step, the
value of a histogram bin at arbitrary histogram positions and
radii can be computed by three arithmetic operations applied
to the integral image of the respective bin.

In [17], a theoretical computational analysis of the integral
histogram is presented. The conclusion drawn is that the inte-
gral histogram is computationally superior to the conventional
approach. Empirically, they show that the integral histogram
is capable of attaining real-time performance for exhaustive
image search. At the same time, this approach also imposes
substantial memory requirements, which limits its practical
applicability, as will be shown in later sections.

In order to find a better histogram-based search method,
let us turn back to the conventional approach and consider its
direct descendants. Huang et al. [11] observed that there was
a great amount of redundancy in computing the histograms
of adjacent windows with the conventional method. Rather
than recomputing the histograms at each image position, [11]
proposed retaining only those histogram values in the inter-
secting region of the current histogram window and previous
histogram window and adding the new histogram values in
the adjacent column (see Fig. 2(b)). This approach realizes
an O(r) per pixel cost, where r is the target diameter.

Huang et al.’s approach addresses the redundant histogram
calculations along a row but neglects the redundancies among
rows. With the ultimate goal of median/bilateral filtering,
Weiss [23] proposed an approach that accounted simultane-
ously for both sets of redundancies. Weiss’ proposal real-
izes an O(log r) per pixel cost. More recently, Perreault and
Hebert [16] proposed a simplification of Weiss’ scheme that
attains an O(1) per pixel cost in the context of median fil-
tering and computing rank order statistics. Given the con-
ceptual simplicity and better potential for hardware imple-
mentation of Perreault and Hebert’s approach over that of
Weiss’, in Sec. 3 we build upon the former’s contribution
with the goal of histogram-based image search (rather than
image processing); we term this the distributive histogram ap-
proach. We will show that this method offers substantial per-
formance improvement over all previous methods, while en-
joying modest memory requirements. Additionally, the nov-
elties of our extensions to the approach in [16], include: (1)
accommodation to multi-scale processing, (2) construction of
“advanced” histogram-based features and (3) extending the
basic paradigm beyond histogram computations to accommo-
date regional statistics, such as the mean and covariance.

3. Distributive histogram approach
The main histogram property utilized in the construction of

the distributive histogram is that of distributivity. Histogram
distributivity means that for disjoint image regions A and B:

H(A ∪ B) = H(A) + H(B), (1)

where H(·) denotes the local histogram.
Figure 3 illustrates the basic idea behind the construction

of the distributive histogram. For each column in the im-
age, one histogram is maintained, which accumulates the bin
weights of the r adjacent pixels. Note that the bin quantiza-
tion can be of a uniform or non-uniform nature. The kernel

+

-

update column histogram

+-

update kernel histogram

(a) (b)

Fig. 3. Distributive histogram construction. (a) the column to
the right is updated (“moved down one row”) by adding and
subtracting a pixel and (b) the kernel histogram is updated
by subtracting the leftmost histogram and adding the newly
modified right column. Adapted from [16].

histogram is computed by summing r adjacent column his-
tograms (following the distributivity property). As the ker-
nel histogram sweeps to the right, the column histograms are
added and subtracted as in Huang’s method. The difference
lies in the fact that the column histograms need not be fully
recomputed each time since they are partially given in the pre-
vious row. As the histogram proceeds along the row, each
rightmost column histogram encountered is updated by sub-
tracting the topmost pixel and adding a single pixel below it,
i.e. column histograms move downward (see Fig. 3).

For the case of histogram-based image search, the similar-
ity of the kernel histogram at each image point is compared
to that of the target model. Common histogram similarity
measures in the literature include: L1 norm, L2 norm, his-
togram intersection, Bhattacharrya distance and χ2-statistic.
Also, one can optionally normalize the kernel histogram to a
uniform sum in order to compensate for objects at different
scales. The pseudo-code for the distributive histogram ap-
proach is given in Algorithm 1.

