
Automatic registration of aerial imagery with untextured 3D LiDAR models

Min Ding, Kristian Lyngbaek and Avideh Zakhor
University of California, Berkeley

Electrical Engineering and Computer Science Department
{dingm, kristian, avz}@eecs.berkeley.edu

Abstract

A fast 3D model reconstruction methodology is desir-
able in many applications such as urban planning, train-
ing, and simulations. In this paper, we develop an au-
tomated algorithm for texture mapping oblique aerial im-
ages onto a 3D model generated from airborne Light De-
tection and Ranging (LiDAR) data. Our proposed system
consists of two steps. In the first step, we combine van-
ishing points and global positioning system aided inertial
system readings to roughly estimate the extrinsic param-
eters of a calibrated camera. In the second step, we re-
fine the coarse estimate of the first step by applying a se-
ries of processing steps. Specifically, We extract 2D cor-
ners corresponding to orthogonal 3D structural corners as
features from both images and the untextured 3D LiDAR
model. The correspondence between an image and the 3D
model is then performed using Hough transform and gen-
eralized M-estimator sample consensus. The resulting 2D
corner matches are used in Lowe’s algorithm to refine cam-
era parameters obtained earlier. Our system achieves 91%

correct pose recovery rate for 90 images over the downtown
Berkeley area, and overall 61% accuracy rate for 358 im-
ages over the residential, downtown and campus portions
of the city of Berkeley.

1. Introduction
3D models are needed in many applications such as ur-

ban planning, architecture design, telecommunication net-

work design, cartography and virtual fly/drive-through. Due

to their significance and vast potential, fast and automated

model reconstruction has drawn a great deal of attention and

effort from many researchers in the last three decades. How-

ever, most existing approaches lack either accuracy or the

scalability needed for creating textured models of large ur-

ban areas. Even though model geometry can be quickly and

automatically generated from aerial images or Light Detec-

tion and Ranging (LiDAR) data [15], registering imagery

with a 3D model for texture mapping purposes is consider-

ably less automated and more time-consuming; this is due

to lengthy manual correspondence between a 3D model and

images, or computationally intensive automated pose recov-

ery algorithms. For instance, the pose recovery algorithm

proposed by Frueh et al. [6] for texture mapping oblique

aerial imagery onto untextured 3D models takes approxi-

mately 20 hours per image. In this paper, we develop a fast,

automated camera pose recovery algorithm for texture map-

ping oblique aerial imagery onto pre-existing untextured 3D

models obtained via various sensing modalities such as Li-

DAR. We believe that such algorithms are the key to fast,

automated 3D airborne modeling of large scale environ-

ments.

There have been a number of approaches to automated

texture mapping of 3D models. Stomas and Liu have de-

veloped texture mapping for ground based multiview im-

ages [11, 17]. They use vanishing points and rectangular

parallelepipeds on building facades for matching features

between LiDAR data and images in order to identify cam-

era parameters. They further refine the parameters by 3D

point cloud correspondence between the LiDAR data and

the sparse point cloud generated from multiview geometry.

Their algorithm requires multiview imagery, and runs into

difficulties if there are no two pairs of correctly matched

parallelepipeds. They also take advantage of the ground

based image acquisition where clear parallelism and orthog-

onality of building contours are visible with little occlusion.

By contrast in our application, it is desirable to develop an

approach which uses single view, and can handle complex

urban scenes with significant occlusions.

In video based texture mapping, Hsu et al. first use the

tracked features for inter-frame pose prediction, and refine

the pose by aligning the projected 3D model lines to those

in images [8]. Neumann et al. follow a similar idea by

implementing an extended Kalman filter to perform inter-

frame camera parameter tracking using point and line fea-

tures [14]. Both methods can lose track in situations with

large pose prediction error due to occlusions. Zhao et al. in-

stead use iterative closest point algorithm to align the point

cloud from video to that from a range sensor [20]. However,

1

978-1-4244-2243-2/08/$25.00 ©2008 IEEE

Step2: Fine camera pose estimation

Perspective
projection

Step1: Coarse camera pose estimation

GPS and
compass

measurement

Coarse
estimate of

camera
pose

Vertical vanishing point
detection

Non-vertical vanishing points
detection

Aerial
image

Vanishing point detection

LIDAR
data

2D corner detection
from DSM

Aerial
image

2D corner detection
from image

Feature point
correspondence

Hough transform on
rotation angles

Generalized M-estimator
Sample Consensus

(GMSAC)

DSM-image 2D
corner

correspondence

Lowe’s camera pose
recovery algorithm

Fine estimate of
camera pose

pitch and roll
angles

x, y, z and
yaw angle

~ 1000
corners

~ 1000
corners

Generate putative
matches based on corner
descriptor and distance

~ 3000
matches

~ 200
matches

~ 100
matches

pitch and roll angles

Figure 1. Camera registration system overview.

it is computationally expensive to generate 3D point clouds

from a video.

Lee and Nevatia et al. use vanishing points and random

sample consensus (RANSAC) based 3D-2D line pair match

to find single view camera pose [10]. However, they only

deal with ground based images for a single building where

clear parallelism and orthogonality of building contours are

visible with little occlusion. Recently, Hu et al. have created

a system capable of aerial and ground based image map-

ping [9]. However it requires human interactions in many

places such as building contour extraction from aerial im-

ages and manual point correspondence to align aerial im-

ages to LiDAR data.

In this paper, we describe a fast, automated, camera pose

recovery algorithm for texture mapping oblique aerial im-

agery onto 3D geometry models obtained via LiDAR. In do-

ing so, we take advantage of vanishing points and develop a

feature matching technique based on 2D corners associated

with orthogonal 3D structural corners. Our approach is two

order of magnitude more efficient than [4] in that it can re-

cover a camera pose in approximately 3 minutes on today’s

personal computers.

We assume the intrinsic camera parameters such as fo-

cal length to be fixed during the entire data acquisition pro-

cess. Our approach is to tackle the camera registration prob-

lem in two steps as depicted on Fig.1. In the first step, we

obtain coarse camera parameters which are further refined

in the second step. We use the global positioning system

aided inertial system, NAV420CA from Crossbow, to ob-

tain coarse estimate of camera position, and its heading an-

gle. The pitch and roll angles of the camera’s rotation are

then coarsely estimated from the position of the vanishing

point of vertical lines in the 3D space. In the first step, van-

ishing points corresponding to non-vertical lines are also

detected to be used for 2D corner extraction from images in

the second step.

