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Abstract

In this paper, we propose an image super-resolution ap-

proach using a novel generic image prior – gradient profile

prior, which is a parametric prior describing the shape and

the sharpness of the image gradients. Using the gradient

profile prior learned from a large number of natural im-

ages, we can provide a constraint on image gradients when

we estimate a hi-resolution image from a low-resolution im-

age. With this simple but very effective prior, we are able

to produce state-of-the-art results. The reconstructed hi-

resolution image is sharp while has rare ringing or jaggy

artifacts.

1. Introduction

The goal of single image super-resolution is to estimate

a hi-resolution (HR) image from a low-resolution (LR) in-

put. There are mainly three categories of approach for this

problem: interpolation based methods, reconstruction based

methods, and learning based methods. The interpolation

based methods [12, 29, 18] are simple but tend to blur the

high frequency details. The reconstruction based methods

[14, 2, 19, 3] enforce a reconstruction constraint which re-

quires that the smoothed and down-sampled version of the

HR image should be close to the LR image. The learning

based methods [10, 9, 26, 5, 28, 2, 7, 20, 31] “hallucinate”

high frequency details from a training set of HR/LR im-

age pairs. The learning based approach highly relies on the

similarity between the training set and the test set. It is still

unclear how many training examples are sufficient for the

generic images.

To design a good image super-resolution algorithm, the

essential issue is how to apply a good prior or constraint

on the HR image because of the ill-posedness of the im-

age super-resolution. Generic smoothness prior [25, 11] and

edge smoothness prior [21, 1, 6, 7, 22, 27] are two widely

used priors.

In this paper, we propose a novel generic image prior —

gradient profile prior for the gradient field of the natural im-
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Figure 1. Gradient profile. (a) two edges with different sharp-

ness. (b) gradient maps (normalized and inverted magnitude) of

two rectangular regions in (a). p(x0) is a gradient profile pass-

ing through the edge pixel (zero crossing pixel) x0, by tracing

along gradient directions (two sides) pixel by pixel until the gra-

dient magnitude does not decrease at x1 and x2. (c) 1D curves of

two gradient profiles.

age. The gradient profile is a 1-D profile along the gradient

direction of the zero-crossing pixel in the image. The gra-

dient profile prior is a parametric distribution describing the

shape and the sharpness of the gradient profiles in natural

image. One of our observations is that the shape statistics

of the gradient profiles in natural image is quit stable and

invariant to the image resolution. With this stable statis-

tics, we can learn the statistical relationship of the sharp-

ness of the gradient profile between the HR image and the

LR image. Using the learned gradient profile prior and rela-

tionship, we are able to provide a constraint on the gradient

field of the HR image. Combining with the reconstruction

constraint, we can recover a hi-quality HR image.
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The advantages of the gradient profile prior are as fol-

lows: 1) unlike previous generic smoothness prior and edge

smoothness prior, the gradient profile prior is not a smooth-

ness constraint. Therefore, both small scale and large scale

details can be well recovered in the HR image; 2) the com-

mon artifacts in super-resolution, such as ringing artifacts,

can be avoided by working in the gradient domain.

Our work is motivated by recent progresses on natural

image statistics. The gradient magnitudes generally obey a

heavy tailed distribution e.g., a Laplacian distribution[13].

This kind of “sparseness prior” has been successfully ap-

plied to super-resolution[28], denoising [23] [24], inpaint-

ing [17], transparency separation [16] and deblurring [8,

15]. However, the sparseness prior only considers the

marginal distribution of image gradients (e.g., intensity dif-

ference between two adjacent pixels) over the whole image.

In this work, our gradient profile prior considers the distri-

bution of the image gradients along local image structures.

Fattal [7] also proposed an edge statistics for image up-

sampling. The proposed statistics is the distribution of local

intensity continuity in the HR image conditional on edge

features in the LR image. Different from his non-parametric

statistics, firstly, the gradient profile prior is a generic, para-

metric image prior for the gradient field of the natural im-

age; secondly, our prior is stable to the image resolution. It

is a good property for image super-resolution.