Algorithm 1 Distributive histogram approach.
1: Input: Image Iinput(x, y) of size m×n, kernel radius r′ (half-diameter

r′ = r/2) and model histogram Hmodel
2: Output: Similarity image Ioutput(x, y) of size m × n
3: Initialize kernel histogram H and column histograms h(α), α =

1, . . . , m
4: for y = 1 to n do
5: for x = 1 to m do
6: Remove Iinput(x + r′, y − r′ − 1) from h(x + r)
7: Add Iinput(x + r′, y + r′) to h(x + r)
8: H ← H + h(x + r′) − h(x − r′ − 1)
9: Normalize (optional)

10: Ioutput(x, y) ← Compute histogram similarity
11: end for
12: end for

Next, let us consider the computational complexity of the
approach. Updating the kernel and column histograms is an
O(1) per pixel computation. Since the histogram size is fixed
and independent of the target size, the similarity computation
is O(1) per pixel. Initialization is O(r) per each column his-

H0

H1

Hscale 0

Hscale 1

Fig. 4. Examples of a higher-order histogram-based feature
(i.e., spatial arrangement of local histograms) constructed us-
ing the distributive histogram. Note that for these particular
histograms, two histograms per column are kept track.

togram; however, the amortized cost per pixel is still O(1)
when image size is proportional to the kernel size, r = O(n),
i.e. O(1)n2+O(r)n = O(1) + O(n)/n = O(1).2n

Analogously, the algorithm can be extended to higher di-
mensions while maintaining the O(1) per pixel complexity
in a straightforward manner. For example, for video analysis
(i.e., three-dimensional space consisting of two spatial and a
time dimension) the column histograms may be replaced with
planar histograms extending into the temporal dimension.

3.1. Extensions

This section presents several extensions to the basic dis-
tributive histogram approach, such as handling multiple
scales and spatial arrangements of histograms and the com-
putation of regional statistics, such as mean [7], covariance
(cf. [18]) and higher order moments.

3.1.1 Non-rectangular windows and multiple scales

A drawback of using a single local histogram to represent
objects is that topological relationships between features are
lost. The use of multiple (possibly multi-scale) spatial ar-
rangements of local histograms re-introduces a degree of
topological information. A simple and effective way to ac-
complish this is to utilize the histogram distributivity property
again, where rather than tracking a single histogram per col-
umn, we now keep track of multiple histograms per column
which are combined together to realize the final histogram
(see Fig. 4). This basic scheme can also be adapted to keep
track of histograms at multiple scales. Thus, multiple target
scales can be explored efficiently in a single pass of the image.

3.1.2 Regional statistics

The ability to rapidly compute regional statistics has proven
to be a useful tool for a variety of computer vision and im-
age processing applications, such as, matching, recognition,
filtering, etc. The computation of the arithmetic mean is a

∑

∑
1

widely used technique realized by sliding window summa-
tion and extensively used in e.g. stereo matching [20]. Several
authors have explored the exhaustive computation of the co-
variance matrix, i.e. second order moment. For example, [18]
adapted the integral image technique [7] to compute covari-
ance matrices of regional multi-dimensional data, while [19]
employed integral images to compute higher order moments
to approximate the image patch with polynomials for fast
template matching. While both these instantiations demon-
strated great speed, the overflow concern (hence, applicability
to larger images) is even more serious as the integral images
operate with the squared, cubed, etc. sums of values.

The central ideas behind the distributive histogram can
also be adapted for computing regional statistics. Particularly,

1in case of the mean, µ = N Xi, where Xi ∈ R
n is the data

at point i and N is the number of points in the region, the dis-
tributive histogram can be seen as a simple generalization of
the sliding window technique for box average computation.
Instead of computing local histograms by unionizing appro-
priate column histograms, we just operate on the sum of the
original values; the average is trivially obtained by unioniz-
ing, i.e. adding appropriate column sums.

The covariance matrix computation is very similar to
the first moment computation. Now, we compute C =

XiX� − µµ�, where µ is the mean as above. The sumN i

of outer-products is computed in the same way as the sum
of corresponding column outer product terms. Extension to
higher-order moments is a straight-forward application of the
approach above. Finally note that this approach avoids the
overflow issue that plagues the integral image-based method.