The second step of our proposed approach uses 2D cor-

ners corresponding to orthogonal structural corners in the

3D space as features. For brevity, we refer to these as 2D

orthogonal corners or 2DOCs. 2DOCs are extracted from

a digital surface model (DSM) obtained via LiDAR data

processing [5], as well as from aerial images based on the

orthogonality information implied by the vanishing points

detected earlier. After projecting 2DOCs from the DSM us-

ing the coarse camera parameters obtained in the first step,

putative matches between DSM 2DOCs and image 2DOCs

are generated based on distance and corner descriptors’ sim-

ilarity. We apply Hough transform to screen out majority of

the spurious matches, followed by generalized M-estimator

sample consensus (GMSAC), to identify the correct DSM-

image 2DOC matches. Finally, we apply Lowe’s camera

pose recovery algorithm [12] to the remaining 2DOC pairs

in order to obtain the refined camera parameters for texture

mapping.

The outline of this paper is as follows. Section 2 de-

scribes use of vanishing point and appropriate hardware

readings to arrive at a coarse estimate of extrinsic camera

parameters. Section 3 describes the processing chain for ex-

tracting, matching, and pruning features to refine the coarse

camera pose obtained in Section 2. Section 4 examines the

performance of the proposed system on 358 aerial images

taken over 3.4km2 area in Berkeley. We conclude with fu-

ture directions in Section 5.

Figure 2. Definition of the extrinsic camera parameters.

2. Coarse Camera Parameter Acquisition
A calibrated camera model shown in Fig.2 is first as-

sumed:

λx = [R T]X (1)

where x = [u,v,1]T is the coordinate on the image plane of

X = [xw,yw,zw,1]T in the 3D space after perspective pro-

jection. R is the relative rotation matrix, T is the relative

position matrix from the world coordinate, OW , to the cam-

era coordinate, OC as shown in Fig.2, and λ is a scale factor.

With the yaw (φ), pitch (θ) and roll (ψ) defined in Fig.2, R
is given by:

R =

⎡
⎣

−cψsφ + sψcφcθ cψcφ + sψsφcθ −sψsθ
sψsφ + cψcφcθ −sψcφ + cψsφcθ −cψsθ

−sψcφ −sθsφ −cθ

⎤
⎦

(2)

where c stands for cosine and s stands for sine.

2.1. Vertical vanishing point detection for pitch and
roll estimation

Under the assumption of a pin hole camera projection

shown in Eqn. (1), it can be shown that a set of parallel lines

in a 3D space is projected onto a set of lines intersecting at

a common point on the image plane. This point is referred

as a vanishing point. To obtain a coarse estimate of the

pitch and roll angles of a camera, we use the vertical van-

ishing point corresponding to vertical lines in the 3D mod-

els. The vertical vanishing point is a consistent measure-

ment since no matter how buildings are aligned, their ver-

tical contour lines are almost always parallel to each other.

We find the vertical vanishing point with a method similar

to Gaussian sphere approach [1]. A Gaussian sphere acting

as a memory, is a unit sphere with its origin at Oc, the ori-

gin of the camera coordinate. Each line segment with Oc
forms a plane intersecting the sphere to create a great cir-

cle. These great circles are stored on the Gaussian sphere.

It is assumed that the maximum count on the sphere repre-

sents the direction shared by multiple line segments, and is

a vanishing point. The identified vertical lines on an aerial

image from downtown Berkeley are highlighted in blue in

Fig.3. Given that the vertical lines in the world reference

Figure 3. Extracted line segments are colored according to their

perspective vanishing points. The dark blue lines are the vertical

lines corresponding to the vertical vanishing point and the remain-

ing lines correspond to non-vertical vanishing points.

space are represented as ez = [0,0,1,0]T in homogeneous

coordinates, the vertical vanishing point, vz can be shown to

assume the last column of R based on Eqn. (1); specifically:

λvz = [−sinψsinθ ,−cosψsinθ ,−cosθ]T (3)

From Eqn. (3), the pitch and roll angles and the scale fac-

tor can be easily computed. Together with readings of the

position and heading angle from NAV420CA, we now have

a set of coarse estimates of all the camera parameters to be

used in the second step.

2.2. Non-vertical vanishing point detection

Even though non-vertical vanishing points are not used

for the coarse camera pose estimation, they are useful for

detecting 2DOCs in images as described in Section 3.2.

Our proposed algorithm for extracting non-vertical vanish-

ing points is summarized in Fig.4 and can be described as

follows. 1) Bin all the line segments according to their an-

gles, except the ones corresponding to the vertical vanish-

ing point. 2) Examine all the line segments in a bin with the

highest frequency. Identify a seed vanishing point where

most of the segments in that bin intersect. The location of

the vanishing point is refined by choosing the right singular

vector with the least significant singular value of WL where

W is a weighting square diagonal matrix with its diagonals

as the lengths of the segments, and L stores the co-images 1.

3) Identify more segments passing near the seed vanishing

point in the two adjacent bins. The location of the vanish-

ing point is refined again using segment length weighted

singular value decomposition. 4) Repeat Step 3 by exam-

ining the segments in the next two adjacent bins until the

angle spread across the two farthest bins is above a certain

threshold. 5) Refine the location of the vanishing point by

Levenberg-Marquardt minimization on the sum of the dis-

tances between the selected segments and the closet lines

1Co-image is the cross product of two vectors from the camera origin

to the two endpoints of a segment.

Non-vertical Vanishing Points Detection Algorithm

Enough
segments are

left

No, terminate

Yes

Bin line segments according to their angles

0

-90 45 900

10

20

F
 r e

 q
u e

 n
c y

Choose the bin with maximum frequency. Search for a
seed vanishing point where most of the segments in this
bin intersect. Refine the position of the vanishing point by
segment length weighted singular value decomposition
(SVD) on the stacked segment co-image matrix.

Identify segments crossing the seed vanishing point
from the two adjacent bins and update the location with
SVD again. Iterate this process till the angle spread
among bins is above a certain threshold.

Refine the position of the vanishing point by
Levenberg-Marquardt algorithm.

Eliminate all the identified segments and
record the vanishing point.

-45
Angles (degree)

0

-90 -45 45 900

10

20

Angles (degree)

F
 r e

 q u
 e

 n c
 y

0

10

20

Angles (degree)

F
 r e

 q
u e

 n c
 y

0-90 -45 45 90

Figure 4. Non-vertical vanishing point detection algorithm flow

chart.

passing through the vanishing point [7]. Remove all the se-

lected segments and go back to Step 1 if there are enough

number of segments left. The non-vertical vanishing lines

obtained using this algorithm for the same sample image are

shown in Fig. 3.