In section 2, we will introduce the gradient profile prior.

Then we apply the gradient profile prior to image super-

resolution in section 3. We show experimental results in

section 4 and conclude the paper in section 5.

2. Gradient Profile Prior

Previous natural image statistics characterizes the

marginal distribution of the image gradients over the whole

image. The spatial information is discarded. Instead, we

study the image gradients along local image structures and

the statistical dependency of the image gradients between

the HR image and the LR image.

2.1. Gradient profile and its sharpness

Denote the image gradient as ∇I = m ·
−→
N , where m is

the gradient magnitude and
−→
N is the gradient direction. In

the gradient field, we denote the zero crossing pixel which

is the local maximum on its gradient direction as edge pixel.

Figure 1 (a) are two image blocks containing two edges

with different sharpness. Figure 1 (b) are corresponding

gradient (magnitude) maps. The pixel x0 in Figure 1 (b) is

a zero crossing or edge pixel. Starting from x0, we trace a

path along the gradient directions (two-sides) pixel by pixel

until the gradient magnitude does not decrease anymore.

We call the 1-D path p(x0) as gradient profile. Figure 1

(c) are 1D curves of two gradient profiles.

We measure the sharpness of the gradient profile using

the square root of the variance (second moment):

σ(p(x0)) =

√

∑

x∈p(x0)

m′(x)d2(x, x0) (1)

where m′(x) = m(x)
∑

s∈p(x0) m(s) and d(x, x0) is the curve

length of the gradient profile between x and x0. The sharper

image gradient profile, the smaller the variance σ is. We call

this variance as the profile sharpness.

Profile sharpness estimation. Individually estimating the

sharpness for each gradient profile is not robust due to the

noise. To have a better estimation, we apply a global opti-

mization to enforce the consistency of neighboring profiles

as follows.

First, we construct a graph on all edge pixels. The graph

node is the edge pixel and the graph edge is the connection

between two neighboring edge pixels within a pre-defined

distance (5 pixels in this paper). The edge weight wij for

each clique of two connected nodes i and j is defined as,

wi,j = exp(−ζ1 · |∇ui −∇uj |
2 − ζ2 · d(i, j)2), (2)

where the first term in the exponent is the gradient similar-

ity, and the second term is Euclidean distance between i and

j. For each node i, we individually estimate its sharpness

σ̂i using Equation (1).

Then, we minimize the following energy to estimate the

sharpness of all edge pixels:

E({σi}) =
∑

i

[(σi − σ̂i)
2 + γ ·

∑

j∈N(i)

wi,j · (σi − σj)
2],

(3)

where N(i) are neighboring nodes of the node i. This en-

ergy can be effectively minimized because it is an Gaussian

MRF model, in which γ = 5, ζ1 = 0.15, and ζ2 = 0.08 in

our implementation.

2.2. Gradient profile prior

Next, we investigate the regularity of the gradient pro-

files in natural image. We fit the distribution of the gra-

dient profile by a general exponential family distribution,

i.e. Generalized Gaussian Distribution (GGD) [30], which

is defined as,

g(x; σ, λ) =
λα(λ)

2σΓ( 1
λ )

exp{−[α(λ)|
x

σ
|]λ}, (4)

where Γ(·) is gamma function and α(λ) =
√

Γ( 3
λ)/Γ( 1

λ ) is

the scaling factor which makes the second moment of GGD

equal to σ2. Therefore, σ can be directly estimated using

the second moment of the profile. λ is the shape parameter

which controls the overall shape of the distribution. The
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Figure 2. Average KL divergences between the fitted gradient pro-

files and 1 million gradient profiles by varying the shape parameter

λ. The optimal λ is near 1.6 on four data sets with different reso-

lutions.

distribution g(x; σ, λ) is a Gaussian distribution if λ = 2,

and a Laplacian distribution if λ = 1.