3.2. Optimizations

Utilizing Single Instruction Multiple Data (SIMD) instruc-
tions available on current CPUs (e.g., MMX/SSE on the Intel
platform and AltiVec on the PowerPC) significant computa-
tional savings may be realized. For instance, using SIMD
instructions the arithmetic operations used to update the col-
umn and kernel histograms can be computed across multiple
bins in parallel (i.e., vectorized operations). Significant fur-
ther gains using SIMD instructions are expected in the near
future as CPU makers enhance their SIMD feature sets.

A further optimization is possible by restricting attention
to bin sizes that are powers of two. The expensive division
can be eliminated by a relatively inexpensive bitwise shift
operation. For example, for a 16-bin histogram the bin of
a pixel from an image with integer values ranging between
0 and 255 can be determined by four leftward bitshifts (i.e.,
features coded with the higher 4-bits).

4. Analysis
4.1. Computational analysis

In the following section we provide a computational analy-
sis for histogram matching using 2D images at a single scale.
The entities we operate on are: B ≡ number of bins, r ≡

diameter of a target, N ≡ size of image (height/width). The
operations we consider are: a ≡ addition/subtraction, d ≡
division , f ≡ floor and type conversion, b ≡ bitwise shift.

The conventional method relies on the brute-force con-
struction of the histogram for each spatial location. In par-
ticular, for each point in the target of diameter r it requires:

1. Find the histogram bin for a pixel: 1 division and 1 floor
2. Increment the aforementioned bin: 1 addition

The total computational cost of the conventional method is:

N2r2(d + f + a). (2)

Huang’s approach reuses the histogram from the previous
location by subtracting out the data corresponding to the col-
umn left of the histogram and adding data from the column
right of the histogram. More precisely the operations are:

1. Find the bin of the pixels of the column histogram to the
right of the kernel histogram: 1 division and 1 floor each

2. Increment aforementioned bins: 1 addition each
3. Find the bin of the pixels of the column histogram to the

left of the kernel histogram: 1 division and 1 floor each
4. Decrement aforementioned bins: 1 subtraction each

Since a column histogram is composed from r pixels, the
above operations are performed r times. Also, the initial-
ization of the kernel histogram is done once per row in the
conventional way, which makes the total cost for Huang’s
method:

Nr2(d+f+a)+2N2r(d+f+a) = N2r(d+f+a)(2+
r

).
N

(3)
The integral histogram approach consists of an initializa-

tion stage that constructs integral images for each histogram
bin and an extraction stage. Initialization is a straightforward
procedure that conceptually consists of two steps:

1. Determine which bin the current pixel value falls in: 1
division and 1 floor

2. Update the corresponding integral image location as in
[7, 22] for each bin image, i.e. add value from the left
and from the top of the pixel: 2a per image

Histogram realization consists of the extraction of regional
data from each bin integral image:

1. For each bin extract regional sum of values from the cor-
responding integral images: 3 additions

The detailed description of this procedure can be found in
[17]. Thus, the total cost of the integral histogram is:

N2(B(d + f + 2a) + 3aB) = N2B(d + f + 5a). (4)

Finally, we calculate the computational cost of the pro-
posed distributive histogram method, which consists of ini-
tialization and extraction. Initialization involves the one-time
construction of the initial column histograms and involves the
following steps:

1. For each pixel find its histogram bin: 1 division and 1
floor per pixel

()

Method General cost Power-of-2 bins cost
Conventional N2r2(d + f + a) N2r2(b + a)

Huang N2r(d + f + a)(2 +) N2r(b + a)(2 +)
Integral (N2B(d + f + 5a)) (N2B(b + 5a))

Distributive N2 2(d + f) + 2(B + 1)a + (d + f + a) N2 2b + 2(B + 1)a + (b + a)

r
N

r
N

r
N

r
N

Table 1. Computational costs for all histogram-based search methods. N ≡ image width/height, B ≡ number of histogram
bins, r ≡ target diameter, a, d, f , b are the costs of addition/subtraction, division, floor and bit-wise shift operations, resp.

2. Increment the aforementioned pixel bin: 1 addition
The distributive histogram extraction stage consists of the fol-
lowing operations:

1. Find the bin of the “new pixel” of the column histogram
to the right of the kernel histogram: 1 division and 1 floor

2. Increment the “new pixel” bin: 1 addition
3. Find the bin of the “old pixel” of the column histogram

to the right of the kernel histogram: 1 division and 1 floor
4. Decrement the “old pixel” bin: 1 subtraction

Method Memory
Conventional 1

Huang B
N2BIntegral

Distributive NB

Table 2. Memory requirements for each of the 4 approaches.
N ≡ image width/height, B ≡ number of histogram bins.