Since most existing techniques aim to find intersections

among as many line segments as possible in an image, they

fail in complex urban settings with many buildings whose

alignments are not necessarily parallel [16]. This results in

the intersections in the 3D space to be falsely classified as

vanishing points. Our proposed algorithm overcomes this

problem in several ways. First, we initialize the seed van-

ishing point in a bin where all the segments share similar

angles. This avoids choosing a seed vanishing point which

is an actual intersection in the 3D space. This preference is

also reinforced by only considering segments whose slope

angle difference is less than the angle spread threshold. We

also use a segment length weighted singular value decom-

position to favor longer segments since they bear less uncer-

tainty in their orientation. Finally, since the identified seg-

ments are eliminated after each iteration, the convergence

of the algorithm is guaranteed without a priori knowledge

on the number of the vanishing points.

3. Camera parameter refinement
In this section, the set of coarse camera parameters ob-

tained in ths first step is refined to achieve sufficient ac-

curacy for texture mapping purposes. We employ corre-

spondence based on 2DOC features during this process. In

our application, 2DOCs correspond to orthogonal structural

corners where two orthogonal building contour lines inter-

sect. These corners are unique to urban environments, and

are limited in number. It might be intuitively appealing to

use true 3D corners where three orthogonal lines intersect.

However we have empirically found that it is difficult to

identify sufficient number of 3D corners from images given

the non-ideal line segment extraction. Therefore, we have

opted to relax our constraint of three mutually orthogonal

line segments to two. Naturally this leads to many more

false structural corners extracted from images. In the re-

mainder of the paper, we show that these false corners can

be eliminated by feature descriptors, Hough transform and

GMSAC. Specifically, we show that the price paid by using

2DOC is well compensated by greater number of correct

structural corners from images.

3.1. 2DOC extraction from DSM

DSM is a depth map representation of a 3D model which

we assume to have been obtained from LiDAR data. To

extract 2DOCs from DSM, building contours are extracted

from a DSM with a region growing approach based on

thresholding on height differences [5]. Due to the limited

resolution of LiDAR data and inevitable noise, the con-

tours tend to be jittery. To straighten jittery edges, we use

Douglas-Peucker (DP) line simplification algorithm [3] for

its intrinsic ability to preserve the position of 2DOCs since

structural corners tend to correspond to the extreme vertices

in a contour. Once the outer contour of each region is sim-

plified, a simple thresholding is performed on the lengths of

the two intersecting line segments and the intersection an-

gle to identify 2DOCs. The 2DOCs are then projected back

onto the image plane with the coarse camera parameters in

the first step. The identified 2DOCs from the DSM corre-

sponding to the previous sample image are shown on Fig.5

with 1548 corners in total.

3.2. 2DOC extraction from aerial images

Since vanishing points represent directions of the corre-

sponding groups of line segments in a 3D space, the orthog-

onality between each pair of vanishing points also implies

the orthogonality between the two groups of line segments

even though they might not appear to be orthogonal in im-

ages. The endpoints of line segments belonging to orthogo-

nal vanishing point pairs are examined to identify potential

2DOC candidates based on proximity. The resulting cor-

ners extracted from the sample image using this procedure

50 100 150 200 250 300

Figure 5. 2DOCs extracted from a DSM: red * denote the 2DOCs

and green lines denote the two corresponding orthogonal lines.

Figure 6. 2DOCs extracted from an aerial image: red * denote the

2DOCs and green lines denote the two corresponding orthogonal

lines.

are shown in Fig.6 with 1099 corners in total.

3.3. 2DOC putative match generation

For every 2DOC, we define a feature descriptor consist-

ing of the two intersecting lines’ angles ([θ1,θ2]T) with re-

spect to u axis in the image plane. This descriptor is used

to generate 2DOC putative matches based on thresholding

on proximity and descriptors’ similarity. For descriptors’

similarity, we opt to use Mahalanobis distance:

d(xd ,xi) =
√

([θ d
1 ,θ d

2]− [θ i
1,θ

i
2])Σ−1([θ d

1 ,θ d
2]− [θ i

1,θ
i
2])T

(4)

where Σ is a covariance matrix corresponding to angular

measurement error. In our formulation, we allow for a DSM

2DOC to have multiple image 2DOC matches. This re-

duces the possibility of missing correct matches since the

shortest Mahalanobis distance might not necessarily indi-

cate the correct match due to noise and intrinsic discrepan-

cies between the two heterogenous data sources. This effect

is more pronounced for repetitive structures such as Man-

hattan grid-structured urban environments with most of the

buildings and their structural corners sharing similar orien-

tations.

Figure 7. 264 putative matches after the Hough transform: blue in-

tersections denote image 2DOCs, green intersections denote pro-

jected DSM 2DOCs, and red lines indicate the correspondence be-

tween them.

3.4. Hough transform based on rotation

A large number of, not necessarily correct, putative

matches are typically generated from the previous step. For

instance, there are 3750 putative matches between 2DOCs

in Figures 5 and 6. It is necessary to obtain four correct in-

liers simultaneously in order to fit a Homography matrix re-

sulting in a large number of required iterations in GMSAC.

Specifically, let pinliers be the ratio of the inliers among all

the putative matches, and pcon f be the desired confidence

level; then the required number of iterations in GMSAC is

log(1− pcon f)/log(1− p4
inliers) [7]. With fewer than 150

correct matches found manually out of the 3750 in our sam-

ple image, the number of required iterations is nearly 3 mil-

lion for 99% confidence level. We assume Homography be-

cause the camera position error which is less than 3 meters

from the GPS device is sufficiently small compared to the

distance between the camera and the buildings on an im-

age which is larger than 300 meters. Thus, the difference

between the projected DSM 2DOCs and the corresponding

image 2DOCs can be considered to be purely due to the

camera rotation. We apply Hough transform to identify the

rotation with the maximum consensus among the putative

matches within which significant number of outliers may

exist. Matches that do not satisfy this rotation constraint

are then eliminated resulting in significantly fewer putative

matches and hence fewer required number of iterations for

a specific level of confidence. For instance, this results in

only 264 matches out of the 3750 matches on the sample

image shown in Fig. 7.

3.5. GMSAC based correct matches identification

We use GMSAC, a combination of generalized

RANSAC [19] and M-estimator Sample Consensus

(MSAC) [18], in order to further prune 2D corner matches.

