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Abstract

We present a method for decomposing an image into
its intrinsic reflectance and shading components. Differ-
ent from previous work, our method examines texture in-
formation to obtain constraints on reflectance among pixels
that may be distant from one another in the image. We ob-
serve that distinct points with the same intensity-normalized
texture configuration generally have the same reflectance
value. The separation of shading and reflectance compo-
nents should thus be performed in a manner that guaran-
tees these non-local constraints. We formulate intrinsic im-
age decomposition by adding these non-local texture con-
straints to the local derivative analysis employed in con-
ventional techniques. Our results show a significant im-
provement in performance, with better recovery of global
reflectance and shading structure than by previous methods.

1. Introduction
The color of scene points is determined by both its sur-

face reflectance and shading. Reflectance describes the in-
trinsic color of a surface, which is invariant to illumination
and imaging conditions. Shading arises from the amount of
reflected light by the surface, and typically depends upon
surface orientation and illumination condition. Intrinsic im-
age decomposition addresses the problem of separating an
image into its reflectance and shading components. Since
each component represents a different physical element,
many computer vision algorithms would benefit from such
a decomposition, which isolates the information they wish
to analyze. For example, shape from shading algorithms
infer object geometry from shading variations, and will be
misled by reflectance changes mistaken for shading. On the
other hand, techniques based on segmentation, stereo and
optical flow prefer a pure reflectance map as input to avoid
appearance variations caused by shading.

Although intrinsic image decomposition offers distinct
benefits, it remains a challenging, greatly underconstrained
problem because for each pixel, there exists twice as many
unknowns (reflectance, shading) as there are measurements.

Some previous works seek to make this problem more man-
ageable by utilizing additional information from multiple
registered images [21] [16] [15] [1], each having a differ-
ent illumination condition. High quality results have been
demonstrated by such methods, but their input requirements
limit their application.

For general practicality, decomposition methods for sin-
gle arbitrary images are favored. Previous work towards
this end has mainly analyzed local derivatives for distin-
guishing image variations due to shading or reflectance.
In general, these methods have assumed scene conditions
similar to those addressed by the Retinex algorithm [12]:
Mondrian-like images with piecewise constant reflectance
and smoothly varying shading. For such scenes, large
derivatives can be attributed to reflectance change, while
smaller derivatives are due to shading. By further assum-
ing reflectance and shading change not to coincide, intrin-
sic images can be recovered by integrating their respec-
tive derivatives across the input image. This approach has
been adapted to color images [9] by associating reflectance
derivatives to significant chromaticity changes, based on
the property that shading variations do not alter chromatic-
ity. A variational approach to the Retinex problem was
proposed in [10] that subsumes many previous techniques.
While these Retinex methods are intuitively simple, real-
world scenes often do not adhere to their assumed condi-
tions. Other methods based on local gradients classify edges
or edge junctions according to heuristic rules [17] or trained
classifiers [2] [19] [20]. It is, however, difficult to formu-
late all-inclusive rules or to comprehensively train classi-
fiers over the possible range of shading and reflectance con-
figurations. Furthermore, it is not always possible to disam-
biguate reflectance and shading changes based on only local
appearance.

Besides local analysis, intrinsic image decomposition
may also be guided by global considerations. In [17], de-
composition is computed in a manner that aims for global
consistency of local inferences with respect to a plausible
3D scene structure and illumination condition. In their case,
scene structure is modeled by uniform-albedo polyhedra,
and illumination is assumed to be diffuse ambient lighting
plus a single distant light source. A related method was
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presented based on patches from training images [8]. Such
a high-level interpretation of the observed image can help
to overcome ambiguities in local cues. However, general-
ization of this approach to real images containing complex
surface geometries and lighting conditions, as well as object
occlusions and cast shadows, is difficult. In [19], general-
ized belief propagation is used to broaden the influence of
local cues to help resolve ambiguous local inferences. Our
work also employs propagation for similar purposes.