To fit the distribution, we collect an image set containing

1,000 natural images downloaded from professional pho-

tography forums. All images are in the original resolution

without down-sampling or up-sampling. For each image,

we randomly select 1,000 gradient profiles to construct a

data set Ω1 which consists of 1 million gradient profiles.

We also construct other three profile data sets Ω2, Ω3 and

Ω4 from the down-sampled versions of the original resolu-

tion images with the down-sampling factors of 2, 3, and 4.

Using Kullback-Leibler (KL) divergence to measure the

fitting error, we estimate the optimal λ∗ by

λ∗ = argminλ{
∑

p∈Ω

KL(p, g(·; σp, λ))}, (5)

where σp is the variance (estimated using Equation (3)) of

p, which is one profile in the set Ω.

We compute the average KL divergences on four profile

sets Ω1, Ω2, Ω3, and Ω4 by varying the shape parameterλ, as

shown in Figure 2. As we can see, the optimal shape param-

eter is about 1.6 for all down-sampling factors. The shape

parameter λ is stable across different resolutions, which

means that the gradient profile distribution is resolution in-

dependent in natural image.

We use Pearson’s χ2 hypothesis-test to measure the

goodness of our fitted distributions. The χ2 hypothesis-test

for a gradient profile p(x0) is defined as

χ2(p) =
∑

x∈p(x0)

[m(x) − E(x)]2

E(x)
, (6)

where E(x) = g(d(x,x0))
∑

s∈p(x0) g(d(s,x0))
·
∑

s∈p(x0)
m(s). For

significance level κ and degrees of freedom n − 1 (n is

the number of pixels in p), if χ2(p) < χ2
(κ,n−1), the hy-

pothesis that the gradient profile follows the fitted gradi-

ent profile prior cannot be rejected. For the common sig-

nificance level κ = 0.01, the average differences between

the values of χ2 on the gradient profiles and correspond-

ing values of χ2
(κ,n−1) are -2.22, -1.90, -1.50, -1.20 on four

date sets Ω1, Ω2, Ω3, Ω4. All average differences are signif-

icantly smaller than zero, which means the gradient profiles

in natural image are well fitted by our gradient profile prior.

To verify whether the parameter λ = 1.6 is independent

on our collected data or not, we repeat the above experi-

ments on two different image sources. One is 500 images

randomly downloaded from Flickr image site. The other is

500 images from a home photo gallery taken with 4 differ-

ent digital cameras. Again, the obtained optimal shape pa-

rameters are stable and between 1.55 and 1.65, which means

the generalized gaussian distribution with λ = 1.6 is a good

generic prior for the natural image and independent on the

image resolution. Based on this very nice statistics, we only

need to study the relationship of the gradient profile sharp-

ness σ between two different resolutions.

2.3. Relationship of gradient profile sharpness be­
tween HR image and LR image

Similar to previous methods [10, 26, 7], we study the

relationship of gradient profile sharpness between the up-

sampled image Iu
l and the HR image Ih, in order to avoid

the shifting problem of the zero-crossing pixels in scale

space [32]. In our implementation, the up-sampled image

Iu
l is the bicubic interpolation1 of the LR image Il.

For each gradient profile in the up-sampled image Iu
l , we

extract its corresponding gradient profile in the HR image

Ih. Because the edge pixels are not exactly aligned in two

images, we find the best matched edge pixels by measuring

the distance and direction. For each edge pixel el in Iu
l , the

best matched edge pixel eh in Ih is found by:

eh = argmine∈N (el)
{||e − el|| + 2||

−→
N (e) −

−→
N (el)||} (7)

where N (el) is the 5 × 5 neighbors of el in the HR image.

To compute the statistics, we quantize the sharpness σ
into a number of bins. The width of bin is 0.1. For all LR

gradient profiles whose sharpness value falls in the same

bin, we calculate the expectation of sharpness of the cor-

responding HR gradient profiles. Figure 3 shows three fit-

ted curves of computed expectations for the up-sampling

factors of 2, 3, and 4. X-axis is the sharpness of the (up-

sampled) LR gradient profile and Y-axis is expected sharp-

ness of the hi-resolution gradient profile.