We use Generalized RANSAC to accommodate matches be-

tween a DSM 2DOC and multiple image 2DOCs. MSAC is

used for its soft decision, which updates according to the

overall fitting cost and allows for continuous Homographic

Generalized M-estimator Sample Consensus (GMSAC)

Uniformly sample
 an image 2D corner
 in each group

Xd
1 Xi

a

Xd
2 Xi

b

Xd
5 Xi

g

Xd
7 Xi

z

Uniformly sample 4 groups of
DSM-image 2D corner matches

Xd
1 Xi

a Xi
b Xi

c Xi
d

Xd
2 Xi

a Xi
b Xi

d

Xd
5 Xi

g

Xd
7 Xi

p Xi
z

Fit a Homography matrix from
the four pairs of correspondence

Determine whether there
are three collinear points

Compute the cost of Homography
fitting for all pairs and find inliers

Cost of each pair is
MIN(match error, error threshold)

Below the
currently

optimal cost

No

Yes

Update inliers
percentage and compute
the number of required

iterations

Reach the
number of

required iterations

Yes

No

Terminate
iterations

and output
inliers

No

Yes

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Figure 8. Block diagram for GMSAC algorithm.

model improvement. The details of GMSAC are presented

as a block diagram in Fig.8 and can be describes as follows.

1) Uniformly sample four groups of DSM-image 2DOC

matches. 2) Inside each group, uniformly sample an im-

age 2DOC. 3) Determine whether there are three collinear

points, a degenerative case for Homography fitting. If so, go

to Step 1. Otherwise, move on to Step 4. 4) With four pairs

of DSM-image 2DOC matches, a 3× 3 Homography ma-

trix, H, is fitted with the least squared error [13]. 5) Every

pair of DSM-image 2DOC match in every group is then ex-

amined with the computed Homography matrix from Step

4. Inliers are identified if their squared deviation distances

are below a given error tolerance threshold. The cost as-

sociated with each match is the minimum of the squared

deviation distance, and the error tolerance threshold. 6) If

the sum of the costs is below the current minimum cost,

pinliers is updated and the number of required iterations to

achieve the desired confidence level is recomputed. Oth-

erwise, another iteration is performed starting from Step 1.

7) Terminate the algorithm and output 2DOC match inliers

if it has reached the required iteration number. Applying

GMSAC to our sample image results in 134 matches as

shown in Fig.9, which upon manual examination are veri-

fied to be correct. Due to the significantly higher pinliers ob-

tained from Hough transform in the previous step, we obtain

these 134 matches with fewer than 100 iterations in contrast

with 3 million iterations needed without pruning via Hough

transform.

Finally we apply Lowe’s camera pose recovery algo-

rithm [12] to all the identified corner correspondence pairs

Figure 9. 134 correct DSM-image matches after GMSAC: blue in-

tersections denote image 2DOCs, green intersections denote pro-

jected DSM 2DOCs, and red lines indicate the correspondence be-

tween them.

from GMSAC to obtain a more accurate set of camera pa-

rameters. Texture mapping from images to the 3D model is

then performed according to [4].

4. Results
Our proposed system is tested with 358 aerial images

taken during a 42-minutes helicopter flight over a 1.3km by

2.6km area in the city of Berkeley, California. The coverage

area is divided into three regions with different characteris-

tics. The first region is the downtown district, where large

buildings are densely packed among few trees. The sec-

ond region is Berkeley campus where large buildings are

sparsely distributed among dense trees and vegetation. The

rest of the area is grouped as residential where much smaller

houses are densely packed among dense trees.

The correctness of the recovered camera pose is vali-

dated visually by examining the quality of fit between the

projected DSM lines to the building contours in an im-

age. When two sets of lines align sufficiently close to each

other, the recovered pose is deemed to be correct for texture

mapping. We have created several textured 3D models us-

ing recovered camera poses which have been visually vali-

dated. Fig.10 shows several screen shots of such 3D models

for downtown, campus and residential models. The result-

ing textured 3D models can also be interactively viewed at

http://www-video.eecs.berkeley.edu/ avz/aironly.htm. Each

model corresponding to approximately 0.1km2 is textured

with 9 images for the downtown and campus, and 8 images

for the residential area. The texture alignment in Fig.10

shows that the poses rated as correct are indeed sufficiently

accurate to result in visually pleasing texture mapped mod-

els. This visual evaluation has been further verified objec-

tively by comparing the camera poses with the ones derived

from manual correspondence [2].

In situations where the pose is visually confirmed not to

be sufficiently accurate, we have investigated the source of

error by examining the extracted 2DOCs from both the im-

age and the DSM. The sources of error can be classified

(a)

(b)

(c)

Figure 10. Screen shots of the texture mapped models from aerial

images with the camera poses estimated using the approach in this

paper: (a)downtown; (b) campus; (c) residential area

into (a) too few 2DOCs matches and (b) dominant incorrect

pose. Clearly, our system has no chance of finding the right

camera pose when there are too few correct 2DOC matches.

This happens when not enough true 2DOCs are extracted ei-

ther from the image, or from the DSM, or both. By ”true”

2DOCs, we mean those corresponding to actual intersec-

tions of two orthogonal building structure lines. Even with

sufficient number of correct 2DOC matches, it is possible

that some combination of 2DOC matches accidentally yield

a random camera pose with a small fitting error. This is re-

lated to the ill conditioned nature of camera pose recovery

problem. Both the Hough transform and GMSAC are based

on the assumption that the pose with maximum consensus is

the true camera pose. This assumption tends to break down

when pinliers is significantly small.

Table 1 shows the correct camera pose recovery rate for

our proposed approach, for downtown, campus and residen-

tial regions. Also shown are the associated reasons for in-

correct pose estimates in each region. As seen, our algo-

Incorrect reason

Region Correct a b % correct

Downtown 82 0 8 91

Campus 57 37 18 51

Residential 78 51 27 50

Total 217 88 53 61

Table 1. Correct pose recovery rate and sources of error in the

proposed system for different regions. Incorrect reason a has to

do with too few 2DOC matches; incorrect reason b has to do with

dominant incorrect pose.

rithm achieves 91% correct recovery rate in the downtown

region. In the remaining regions, it faces fundamental dif-

ficulties as suggested by the significantly lower recovery

rates. By examining this regional performance difference,

a major trade-off on the system performance is revealed.

As stated earlier, one reason for camera pose recovery fail-

ure is that not enough true 2DOC matches are available.

Even though it is possible to extract more 2DOCs by re-

laxing certain processing parameters such as minimum line

length threshold, this could potentially lead to additional

false 2DOCs, resulting in a decrease in pinliers. This in turn

would result in erroneous pose due to dominant incorrect

2DOC matches.

Let us now examine each of the three regions separately.

In the downtown region, 2DOCs from both the DSM and

the images are accurately extracted since the line extraction

from the image and contour simplification from the DSM

are both straightforward; furthermore, orthogonal structural

corners are abundant due to both large and simple rigid

building shapes. As such, there are plenty of correct 2DOC

matches. In fact, erroneous camera pose for the 8 images

in downtown is entirely due to too many incorrect 2DOC

matches, leading to a low percentage of inliers, pinliers.