In this paper, we introduce a new, non-local cue for in-
trinsic image decomposition. This cue is derived from the
observation that a surface can often be depicted by a small
number of local texture structures, or textons [13]. In other
words, for each point on a surface, there generally exists a
set of other points that share the same neighborhood texture
configuration. Points within such a set can be considered
likely to have the same underlying appearance, and such
groupings of pixels have previously been used to reduce
noise [3] and highlights [18] in images. Our work capi-
talizes on this property for intrinsic image decomposition
by computing a shading-independent image and then iden-
itfying surface points with the same texture configuration as
having the same reflectance value. Relating the reflectance
values among pixels throughout an image provides impor-
tant non-local decomposition constraints that complement
information gained from local analysis.

To demonstrate the benefits of non-local texture con-
straints, we formulate an algorithm that utilizes them in con-
junction with color-based Retinex cues (significant chro-
maticity derivatives indicating reflectance changes, and
other derivatives resulting from shading). We show that de-
composition with the addition of these texture constraints
can considerably outperform decomposition using Retinex
cues alone. Our results also show that global shading and
reflectance structures can be better preserved by employing
this non-local information.

2. Non-Local Texture Analysis
In the intrinsic image literature, an image I is modeled

as a product of a shading image S and a reflectance image
R:

Ix,y = Sx,yRx,y

where x, y are image coordinates. Intrinsic image decom-
position is clearly seen to be ill-posed, since at each pixel
there are two unknowns (S, R) with one known variable (I).
For an image with M pixels, this amounts to 2M unknowns
with only M observations. To solve this problem, different
priors on the solution have been employed [21] [10] [19].
Here, we seek to reduce the number of unknowns before
applying any priors to solve it.

This reduction of unknowns is achieved through an anal-
ysis of texture, the spatial configuration of colors in a local

neighborhood. In our work, texture may be represented by
any model, such as filter responses [14] or textons [13], but
for simplicity we directly represent the texture at a pixel as
a vector of concatenated pixel values from its surrounding
neighborhood. For a pixel p, its texture vector for an N×N
neighborhood can be expressed as

I(p) = (I1,1, I1,2, · · · , IN,N )
= (S1,1R1,1, S1,2R1,2, · · · , SN,NRN,N ).

In a color image, each element in a tex-
ture vector is composed of an rgb triple, i.e.,
Ix,y = (Ix,y(r), Ix,y(g), Ix,y(b)), and Rx,y =
(Rx,y(r), Rx,y(g), Rx,y(b)). Sx,y remains a scalar
that indicates the amount of shading.

To remove the influence of shading on texture, texture
vectors are constructed using intensity-normalized color
values (chromaticity) of pixels, which are used in [9] to dis-
tinguish shading and reflectance changes. These shading-
independent texture vectors are then expressed as

Î(p) =
(
R̂1,1, R̂1,2, · · · , R̂N,N

)

where R̂x,y corresponds to an intensity-normalized re-
flectance, i.e., R̂x,y = Rx,y/‖Rx,y‖ = Ix,y/‖Ix,y‖ = Îx,y .
We note that although the normalized image Î is free of
shading, it is not equivalent to the reflectance image R be-
cause of the missing intensity components.

According to the theory of Markov Random Fields [22],
if the surrounding neighborhoods of two pixels are the
same, the two pixels are expected to have the same value.
This property has been successfully used for texture syn-
thesis [4]. In this work, we employ a similar constraint
by considering two pixels to have identical reflectance if
their intensity-normalized texture vectors are the same. We
group pixels in the input image according to this criterion
to identify pixels that have the same reflectance. This non-
local analysis thus yields intrinsic image constraints among
pixels throughout the image.

Given these non-local texture constraints where Rp1 =
Rp2 = · · · = Rpn for pixels p1, p2, ..., pn within each
group, the number of unknowns for reflectance values Rx,y

drops from M to K, where K is the number of distinct
groups in the input image. As a result, the number of un-
knowns in the intrinsic image decomposition is reduced
from 2M to M + K. It is often the case that K ¿ M
because of the abundant textures found in natural images.
Although the decomposition problem remains ill-posed, the
significant reduction of unknowns generally leads to a more
accurate solution. In particular, the non-locality of these
constraints can help to overcome ambiguities in local infer-
ence, as done in global algorithms [17] [8].