5−10% of the area, which makes
sidering this, the computation cost is similar to that of

r
N = 0.05...0.1. Con-

5. Add the updated column histogram to the kernel his-
togram: 1 addition per histogram bin

6. Remove the old column histogram to the left of the ker-
nel histogram: 1 subtraction per histogram bin

The total cost of the distributive histogram approach is:

Nr(d + f + a) + N2(2(d + f + a) + 2Ba) = (5)

N2 2(d + f) + 2(B + 1)a +
r

(d + f + a) .
N

Keep in mind that substantial lower computational costs
can be realized due to the fact that the distributive histogram
steps can be vectorized and run in parallel (see Sec. 3.2).

In addition to the above costs (2), (3), (4), (5), there is the
overhead of computing the histogram similarity. However,
these steps are identical for all four approaches and can be
omitted from the analysis as they do not introduce relative
differences in the costs.

The computational costs are summarized in Tab. 1. Since
computational costs depend on many free parameters (image
size, target size, number of histogram bins) and the cost of
operations vary between architectures, it is hard to outline the
best overall method in practice. Nevertheless, several conclu-
sions can be drawn:

• Since r does not exceed N , Huang’s method is always
faster than the conventional approach because the former
depends linearly on r rather than quadratically.

• The integral histogram should outperform Huang’s
method when the target diameter r is large and the num-
ber of bins B is relatively small. This situation is par-
ticularly common in practice, since histograms are more
reliable when bins have adequate support.

• The initialization step for the distributive histogram is

the integral histogram, but with smaller constants over-
all, which suggests that the distributive histogram should
outperform the integral histogram.

• The distributive histogram is derived from Huang’s
method in a way to reuse previous computations more
efficiently; thus, it is expected to be faster by design.
According to the derived cost expression it is indeed the
case, especially for large target diameter r and relatively
small number of bins B – quite a natural configuration,
as discussed above.

• Unlike the conventional and Huang’s approaches, the
computational costs of the integral histogram and dis-
tributive histogram are independent of the target size.

4.1.1 Power-of-2 bin sizes

A substantial reduction in computation can be achieved by
restricting the bin quantization to powers of 2. The steps for
computing bin location for a value can be implemented via
bitwise shift operations: Given integer data and bin size of 2i,
where i ∈ N

+, bin location is calculated via i bit-shifts that is
realized as one operation on the majority of the contemporary
architectures. Thus, all bin location calculation costs, d+f , in
Tab. 1 can be effectively substituted with a single b operation
and is reflected in the third column of the table.

4.2. Memory analysis

The analysis of memory requirements reveals yet another
important advantage of the distributive histograms. Without
loss of generality, consider square images of size N ×N and
histogram with B bins. In general, any possible approach

not significant when r << N or B >> r
N – this sit- requires N2 units of memory for the image and B units to

uation is very common in practice, since the search ob- specify the target and some bookkeeping memory that is in-
ject typically occupies only a fraction of the image, e.g. dependent of image and histogram sizes – we do not consider

those requirements in the following as they are uniform across
all possible methods.

The conventional approach does not rely on any precom-
puted data; we can consider it to be “memoryless”. Huang’s
approach relies on the histogram obtained in the previous it-
eration, which takes up only B units of explicit storage. The
integral histogram precomputes an integral image for each
bin, which results in a memory cost of N2B units. Finally,
the distributive histogram requires the storage for the column
histograms, which is NB. The memory requirements of the
respective methods are summarized in Tab. 2.

Generally, speed improvements are realized by employing
more memory in order to reduce redundancy in computation.
This trend is consistent with moving from the conventional
to Huang’s method to the integral histograms. In contrast,
for the distributive histograms, the computational improve-
ment is accompanied by huge memory savings in comparison
with the integral histogram, which in practice results in better
cache coherence and even further speed-up.