The analysis on campus and residential areas reveals two

fundamental difficulties in extracting true 2DOCs from a

DSM. First has to do with the building density in a re-

gion. This effect is clearly observed by comparing the re-

sults from the downtown and campus areas. Both areas are

characterized by large buildings; however, the building den-

sity is dramatically lower in campus than in downtown. For

instance, some of the aerial images of the campus only con-

tain a portion of a given building since the buildings tend

to be larger than the ones in the downtown, and are further

spread apart. Even if one or two buildings are present in an

image, we might not be able to obtain enough 2DOCs due

to imperfect contour simplification and complex building

structures on the campus. Furthermore, this small number

of 2DOC matches often does not provide enough constraint

on Lowe’s pose recovery algorithm. Since our algorithm

requires a large number of 2DOCs for robustness and accu-

racy, it performs poorly in open fields where buildings are

sparsely distributed.

Residential area has a similar building density to down-

town. The performance however is much worse due to lack

of true 2DOCs from the DSM. This is because the trees

near houses are included as part of buildings after region

segmentation, and the resulting region contours have many

more sides than the ones from the buildings themselves

without the trees. It is thus very difficult to extract true

2DOCs from these irregular shaped contours. At the same

time, a large number of false 2DOCs have been included

because of the trees. This effect is less severe in the campus

model where the buildings are large enough that relatively

small distortions on the contour due to tree occlusions can

be removed by DP algorithm.

5. Conclusion and future direction
We have described an algorithm for registering oblique

aerial imagery to 3D geometry model obtained from Li-

DAR, and demonstrated its performance over downtown,

campus and residential areas of Berkeley using 358 images.

Across all three regions, the proposed system achieves 61%

correct camera pose recovery rate. In particular, its recov-

ery rate in downtown district is 91%. At the same time, this

system is computationally efficient. Specifically, the aver-

age processing time of 191 seconds per image with Intel

Xeon 2.8GHz processor is significantly shorter as compared

to over 20 hours of the exhaustive search per image reported

in [4].

Future research should address the low building den-

sity and tree occlusion problems. Line matching between a

DSM and images can potentially be simple and effective for

the campus region since most of the long line segments are

from buildings, and occlusion between buildings is insignif-

icant. A parameterized roof region fitting could potentially

be beneficial to both tree removal and 2DOC extraction in

the residential area.

6. Acknowledgement
This research was supported by Army Research Office

contract on Heterogeneous Sensor Webs for Automated Tar-

get Recognition and Tracking in Urban Terrain (W911NF-

06-1-0076).

References
[1] S. Barnard. Interpreting perspective images. Artificial Intel-

ligence, 21:435–462, 1983.

[2] M. Ding. Automated texture mapping in a 3d city model.
Master’s thesis, University of California at Berkeley, Dec.
2007.

[3] D. H. Douglas and T. K. Peucker. Algorithms for the re-
duction of the number of points required to represent a digi-
tized line or its caricature. Cartographica: The International
Journal for Geographic Information and Geovisualization,
10:112–122, oct 1973.

[4] C. Frueh, R. Sammon, and A. Zakhor. Automated texture
mapping of 3d city models with oblique aerial imagery. In In
Proceedings of the 2nd International Symposium on 3D data
processing, visualization and transmission, pages 396–403,
Sept. 2004.

[5] C. Fruh and A. Zakhor. Constructing 3d city models by
merging aerial and ground views. IEEE Comput. Graph.
Appl., 23(6):52–61, Nov-Dec 2003.

[6] C. Fruh and A. Zakhor. An automated method for large-
scale, ground-based city model acquisition. International
Journal of Computer Vision, 60(1):5–24, Oct. 2004.

[7] R. I. Hartley and A. Zisserman. Multiple View Geometry
in Computer Vision. Cambridge University Press, ISBN:
0521540518, second edition, 2004.

[8] S. Hsu, S. Samarasekera, R. Kumar, and H. S. Sawhney. Pose
estimation, model refinement and enhanced visualization us-
ing video. In CVPR ’00: Proceedings of the 2000 IEEE Com-
puter Society Conference on Computer Vision and Pattern
Recognition, pages 488–495, July 2000.

[9] J. Hu, S. You, and U. Neumann. Automatic pose recovery for
high-quality textures generation. In 18th International Con-
ference on Pattern Recognition, pages 561–565, Aug. 2006.

[10] S. C. Lee, S. K. Jung, and R. Nevatia. Automatic integration
of facade textures into 3d building models with a projective
geometry based line clustering.

[11] L. Liu, I. Stamos, G. Yu, G. Wolberg, and S. Zokai. Mul-
tiview geometry for texture mapping 2d images onto 3d
range data. In CVPR ’06: Proceedings of the 2006 IEEE
Computer Society Conference on Computer Vision and Pat-
tern Recognition, pages 2293–2300, Washington, DC, USA,
2006. IEEE Computer Society.

[12] D. G. Lowe. Three-dimensional object recognition from
single two-dimensional images. Artificial Intelligence,
31(3):355–395, 1987.

[13] Y. Ma, S. Soatto, J. Kasecka, and S. S. Sastry. An Invitation
to 3-D Vision From Images to Geometric Models. Springer,
New York, 2004.

[14] U. Neumann, S. You, J. Hu, B. Jiang, and J. Lee. Augmented
virtual environments (ave): Dynamic fusion of imagery and
3d models. In VR ’03: Proceedings of the IEEE Virtual Real-
ity 2003, page 61, Washington, DC, USA, 2003. IEEE Com-
puter Society.

[15] J. A. Shufelt. Performance evaluation and analysis of monoc-
ular building extraction from aerial imagery. IEEE Trans.
Pattern Anal. Mach. Intell., 21(4):311–326, 1999.

[16] J. A. Shufelt. Performance evaluation and analysis of vanish-
ing point detection. IEEE Trans. Pattern Anal. Mach. Intell.,
21(3):282–288, Mar. 1999.

[17] I. Stamos and P. K. Allen. Geometry and texture recov-
ery of scenes of large scale. Comput. Vis. Image Underst.,
88(2):94–118, 2002.

[18] P. H. S. Torr and A. Zisserman. Mlesac: a new robust estima-
tor with application to estimating image geometry. Comput.
Vis. Image Underst., 78(1):138–156, 2000.

[19] W. Zhang and J. Kosecka. Generalized ransac framework
for relaxed correspondence problems. In International Sym-
posium on 3D Data Processing, Visualization and Transmis-
sion, 2006.