3. Decomposition Algorithm
Our method for intrinsic image decomposition is per-

formed in two steps. We first search the intensity-
normalized (shading-independent) image for pixels embed-
ded within the same texture configuration. These pixels are
grouped together and treated as having the same reflectance.
To account for improper matches that may exist within a
group, we associate with each pixel a soft grouping weight
that reflects the confidence that this pixel indeed has the
same reflectance as others in the group. These non-local
constraints are joined with local Retinex constraints within
an energy formulation to solve for the intrinsic images.

3.1. Soft Grouping

In the grouping process, we examine small (3x3) win-
dows centered on each pixel in the image. Groups are
formed by iteratively selecting an unmatched pixel and find-
ing all matches in the image with a sum of squared dif-
ferences (SSD) less than a specified threshold (0.01 in our
implementation). To promote matching, rotated windows
may be considered in comparing pixels. Our implemen-
tation specifically accounts for rotations of 90o, 180o, and
270o, though additional rotation angles may be included.

Inaccuracies may arise in this threshold-based grouping.
To alleviate the problem caused by incorrect grouping, we
compute a match weight at each pixel, which indicates the
confidence of that pixel sharing the same reflectance as oth-
ers in the group. We consider matches with greater local
support to be more indicative of a proper reflectance match.
For each pixel (x, y), we compare windows of larger sizes
(5x5, 7x7) to its group’s median window of the same size,
where the entries of the median window are computed by
taking the median values among corresponding window en-
tries in the group. The largest matching window size, NxN ,
is recorded for the pixel as mx,y = N . The closeness
of a match, given by the normalized SSD of the original
3x3 match ( 1

9SSD), is also used as evidence of proper re-
flectance grouping. These two factors are jointly used to
determine the grouping weight of each pixel:

wx,y = mx,y ·
(

1− 1
9
SSDx,y

)
.

While this grouping scheme allows us to determine
which pixels in the image have the same reflectance, the re-
flectance color of each group is yet unknown. At this point,
we know only their intensity-normalized colors, and need
to infer the reflectance intensity rk of each group k in order
to compute the intrinsic image decomposition:

Rx,y = R̂x,y · rg(x,y), Sx,y = Ix,y/Rx,y (1)

where g(x, y) indexes the group to which pixel (x, y) be-
longs, and the computation of Sx,y involves element-wise
division.

3.2. Energy Formulation and Minimization

In principle, this texture-based grouping of pixels could
be incorporated as additional constraints within any previ-
ous intrinsic image decomposition algorithm. In this paper,
we introduce these constraints into a Retinex-based method
that is similar to that in [10], for simplicity of optimization.
The effectiveness of our non-local texture cues is tested by
comparing the results of the Retinex algorithm with and
without this texture-based grouping.

We compute intrinsic images by solving for the re-
flectance intensities rk of the K different groups in the
image. In determining these values, we utilize the lo-
cal derivative constraints of color-based Retinex methods,
namely that significant chromaticity differences result from
reflectance changes while other variations are due to shad-
ing. These constraints are combined within an energy func-
tion that we wish to minimize:

arg min
r1,r2,..rK

∑
x,y




(
Ix+1,y

R̂x+1,y · rg(x+1,y)

− Ix,y

R̂x,y · rg(x,y)

)2

+

(
Ix,y+1

R̂x,y+1 · rg(x,y+1)

− Ix,y

R̂x,y · rg(x,y)

)2

+αX
x,y

(
R̂x+1,y · rg(x+1,y) − R̂x,y · rg(x,y)

)2

+ αY
x,y

(
R̂x,y+1 · rg(x,y+1) − R̂x,y · rg(x,y)

)2
]

where

αX
x,y =

{
0.1 if |Îx+1,y − Îx,y| > 0.01
10 otherwise,

αY
x,y =

{
0.1 if |Îx,y+1 − Îx,y| > 0.01
10 otherwise.

The first two terms in this energy function penalize large
shading derivatives, while the last two terms are for re-
flectance derivatives. When there exists a significant change
in intensity-normalized color, the coefficients αX , αY are
set low to allow for large reflectance changes. Otherwise,
they are set high and discourage large reflectance deriva-
tives. A pixel with lower confidence of membership in
its group should have less influence on the solution of the
group’s reflectance intensity. This is achieved from its lower
weight wx,y in the energy function.