Moreover, the distributive histogram is not prone to over-
flow error that plagues the integral histogram approach. This
in turn does not limit the image and histogram sizes that can
be utilized with the distributive histogram. In fact, while
the conventional, Huang’s and distributive histogram meth-
ods can operate with e.g. 1-byte memory units (for the typi-
cal case of 8-bit images), the integral histogram require much
larger bit-depth, e.g. 4-byte units, to avoid overflow even for
moderate size images, which implies even greater storage bur-
den for the integral histogram approach.

5. Evaluation
In order to establish the computational improvement in

practice, all four histogram-based search methods were im-
plemented in C. All experiments were conducted on a AMD
Opteron 850 processor with 1 MB cache and 16 GB of RAM.
We stress that the practical comparison of the four approaches
is more revealing than a theoretical comparison alone, as
memory, cache coherence, the nature of the arithmetic opera-
tions and vectorization influence the practical performance.

Figure 5 shows the computational times and memory loads
for all four approaches considered in the paper relative to the
conventional approach – the latter is the slowest, but takes no
memory. Conclusions derived from the theoretical analysis of
Sec. 4 are verified to be correct. In terms of performance, the
integral histogram outperforms Huang’s method for large im-
age sizes and small number of bins, though at the significant
expense of storage requirement. Interestingly, when the num-
ber of bins is large, Huang’s method is faster than the integral
histogram, although performance of the former does not scale
well with increases to the target size. Finally, the distributive
histogram exhibits the best performance overall and its mem-
ory requirements are noticeably lower than for the integral
histogram.

In [17], the authors theoretically compare the conventional

and integral histogram approaches and conclude that the lat-
ter is computationally superior. In the following, we concen-
trate on the comparison of the proposed distributive histogram
method with the state-of-the-art integral histogram.

Figure 6 shows the computational improvement of the dis-
tributive histogram-based method over the integral histogram
for exhaustive search over a range of image sizes. The tar-
get size was held fixed as the costs of both methods do not
depend on it. As can be seen, the distributive method sig-
nificantly outperforms the integral histogram, with greater
improvements realized as the search image size or number
of histogram bins increases. This improvement is apparent
for two reasons. First, the distributive histogram search is
computed in a single pass of the image (modulo initializa-
tion of columns), while the integral histogram requires two
full passes. Secondly, the small memory footprint of the
distributive-based method is highly cache friendly compared
to the integral histogram-based method which requires the al-
location of one integral image per bin. More importantly, the
extensive memory requirements of the integral histogram pre-
clude its use even for moderate size images with colour 3D
tensor histograms (163 bins in our case), while distributive
histograms can be applied unobtrusively in such cases.

In conclusion, our evaluation suggests that the distribu-
tive histogram realizes an average five-fold speedup and thou-
sands of times less memory in comparison to the integral
histogram, this is especially true when large image and his-
togram sizes are considered.

5.1. Object detection example

Figure 7 shows detection results for a traffic sign search
example. In this example, a 163-bin (RGB) colour histogram
was used. Although the distributive histogram and integral
histogram methods compute identical similarity maps, the
distributive histogram method runs in 868 msec and occupies
1.25 MB of memory, while the integral histogram method
takes 5295 msec and occupies 1200 MB of memory.

For images of approximately 1 megapixel (1280 × 960),
which is typical of contemporary digital cameras, the inte-
gral histogram requires 19200 MB of memory. This surpasses
even our available RAM and requires access to much slower
virtual memory. However, the distributive histogram requires
only 5 MB of RAM for the same sized image.

Further speed improvements may be realized by utilizing
the common speed up techniques outlined in Section 1.

5.2. Tracking example

Figure 8 shows a tracking example. In this case, a 16-bin
(hue) histogram was used. The distributive histogram method
attains real-time performance taking only 2 msec (or 500 fps)
and occupies 5 kB, while the integral histogram method takes
16 msec (or 62.5 fps) and occupies 4.8 MB, which results in
eight-fold reduction in time and 960-fold reduction in space.