There are two basic observations from Figure 3: 1) the

HR gradient profile is sharper than the LR gradient profile

1Note that the statistic of shape parameter λ in the up-sampled im-

age may be slightly influenced by the bicubic interpolation. However, we

found that the optimal λ value for the up-sampled image is still stable.

They are 1.63, 1.68, and 1.69 for the up-sampling factors of 2, 3, and 4 on

our data sets.
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Figure 3. Expected sharpness of the gradient profiles in HR im-

age with respect to sharpness of the corresponding profiles in up-

sampled image.

because the bicubic interpolation blurs the profile; 2) the

higher the up-sampling factor, the larger the sharpness dif-

ference between the HR gradient profile and the LR gra-

dient profile is. Notice that three curves converge together

when the sharpness is below 1.0 in Figure 3. One possible

reason is due to the inaccuracy of our sharpness estimation.

The sharpness estimation for the small scale edge is sensi-

tive to the noise. Also, the introduced image aliasing in the

LR image by down-sampling may result in over-estimated

sharpness.

3. Gradient Prior for Image Super-Resolution

In this section, we apply the gradient profile prior to im-

age super-resolution. Given a LR image, the gradient profile

prior can provide constraints on the gradient field of the HR

image: 1) the shape parameter of gradient profiles in the HR

image is close to the value 1.6; 2) the sharpness relationship

of gradient profiles between two resolutions follows the sta-

tistical dependency learned in the previous section. To en-

force these constraints, we propose a simple approach as

follows.

3.1. Gradient field transformation

We propose a gradient field transformation approach to

approximate the HR gradient field by transforming the LR

gradient field using the gradient profile prior.

First, we study how to transform a gradient profile pl =
{λl, σl} in the up-sampled image Iu

l to a gradient profile

ph = {λh, σh} in the HR image Ih. We compute the ratio

(c)  (d) 

(a) gradient transform
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Figure 4. Gradient field transformation. (a) left and middle sub-

figures illustrate a gradient profile passing through x and x0 in the

up-sampled image. The gradient of x is transformed to its HR

version (right) by multiplying a ratio r(d(x,x0)). (b) and (c) are

an up-sampled image and its gradient field. (d) and (e) are trans-

formed gradient field and reconstructed image by solving poisson

equation.

between two gradient profiles, i.e.

r(d) =
g(d; σh, λh)

g(d; σl, λl)

= c · exp{−(
α(λh) · |d|

σh
)λh + (

α(λl) · |d|

σl
)λl},(8)

where c = λh·α(λh)·σl·Γ(1/λl)
λl·α(λl)·σh·Γ(1/λh) and d is the curve distance

to the edge pixel along the gradient profile. Thus, the HR

gradient profile ph can be estimated by multiplying LR gra-

dient profile pl by the transform ratio. The shape param-

eters λh and λl are set to the learned values in Section 2,

the sharpness σl is estimated from the image Iu
l and the

sharpness σh is set as the expected value of σl using the

relationship we learned in section 2.3.

Second, using the ratio computed in (8), we can trans-

form the LR gradient field ∇Iu
l to the HR gradient field

∇IT
h by

∇IT
h (x) = r(d(x, x0)) · ∇Iu

l (x), (9)

where x0 is the edge pixel of the gradient profile passing

through x, and d(x, x0) is the distance between x and x0

along gradient profile. In our implementation, to find the

gradient profile passing through x, we trace from x along

the direction (gradient direction or minus gradient direc-

tion) with increasing gradient magnitude until reach an edge

pixel x0 (in a threshold distance, e.g., 1 pixel), then adjust

the gradient of x by (9).

Figure 4 (a) shows an illustration of gradient transforma-

tion. Figure 4 (b-e) gives a real example. Figure 4 (c) is the

gradient field of the up-sampled image in Figure 4 (b). Fig-

ure 4 (d) is the transformed gradient field and Figure 4 (e) is

the reconstructed image by solving poisson equations. The

recovered image is sharp and with rare ringing artifacts.