To effectively optimize this energy function, we first ex-
press it in a graph structure, where there is a node for each
group, and links between nodes that represent the shading
and reflectance derivative constraints between pixels. Asso-
ciated with each node is the reflectance intensity rk of the



Figure 2. Two pixel groups for the box shown in Figure 1. The
pixels in each group are taken to have the same reflectance. In
our algorithm, matches with less neighborhood support and less
consistency with the group are down-weighted in the energy for-
mulation.

group, which we optimize using tree-reweighted message
passing [11] with the values of rk discretized to 30 levels.
Once the values of rk have been optimized, they are used in
Eq. (1) to obtain the decomposition solution.

4. Results
To demonstrate the benefit of using non-local texture

cues in intrinsic image decomposition, we compare the re-
sults of our algorithm to results obtained without the use
of texture analysis. The method without texture analysis
resembles color-based Retinex algorithms, and was imple-
mented by removing the texture processing from our tech-
nique, essentially making each pixel its own group. All
of the presented examples except for Figure 1 were down-
loaded from Flickr (http://www.flickr.com). Our algorithm
performs well on these images with general illumination
conditions, unknown camera settings and relatively low im-
age quality.

In Figure 1, we present an illustrative example of an ob-
ject with a simple shape. The image contains a rectangular
box with stronger illumination from the right side. This ex-
ample represents a common case where Retinex scene as-
sumptions do not hold, since it contains pixels that have
both shading and reflectance changes, as seen on the fore-
most edge of the box. With conventional Retinex con-
straints, pixels that contain significant reflectance deriva-
tives should be smooth in shading. The result of this is
exhibited in (b) and (c), where the shading is seen to be
approximately even across the box edge, even though it is
actually not. With non-local texture analysis, our method
identifies pixels with the same reflectance on both sides
of the box, as shown in Figure 2. That these pixels must
have the same reflectance provides an important constraint
in computing correct intrinsic images, and allows our algo-
rithm to find the shading discontinuity as shown in (d) and

(e). With this non-local information, our method can re-
cover the global shading and reflectance structure that can-
not easily be inferred using local cues alone.

The second example is a ball of colored string, shown
in Figure 3. This ball exhibits rapid changes in both re-
flectance and shading. At the same time, the global shad-
ing over the ball gradually changes from darker to brighter,
from left to right. Without the texture cue, the recovered
shading image misses much of the global and local shad-
ing structure, as demonstrated in Figure 3 (b), because the
algorithm misinterprets many image gradients as purely re-
flectance changes due to the large color differences. In con-
trast, Figure 3 (d) with the non-local texture cues correctly
captures the gradual shading change across the image, as
well as the local shading variations.

Figure 4 presents a challenging scene. The sky is divided
by the window frame into three regions. In the decomposi-
tion without texture cues, shading and reflectance in each of
these regions are thus computed separately, which results in
estimated reflectances that are inconsistent, as seen in Fig-
ure 4 (c). With non-local texture cues, divided portions of
the sky are grouped together to share the same reflectance
value, which leads to a more consistent decomposition in
Figure 4 (e). The image also contains a blanket that ex-
hibits fine-scale variations in shading and shadows that arise
from the 3D weave pattern. As demonstrated in Figure 4
(b), the Retinex-based algorithm produces very noisy shad-
ing decomposition due to the overlap of many shading and
reflectance edges. In contrast, our method can better deal
with this problem and more accurately recovers the shape
of the blanket surface in Figure 4 (d). This can be seen
more clearly for a closeup of a small blanket region in Fig-
ure 4 (f). In contrast to the purely Retinex-based method,
the inclusion of non-local texture cues can correctly recover
the subtle shading caused by 3D surface textures.

Further results are included in Figures 5 and 6. Figure 5
exemplifies problems with decomposition in very dark re-
gions, e.g., the deep shadow at the lower-right of the image.
In dark regions, the signal-to-noise ratio becomes smaller
in the image, which makes texture-based matching less re-
liable. Even with correct matching, the effects of quantiza-
tion errors in such areas can be magnified and lead to arti-
facts in the reflectance image.