[20] W. Zhao, D. Nister, and S. Hsu. Alignment of continuous
video onto 3d point clouds. IEEE Trans. Pattern Anal. Mach.
Intell., 27(8):1305–1318, 2005.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AbadiMT-CondensedLight
 /ACaslon-Italic
 /ACaslon-Regular
 /ACaslon-Semibold
 /ACaslon-SemiboldItalic
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /AGaramond-Bold
 /AGaramond-BoldItalic
 /AGaramond-Italic
 /AGaramond-Regular
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /AgencyFB-Bold
 /AgencyFB-Reg
 /AGOldFace-Outline
 /AharoniBold
 /Algerian
 /Americana
 /Americana-ExtraBold
 /AndaleMono
 /AndaleMonoIPA
 /AngsanaNew
 /AngsanaNew-Bold
 /AngsanaNew-BoldItalic
 /AngsanaNew-Italic
 /AngsanaUPC
 /AngsanaUPC-Bold
 /AngsanaUPC-BoldItalic
 /AngsanaUPC-Italic
 /Anna
 /ArialAlternative
 /ArialAlternativeSymbol
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialMT-Black
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /ArrusBT-Bold
 /ArrusBT-BoldItalic
 /ArrusBT-Italic
 /ArrusBT-Roman
 /AvantGarde-Book
 /AvantGarde-BookOblique
 /AvantGarde-Demi
 /AvantGarde-DemiOblique
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /BakerSignet
 /BankGothicBT-Medium
 /Barmeno-Bold
 /Barmeno-ExtraBold
 /Barmeno-Medium
 /Barmeno-Regular
 /Baskerville
 /BaskervilleBE-Italic
 /BaskervilleBE-Medium
 /BaskervilleBE-MediumItalic
 /BaskervilleBE-Regular
 /Baskerville-Bold
 /Baskerville-BoldItalic
 /Baskerville-Italic
 /BaskOldFace
 /Batang
 /BatangChe
 /Bauhaus93
 /BCCYR
 /BCCYRBold
 /BCSYMA
 /BCSYMABold
 /BCSYMB
 /BCSYMBBold
 /BCSYMX
 /BCSYMXBold
 /Bellevue
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlingAntiqua-Bold
 /BerlingAntiqua-BoldItalic
 /BerlingAntiqua-Italic
 /BerlingAntiqua-Roman
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BernhardModernBT-Italic
 /BernhardModernBT-Roman
 /BiffoMT
 /BinnerD
 /BinnerGothic
 /BlackadderITC-Regular
 /Blackoak
 /blex
 /blsy
 /Bodoni
 /Bodoni-Bold
 /Bodoni-BoldItalic
 /Bodoni-Italic
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /Bodoni-Poster
 /Bodoni-PosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /Bookman-Demi
 /Bookman-DemiItalic
 /Bookman-Light
 /Bookman-LightItalic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolOne-Regular
 /BookshelfSymbolSeven
 /BookshelfSymbolThree-Regular
 /BookshelfSymbolTwo-Regular
 /Botanical
 /Boton-Italic
 /Boton-Medium
 /Boton-MediumItalic
 /Boton-Regular
 /Boulevard
 /BradleyHandITC
 /Braggadocio
 /BritannicBold
 /Broadway
 /BrowalliaNew
 /BrowalliaNew-Bold
 /BrowalliaNew-BoldItalic
 /BrowalliaNew-Italic
 /BrowalliaUPC
 /BrowalliaUPC-Bold
 /BrowalliaUPC-BoldItalic
 /BrowalliaUPC-Italic
 /BrushScript
 /BrushScriptMT
 /CaflischScript-Bold
 /CaflischScript-Regular
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /Carta
 /CaslonOpenfaceBT-Regular
 /Castellar
 /CastellarMT
 /Centaur
 /Centaur-Italic
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchL-Bold
 /CenturySchL-BoldItal
 /CenturySchL-Ital
 /CenturySchL-Roma
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /CGTimes-Bold
 /CGTimes-BoldItalic
 /CGTimes-Italic
 /CGTimes-Regular
 /CharterBT-Bold
 /CharterBT-BoldItalic
 /CharterBT-Italic
 /CharterBT-Roman
 /CheltenhamITCbyBT-Bold
 /CheltenhamITCbyBT-BoldItalic
 /CheltenhamITCbyBT-Book
 /CheltenhamITCbyBT-BookItalic
 /Chiller-Regular
 /CMB10
 /Cmb10
 /CMBSY10
 /Cmbsy10
 /CMBSY5
 /CMBSY6
 /CMBSY7
 /CMBSY8
 /CMBSY9
 /CMBX10
 /Cmbx10
 /CMBX12
 /Cmbx12
 /CMBX5
 /Cmbx5
 /CMBX6
 /Cmbx6
 /CMBX7
 /Cmbx7
 /CMBX8
 /Cmbx8
 /CMBX9
 /Cmbx9
 /CMBXSL10
 /Cmbxsl10
 /CMBXTI10
 /Cmbxti10
 /CMCSC10
 /Cmcsc10
 /CMCSC8
 /Cmcsc8
 /CMCSC9
 /Cmcsc9
 /CMDUNH10
 /Cmdunh10
 /CMEX10
 /Cmex10
 /CMEX7
 /CMEX8
 /CMEX9
 /CMFF10
 /Cmff10
 /CMFI10
 /Cmfi10
 /CMFIB8
 /Cmfib8
 /CMINCH
 /Cminch
 /CMITT10
 /Cmitt10
 /CMMI10
 /Cmmi10
 /CMMI12
 /Cmmi12
 /CMMI5
 /Cmmi5
 /CMMI6
 /Cmmi6
 /CMMI7
 /Cmmi7
 /CMMI8
 /Cmmi8
 /CMMI9
 /Cmmi9
 /CMMIB10
 /Cmmib10
 /CMMIB5
 /CMMIB6
 /CMMIB7
 /CMMIB8
 /CMMIB9
 /CMR10
 /Cmr10
 /CMR12
 /Cmr12
 /CMR17
 /Cmr17
 /CMR5
 /Cmr5
 /CMR6
 /Cmr6
 /CMR7
 /Cmr7
 /CMR8
 /Cmr8
 /CMR9
 /Cmr9
 /CMSL10
 /Cmsl10
 /CMSL12
 /Cmsl12
 /CMSL8
 /Cmsl8
 /CMSL9
 /Cmsl9
 /CMSLTT10
 /Cmsltt10
 /CMSS10
 /Cmss10
 /CMSS12
 /Cmss12
 /CMSS17
 /Cmss17
 /CMSS8
 /Cmss8
 /CMSS9
 /Cmss9
 /CMSSBX10
 /Cmssbx10
 /CMSSDC10
 /Cmssdc10
 /CMSSI10
 /Cmssi10
 /CMSSI12
 /Cmssi12
 /CMSSI17
 /Cmssi17
 /CMSSI8