(a) (c) (d) (b) 

Figure 5. HR image reconstruction (3X). (a) LR image (nearest neighbor interpolation) and gradient field of its up-sampled image (bicubic

interpolation). (b) result of back-projection and it’s gradient field, (c) our result and transformed gradient field for HR image. (d) ground

truth image and its gradient field. Compared with the gradient field of result by back-projection, the transformed gradient field is much

closer to the ground truth gradient field of HR image. Our reconstructed result has rare jaggy or ringing artifacts.

(c) (d)(b)(a)

Figure 6. Super-resolution on synthetic image (4X). (a) LR image

(nearest neighbor interpolation). (b) reconstructed HR image. (c)

gradient field of the up-sampled image (bicubic interpolation), (d)

transformed gradient field from (c).

3.2. HR Image reconstruction

We use the transformed gradient field as the gradient do-

main constraint for the HR image reconstruction. Given the

LR image Il, in order to reconstruct the HR image Ih, we

minimize the following energy function by enforcing the

constraints in both image domain and gradient domain:

E(Ih|Il,∇IT
h ) = Ei(Ih|Il) + βEg(∇Ih|∇IT

h ), (10)

where Ei(Ih|Il) is the reconstruction constraint in the im-

age domain and Eg(∇Ih|∇IT
h ) is the gradient constraint in

the gradient domain.

The reconstruction constraint measures the difference

between the LR image Il and the smoothed and down-

sampled version of HR image Ih, i.e.

Ei(Ih|Il) = |(Ih ∗ G) ↓ −Il|
2. (11)

where G is a spatial filter, ∗ is the convolution operator, and

↓ is the down-sampling operation. We use a gaussian filter

for the spatial filter G. The kernel standard variance is set

to 0.8, 1.2 and 1.6 for the up-sampling factors of 2, 3 and 4.

The gradient constraint requires that the gradient field of

the recovered HR image should be close to the transformed

HR gradient field ∇IT
h :

Eg(∇Ih|F ) = |∇Ih −∇IT
h |2, (12)

where ∇Ih is the gradient of Ih. Using this constraint, we

encourage the gradient profiles in Ih has a desired statistics

which we learned from the natural images.

The energy (10) can be minimized by a gradient descent

algorithm:

It+1
h = It

h − τ ·
∂E(Ih)

∂Ih
,

where

∂E(Ih)

∂Ih
= ((Ih ∗ G) ↓ −Il) ↑ ∗G − β · (∇2Ih −∇2IT

h ).

(13)



(b) bicubic (c) sharpened bicubic (d) back-projection (f) our result (g) ground truth(a) input (e) gradient reconstruction

Figure 7. Super-resolution comparison (3X). Gradient reconstruction is obtained by solving poisson equations on the transformed gradient

field. Both of gradient reconstruction result (e) and our result (f) contain much less ringing artifacts, especially along the image edges. But

our result (f) is closer to the ground truth by enforcing the reconstruction constraint. See text for details.

(a) input (b) learning based (c) alpha channel super resolution (d) our result (e) ground truth

Figure 8. Super-resolution comparison (4X) of learning based method [10], alpha channel super-resolution [6], and our approach. Both

large scale edges and small scale details (on the face) are recovered in our result.

The global optimum can be obtained because the energy

(10) is a quadratic function. We set the step size τ to 0.2,

parameter β = 0.5 and use the up-sampled image Iu
l as the

initial value of Ih.

Figure 5 gives a real example of our method. Figure 5

(a) are input LR image and the gradient field of bicubic up-

sampled image. Figure 5 (d) are ground truth HR image

and its gradient field. Figure 5 (b) are back-projection[14]

result using the reconstruction constraint only. Notice the

ringing artifacts in both image and gradient field. The bot-

tom image in Figure 5 (c) is our transformed gradient field.

As we can see, it is much closer to the ground truth gradient

field shown in Figure 5 (d). The top image in Figure 5 (c)

is our final reconstructed HR image using both image and

gradient constraints. The ringing artifacts are substantially

suppressed by the gradient constraint.