5. Discussion
Although intrinsic image decomposition has long been

recognized as an important problem in computer vision,
this area has seen limited progress due to the severely ill-
posed nature of this problem. In this work, we have intro-
duced a new non-local texture constraint that can signifi-
cantly reduce the number of unknowns to be solved. Our
approach identifies pixels that have the same reflectance,
as inferred from their neighboring image contexts. We test



(a) (b) (c) (d) (e)

Figure 1. Box. (a) Original image. (b)-(c) Shading and reflectance image without the use of texture cues. (d)-(e) Shading and reflectance
image with our non-local texture algorithm.

(a) (b) (c) (d) (e)

Figure 3. Ball of string. (a) Original image. (b)-(c) Shading and reflectance image without the use of texture cues. (d)-(e) Shading and
reflectance image with our non-local texture algorithm.

these non-local texture constraints within the conventional
Retinex framework. By combining the Retinex algorithm
and our non-local texture cue, we obtain a method that relies
less on weak priors such as shading smoothness. We have
demonstrated that the inclusion of these non-local texture
constraints can bring significant improvement in intrinsic
image decomposition, especially in the recovery of global
shading and reflectance structure. In instances where no
texture matches are found within an image, this method be-
comes equivalent to standard Retinex techniques.

Although our experiments have focused on Retinex
methods, non-local texture constraints also have the po-
tential to elevate the performance of other derivative-based
methods, such as those which utilize trained classifiers [2]
[19] [20]. Texture provides decomposition cues different
from those of classifiers, in that it does not attempt to dis-
tinguish between reflectance and shading edges, but rather
seeks pixels that have the same reflectance. In principle, in-
trinsic image information from both texture and classifiers
could be jointly used within a common framework.

In our texture descriptor, the effects of shading are re-
moved by the use of intensity-normalized color values, or
chromaticity. This facilitates texture matching on surfaces
with complex shading patterns, such as those with small-

scale 3D structure. On the other hand, removal of the inten-
sity component reduces the distinctiveness of texture pat-
terns, which can possibly lead to some incorrect matches.
This tradeoff of distinctiveness for shading invariance is a
fundamental issue that affects most chromaticity-based al-
gorithms.

In our method, we have included soft matching based
on window size and match similarity in order to reduce the
impact of incorrect matches on the decomposition solution.
But even with this safeguard, there may nevertheless exist
grouped pixels with large match weights that do not actually
have identical reflectance values. This ambiguity could po-
tentially be reduced by considering the uniqueness or com-
plexity of their texture patterns. A match between pixels
with a more unique or complex texture could be expected
to have a higher likelihood of having the same reflectance,
whereas matches with simple texture (e.g., a single straight
edge) are more susceptible to error. Incorporating such an
indicator of reflectance match confidence could potentially
improve the soft matching weights. Investigation of a suit-
able texture complexity measure is a potential direction for
future work.

While intensity normalization of texture can remove the
effects of shading prior to our matching process, it may not
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(f) (g) (h) (i) (j)

Figure 4. Example with 3D surface texture. (a) Original image. (b)-(c) Shading and reflectance image without the use of texture cues.
(d)-(e) Shading and reflectance image with our non-local texture algorithm. (f) A cropped region from the blanket. (g)-(h) Shading and
reflectance on the cropped region without the use of texture cues. (i)-(j) Shading and reflectance on the cropped region with our non-local
texture algorithm.

(a) (b) (c) (d) (e)

Figure 5. Yarn. (a) Original image. (b)-(c) Shading and reflectance image without the use of texture cues. (d)-(e) Shading and reflectance
image with our non-local texture algorithm.

necessarily eliminate the effects of shadows. In contrast to
shading, shadows may produce a chromaticity shift (instead
of just an intensity shift) in observed colors, due to the ab-
sence of illumination from a particular colored light source.
This chromatic shift in shadows has been modeled in [6] [5]
[7], which have moreover used this information in remov-
ing shadows from images. With the described algorithm,
the chromatic shift can cause problems for decomposition
as seen for the lower-left shadowed area of the blanket in
Figure 4. The red and pink stripes within the shadow are not
matched with those in other areas because of the chromatic
shift, and consequently they are not identified as having the
same reflectance. Additionally, the chromatic shift within
the shadow causes the red and pink stripes to appear similar
in chromaticity, resulting in some reflectance changes be-
ing mistaken for shading changes. In future work, we plan
to examine how chromaticity models for shadows could be
incorporated into our matching procedure to improve han-
dling of shadows from colored illumination.
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