 /Cmssi8
 /CMSSI9
 /Cmssi9
 /CMSSQ8
 /Cmssq8
 /CMSSQI8
 /Cmssqi8
 /CMSY10
 /Cmsy10
 /CMSY5
 /Cmsy5
 /CMSY6
 /Cmsy6
 /CMSY7
 /Cmsy7
 /CMSY8
 /Cmsy8
 /CMSY9
 /Cmsy9
 /CMTCSC10
 /Cmtcsc10
 /CMTEX10
 /Cmtex10
 /CMTEX8
 /Cmtex8
 /CMTEX9
 /Cmtex9
 /CMTI10
 /Cmti10
 /CMTI12
 /Cmti12
 /CMTI7
 /Cmti7
 /CMTI8
 /Cmti8
 /CMTI9
 /Cmti9
 /CMTT10
 /Cmtt10
 /CMTT12
 /Cmtt12
 /CMTT8
 /Cmtt8
 /CMTT9
 /Cmtt9
 /CMU10
 /Cmu10
 /CMVTT10
 /Cmvtt10
 /ColonnaMT
 /Colossalis-Bold
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Copperplate-ThirtyThreeBC
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CordiaNew
 /CordiaNew-Bold
 /CordiaNew-BoldItalic
 /CordiaNew-Italic
 /CordiaUPC
 /CordiaUPC-Bold
 /CordiaUPC-BoldItalic
 /CordiaUPC-Italic
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /CourierX-Bold
 /CourierX-BoldOblique
 /CourierX-Oblique
 /CourierX-Regular
 /CreepyRegular
 /CurlzMT
 /David-Bold
 /David-Reg
 /DavidTransparent
 /Dcb10
 /Dcbx10
 /Dcbxsl10
 /Dcbxti10
 /Dccsc10
 /Dcitt10
 /Dcr10
 /Dcsl10
 /Dcsltt10
 /Dcss10
 /Dcssbx10
 /Dcssi10
 /Dctcsc10
 /Dcti10
 /Dctt10
 /Dcu10
 /Desdemona
 /DilleniaUPC
 /DilleniaUPCBold
 /DilleniaUPCBoldItalic
 /DilleniaUPCItalic
 /Dingbats
 /DomCasual
 /Dotum
 /DotumChe
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversGothicBT-Regular
 /EngraversMT
 /EraserDust
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /ErieBlackPSMT
 /ErieLightPSMT
 /EriePSMT
 /EstrangeloEdessa
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /EucrosiaUPC
 /EucrosiaUPCBold
 /EucrosiaUPCBoldItalic
 /EucrosiaUPCItalic
 /EUEX10
 /Euex10
 /EUEX7
 /EUEX8
 /EUEX9
 /EUFB10
 /Eufb10
 /EUFB5
 /Eufb5
 /EUFB7
 /Eufb7
 /EUFM10
 /Eufm10
 /EUFM5
 /Eufm5
 /EUFM7
 /Eufm7
 /EURB10
 /Eurb10
 /EURB5
 /Eurb5
 /EURB7
 /Eurb7
 /EURM10
 /Eurm10
 /EURM5
 /Eurm5
 /EURM7
 /Eurm7
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /EuroSig
 /EUSB10
 /Eusb10
 /EUSB5
 /Eusb5
 /EUSB7
 /Eusb7
 /EUSM10
 /Eusm10
 /EUSM5
 /Eusm5
 /EUSM7
 /Eusm7
 /FelixTitlingMT
 /Fences
 /FencesPlain
 /FigaroMT
 /FixedMiriamTransparent
 /FootlightMTLight
 /Formata-Italic
 /Formata-Medium
 /Formata-MediumItalic
 /Formata-Regular
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothicITCbyBT-Book
 /FranklinGothicITCbyBT-BookItal
 /FranklinGothicITCbyBT-Demi
 /FranklinGothicITCbyBT-DemiItal
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FrankRuehl
 /FreesiaUPC
 /FreesiaUPCBold
 /FreesiaUPCBoldItalic
 /FreesiaUPCItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Frutiger-Black
 /Frutiger-BlackCn
 /Frutiger-BlackItalic
 /Frutiger-Bold
 /Frutiger-BoldCn
 /Frutiger-BoldItalic
 /Frutiger-Cn
 /Frutiger-ExtraBlackCn
 /Frutiger-Italic
 /Frutiger-Light
 /Frutiger-LightCn
 /Frutiger-LightItalic
 /Frutiger-Roman
 /Frutiger-UltraBlack
 /Futura-Bold
 /Futura-BoldOblique
 /Futura-Book
 /Futura-BookOblique
 /FuturaBT-Bold
 /FuturaBT-BoldItalic
 /FuturaBT-Book
 /FuturaBT-BookItalic
 /FuturaBT-Medium
 /FuturaBT-MediumItalic
 /Futura-Light
 /Futura-LightOblique
 /GalliardITCbyBT-Bold
 /GalliardITCbyBT-BoldItalic
 /GalliardITCbyBT-Italic
 /GalliardITCbyBT-Roman
 /Garamond
 /Garamond-Bold
 /Garamond-BoldCondensed
 /Garamond-BoldCondensedItalic
 /Garamond-BoldItalic
 /Garamond-BookCondensed
 /Garamond-BookCondensedItalic
 /Garamond-Italic
 /Garamond-LightCondensed
 /Garamond-LightCondensedItalic
 /Gautami
 /GeometricSlab703BT-Light
 /GeometricSlab703BT-LightItalic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /GeorgiaRef
 /Giddyup
 /Giddyup-Thangs
 /Gigi-Regular
 /GillSans
 /GillSans-Bold
 /GillSans-BoldItalic
 /GillSans-Condensed
 /GillSans-CondensedBold
 /GillSans-Italic
 /GillSans-Light
 /GillSans-LightItalic
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /Gothic-Thirteen
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /GoudyTextMT-LombardicCapitals
 /GSIDefaultSymbols
 /Gulim
 /GulimChe
 /Gungsuh
 /GungsuhChe
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /Helvetica
 /Helvetica-Black
 /Helvetica-BlackOblique
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Condensed
 /Helvetica-Condensed-Black
 /Helvetica-Condensed-BlackObl
 /Helvetica-Condensed-Bold
 /Helvetica-Condensed-BoldObl
 /Helvetica-Condensed-Light
 /Helvetica-Condensed-LightObl
 /Helvetica-Condensed-Oblique
 /Helvetica-Fraction
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Humanist521BT-BoldCondensed
 /Humanist521BT-Light