Figure 6 also shows an example on a synthetic image.

Our approach can reconstruct a very sharp HR image guided

by a transformed gradient field.

4. Experiments

We test our approach on a variety of images. For the

color images, we only perform image super-resolution on

the grayscale channel because the human are more sensitive

to the brightness information. The color channels are up-

sampled using the bicubic interpolation.

In Figure 7, we compare our approach with bicubic inter-

polation, sharpened bicubic interpolation, back-projection

[14], and reconstruction from the transformed gradient field

by solving poisson equations. The result of bicubic in-

terpolation is over-smooth, for example the region in the

rectangle. The sharpened bicubic interpolation and back-

projection introduce ringing or jaggy artifacts, especially

along salient edges. The result of reconstruction from the

transformed gradient field is sharp and with rare artifacts,

but the color is not close to the ground truth HR image. By

combing gradient constraint and reconstruction constraint,

our final result is the best.

Figure 8 shows the comparison of our approach with

learning based method [10] and alpha channel super-

resolution [6]. The result of learning based method is sharp

in appearance. However, high frequency artifacts are also

introduced from the training samples, for example the ar-

tifacts around the nose. The salient edges in alpha chan-

nel super-resolution result are sharp, but the small scale

edges, for example flecks on the face, are not well recov-

ered. That’s because it’s hard to estimate alpha channel

value for the edges with weak contrast and large blur. Com-

pared with these results, our approach can recover both

large scale edges and small scale details, and introduce min-

imal additional artifacts.

Figure 9 and 10 show four examples with up-sampling



Figure 9. Super-resolution results with up-sampling factors of 8 and 16.

Figure 10. More super-resolution results with up-sampling factor

of 8. The left image is the LR image, and the right image is our

result.

factor of 8 and one example with up-sampling factor of 16,

in which the HR results are produced by repeatedly running

our super-resolution algorithm with up-sampling factor of

2. In Figure 9, the image regions in the blue rectangles

are magnifed by nearest neighbor interpolation for better

illustration. All of the results show that our method can

reliably recover the image details and produce sharp edges

with minimal additional artifacts.

We also compute RMS and ERMS [26] to qualitatively

measure the super-resolution results of Monarch (Figure 5),

Lena (Figure 7) and Head (Figure 8). The measurements are

listed in Table 1. Our model outperforms the bicubic and

back-projection with lower RMS and ERMS. The compu-

tation costs for Monarch (original resolution is 399 × 423),

Lena (original resolution is 500 × 500) and Head (original

resolution is 280 × 280) are 7.4s, 8.7s, and 3.5s on a 3.0

GHz PC.

Table 1. Super-resolution quality measurement.

bicubic back-projection our method
test images

RMS ERMS RMS ERMS RMS ERMS

Monarch 16.4 26.0 13.6 21.3 13.2 20.9

Lena 8.8 11.5 8.2 10.8 7.8 10.1

Head 8.7 10.9 8.6 10.6 8.4 10.3

5. Conclusion and Discussion

In this paper, we have established a gradient profile

prior for natural image. Using this prior, a gradient field

constraint is enforced for the problem of image super-



resolution. The gradient constraint helps to sharpen the

details and suppress ringing or jaggy artifacts along edges.

Encouraging results are obtained on a variety of natural and

synthetic images.

(a) noisy input (b) our result

Figure 11. Super-resolution on a noisy image (4X). Noisy LR

image is denoised by non-local denoising method [4], then the

denoised image is up-sampled by the proposed method, and the

noises are up-sampled by bilinear interpolation.

For noisy input LR image, estimating the gradient profile

might be inaccurate due to the noise. One possible solution

is to denoise the LR image first, then add the up-sampled

noises back after the image super-resolution, see Figure 11

for an example. In the future, we are planning to extend the

proposed method to video super-resolution. We are also in-

terested in applying the gradient profile prior to other image

reconstruction applications.
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