0 500 1000 1500 2000 2500
10

0

10
1

10
2

10
3

Image size

x
tim

es
 fa

st
er

Huang
Integral
Distributive

0 50 100 150
10

0

10
1

10
2

10
3

Number of bins

x
tim

es
 fa

st
er

Huang
Integral
Distributive

0 500 1000 1500 2000 2500100

102

104

106

108

Image size (square)

x
m

or
e

st
or

ag
e

Huang
Integral
Distributive

0 50 100 150100

105

1010

Number of bins

x
m

or
e

st
or

ag
e

Huang
Integral
Distributive

(a) (b) (c) (d)

Fig. 5. Computational improvement and storage requirements of Huang’s method, integral and distributive histograms relative
to the conventional approach. (a) Processing speed as a function of image size. Target size is 5% of the image size and 16-bin
intensity histogram. (b) Processing speed as the function of number of bins. Image size is 960× 720 and target size is 48× 36.
(c) Storage as the function of image size. (d) Storage as a function of number of bins. Note the logarithmic scale on the y-axis.

0 500 1000 1500 2000 2500
1

2

3

4

5

Image size

x
tim

es
 fa

st
er

Distributive

0 50 100 150
2.5

3

3.5

4

4.5

5

5.5

6

Number of bins

x
tim

es
 fa

st
er

Distributive

0 1000 2000 3000 4000 5000
0

2000

4000

6000

8000

10000

Image size (square)

x
le

ss
 s

to
ra

ge

Distributive
0 50 100 150

0

500

1000

1500

2000

2500

3000

Number of bins

x
le

ss
 s

to
ra

ge

Distributive

(a) (b) (c) (d)

Fig. 6. Computational and storage improvements of the distributive histogram approach over the integral histogram method. (a)
Processing speed as a function of image size. Target size is 5% of the image size and 16-bin intensity histogram. (b) Processing
speed as the function of number of bins. Image size is 960 × 720 and target size is 48 × 36. (c) Storage as a function of image
size. (d) Storage as a function of number of bins.

(a) (b) (c)

Fig. 7. Traffic sign search example. a) 19×19 target template,
b) 320 × 240 input search image with a bounding box over-
layed on the matched target region and c) corresponding L2
similarity (log scale) image based on a 163-bin (RGB) tensor
histogram (darker intensities indicative of greater similarity).
The distributive histogram detects the target in 868 msec us-
ing 1.25 MB of memory, while the integral histogram takes
5295 msec using 1200 MB of memory.

Local tracking methods (e.g., mean-shift tracker [6]), al-
though fast are prone to failure when significant frame-to-
frame displacement of the target occurs. The distributive his-
togram tracker is fast, memory efficient and also robust to sig-
nificant target displacement by virtue of the fact that it com-
putes the similarity measure exhaustively across each frame.

6. Discussion
In this paper, we have presented and validated a novel and

substantially faster method for exhaustive image search than

those traditionally employed. We conclude with a discussion
on the relative merits of our approach compared to the re-
cently proposed state-of-the-art integral histogram [17, 14].

The key property of the integral histogram is that his-
tograms of arbitrary scales can be computed in constant time
(following initialization). Beyond the ability to efficiently
explore multiple scales, this property enables the construc-
tion of “advanced” features, such as the spatial arrangement
or the multi-scale fusion of local histograms. However, this
degree of freedom is not without its issues: (i) the initial-
ization computations scale with the full image resolution.
(ii) the integral histogram requires a memory footprint of
image width× image height×#bins (i.e., one integral image
per bin). This places a heavy requirement on memory and in
turn precludes its use on large images with a large number of
bins, e.g. 163-bin colour-based search on 1024 × 960 images
was impossible to perform in our experimental settings with
16 GB of RAM. (iii) the integral histogram suffers from over-
flow issues. This places strict boundaries on the search image
and histogram sizes used for processing.

In contrast, the distributive histogram initialization ex-
hibits low computational overhead and memory footprint (i.e.,
only the kernel histogram and column histograms must be
maintained), while allowing multi-scale and “advanced” ex-
ploration of the data. Moreover, overflow is not an issue for
the distributive histogram. Given the trend towards the avail-
ability of higher resolution imagery, the computational and

frame 60 frame 910 frame 3060
Fig. 8. Fish tank tracking example. Top row: selected frames from a 320×240×4000 input image sequence with the bounding
box of the tracked region overlayed. Bottom row: corresponding L2 similarity scores (log scale) based on a 16-bin histogram
operating on the hue channel of the HSV colour representation constructed from a 19 × 19 target template (darker intensities
indicative of greater similarity). The distributive histogram method detects the target in each frame in only 2 msec (or 500
frames per second) and occupies 5 kB of RAM.

memory advantages of the distributive histogram-based anal-
ysis are crucial.

In conclusion, we have performed a detailed comparison of
all the major histogram construction methods for histogram-
based search as well as presented a novel approach that sig-
nificantly outperforms the current state-of-the-art in key prac-
tical situations.

Acknowledgements
The authors thank R. Wildes, J. Tsotsos and E. Leung for

their valuable feedback. Also, the authors thank F. Porikli
for clarifying details in [17]. M. Sizintsev is supported by
NSERC PGS-D3 scholarship.

7. References

[1] D. Barnea and H. Silverman. A class of algorithms for fast
digital image registration. Trans. Comp., 21(2):179–186, 1972.

[2] S. Birchfield. Elliptical head tracking using intensity gradients
and color histograms. In CVPR, pages 232–237, 1998.

[3] P. Burt. A pyramid-based front-end processor for dynamic vi-
sion applications. Proc. IEEE, 90(7):1188–1200, July 2002.

[4] P. Burt and E. Adelson. The Laplacian pyramid as a compact
image code. IEEE Trans. Comm., 31(4):532–540, April 1983.

[5] K. Cannons and R. P. Wildes. Spatiotemporal oriented energy
features for visual tracking. In ACCV, pages 532–543, 2007.

[6] D. Comaniciu, V. Ramesh, and P. Meer. Kernel-based object
tracking. PAMI, 25(5):564–577, May 2003.

[7] F. Crow. Summed-area tables for texture mapping. In SIG-
GRAPH, pages 207–212, 1984.

[8] N. Dalal and B. Triggs. Histograms of oriented gradients for
human detection. In CVPR, pages I: 886–893, 2005.

[9] F. Ennesser and G. Medioni. Finding Waldo, or focus of at-
tention using local color information. PAMI, 17(8):805–809,
August 1995.

[10] J. Fung and S. Mann. Computer vision signal processing on
graphics processing units. In ICASSP, pages 17–21, 2004.

[11] T. Huang, G. Yang, and G. Tang. A fast two-dimensional me-
dian filtering algorithm. ICASSP, 27(1):13–18, 1979.

[12] L. Kotoulas and I. Andreadis. Colour histogram content-based
image retrieval and hardware implementation. IEE Proc.-Circ.
Dev. syst., 150(5):387–393, Oct. 2003.

[13] T. Leung and J. Malik. Representing and recognizing the vi-
sual appearance of materials using three-dimensional textons.
IJCV, 43(1):29–44, June 2001.

[14] X. Liu and D. Wang. Image and texture segmentation using
local spectral histograms. Trans. IP, 15(10):3066–3077, 2006.

[15] K. Nummiaro, E. Koller-Meier, and L. Van Gool. A color-
based particle filter. In GMBV, pages 53–60, 2002.

[16] Perreault and Hebert. Median filtering in constant time. Trans.
IP, 16(9):2389–2394, 2007.

[17] F. Porikli. Integral histogram: A fast way to extract histograms
in Cartesian spaces. In CVPR, pages I: 829–836, 2005.

[18] F. Porikli and O. Tuzel. Fast construction of covariance ma-
trices for arbitrary size image windows. In ICIP, pages 1581–
1584, 2006.

[19] H. Schweitzer, J. W. Bell, and F. Wu. Very fast template match-
ing. In ECCV, pages 358–372, 2002.

[20] C. Sun. Fast stereo matching using rectangular subregioning
and 3D maximum-surface techniques. IJCV, 47:99–117, 2002.

[21] M. Swain and D. Ballard. Color indexing. IJCV, 7(1):11–32,
1991.

[22] P. Viola and M. Jones. Robust real-time face detection. IJCV,
57(2):137–154, May 2004.

[23] B. Weiss. Fast median and bilateral filtering. In SIGGRAPH,
pages 519–526, 2006.