 /Humanist521BT-LightItalic
 /Humanist521BT-RomanCondensed
 /HYSMyeongJoStd-Medium-Acro
 /Imago-ExtraBold
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /IrisUPC
 /IrisUPCBold
 /IrisUPCBoldItalic
 /IrisUPCItalic
 /Ironwood
 /ItcEras-Medium
 /ItcKabel-Bold
 /ItcKabel-Book
 /ItcKabel-Demi
 /ItcKabel-Medium
 /ItcKabel-Ultra
 /JasmineUPC
 /JasmineUPC-Bold
 /JasmineUPC-BoldItalic
 /JasmineUPC-Italic
 /JoannaMT
 /JoannaMT-Italic
 /Jokerman-Regular
 /JuiceITC-Regular
 /Kartika
 /Kaufmann
 /KaufmannBT-Bold
 /KaufmannBT-Regular
 /KidTYPEPaint
 /KinoMT
 /KodchiangUPC
 /KodchiangUPC-Bold
 /KodchiangUPC-BoldItalic
 /KodchiangUPC-Italic
 /KorinnaITCbyBT-Regular
 /KozGoProVI-Medium
 /KozMinPro-Regular-Acro
 /KozMinProVI-Regular
 /KristenITC-Regular
 /KunstlerScript
 /Lasy10
 /Lasy5
 /Lasy6
 /Lasy7
 /Lasy8
 /Lasy9
 /Lasyb10
 /Latha
 /LatinWide
 /Lcircle10
 /Lcirclew10
 /Lcmss8
 /Lcmssb8
 /Lcmssi8
 /LetterGothic
 /LetterGothic-Bold
 /LetterGothic-BoldOblique
 /LetterGothic-BoldSlanted
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LetterGothic-Slanted
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LevenimMT
 /LevenimMTBold
 /LilyUPC
 /LilyUPCBold
 /LilyUPCBoldItalic
 /LilyUPCItalic
 /Line10
 /Linew10
 /Lithos-Black
 /Lithos-Regular
 /Logo10
 /Logo8
 /Logo9
 /Logobf10
 /Logosl10
 /LotusWPBox-Roman
 /LotusWPIcon-Roman
 /LotusWPIntA-Roman
 /LotusWPIntB-Roman
 /LotusWPType-Roman
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Lydian
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /Map-Symbols
 /MathA
 /MathB
 /MathC
 /Mathematica1
 /Mathematica1-Bold
 /Mathematica1Mono
 /Mathematica1Mono-Bold
 /Mathematica2
 /Mathematica2-Bold
 /Mathematica2Mono
 /Mathematica2Mono-Bold
 /Mathematica3
 /Mathematica3-Bold
 /Mathematica3Mono
 /Mathematica3Mono-Bold
 /Mathematica4
 /Mathematica4-Bold
 /Mathematica4Mono
 /Mathematica4Mono-Bold
 /Mathematica5
 /Mathematica5-Bold
 /Mathematica5Mono
 /Mathematica5Mono-Bold
 /Mathematica6
 /Mathematica6Bold
 /Mathematica6Mono
 /Mathematica6MonoBold
 /Mathematica7
 /Mathematica7Bold
 /Mathematica7Mono
 /Mathematica7MonoBold
 /MatisseITC-Regular
 /MaturaMTScriptCapitals
 /Mesquite
 /Mezz-Black
 /Mezz-Regular
 /MICR
 /MicrosoftSansSerif
 /MingLiU
 /Minion-BoldCondensed
 /Minion-BoldCondensedItalic
 /Minion-Condensed
 /Minion-CondensedItalic
 /Minion-Ornaments
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /Miriam
 /MiriamFixed
 /MiriamTransparent
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MonotypeSorts
 /MSAM10
 /Msam10
 /MSAM5
 /MSAM6
 /MSAM7
 /MSAM8
 /MSAM9
 /MSBM10
 /Msbm10
 /MSBM5
 /MSBM6
 /MSBM7
 /MSBM8
 /MSBM9
 /MS-Gothic
 /MSHei
 /MSLineDrawPSMT
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MS-PMincho
 /MSReference1
 /MSReference2
 /MSReferenceSansSerif
 /MSReferenceSansSerif-Bold
 /MSReferenceSansSerif-BoldItalic
 /MSReferenceSansSerif-Italic
 /MSReferenceSerif
 /MSReferenceSerif-Bold
 /MSReferenceSerif-BoldItalic
 /MSReferenceSerif-Italic
 /MSReferenceSpecialty
 /MSSong
 /MS-UIGothic
 /MSungStd-Light-Acro
 /MT-Extra
 /MT-Symbol
 /MT-Symbol-Italic
 /MVBoli
 /Myriad-Bold
 /Myriad-BoldItalic
 /Myriad-Italic
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /Myriad-Roman
 /Narkisim
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NewMilleniumSchlbk-BoldItalicSH
 /NewsGothic
 /NewsGothic-Bold
 /NewsGothicBT-Bold
 /NewsGothicBT-BoldItalic
 /NewsGothicBT-Italic
 /NewsGothicBT-Roman
 /NewsGothic-Condensed
 /NewsGothic-Italic
 /NewsGothicMT
 /NewsGothicMT-Bold
 /NewsGothicMT-Italic
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NimbusMonL-Bold
 /NimbusMonL-BoldObli
 /NimbusMonL-Regu
 /NimbusMonL-ReguObli
 /NimbusRomNo9L-Medi
 /NimbusRomNo9L-MediItal
 /NimbusRomNo9L-Regu
 /NimbusRomNo9L-ReguItal
 /NimbusSanL-Bold
 /NimbusSanL-BoldCond
 /NimbusSanL-BoldCondItal
 /NimbusSanL-BoldItal
 /NimbusSanL-Regu
 /NimbusSanL-ReguCond
 /NimbusSanL-ReguCondItal
 /NimbusSanL-ReguItal
 /Nimrod
 /Nimrod-Bold
 /Nimrod-BoldItalic
 /Nimrod-Italic
 /NSimSun
 /Nueva-BoldExtended
 /Nueva-BoldExtendedItalic
 /Nueva-Italic
 /Nueva-Roman
 /NuptialScript
 /OCRA
 /OCRA-Alternate
 /OCRAExtended
 /OCRB
 /OCRB-Alternate
 /OfficinaSans-Bold
 /OfficinaSans-BoldItalic
 /OfficinaSans-Book
 /OfficinaSans-BookItalic
 /OfficinaSerif-Bold
 /OfficinaSerif-BoldItalic
 /OfficinaSerif-Book
 /OfficinaSerif-BookItalic
 /OldEnglishTextMT
 /Onyx
 /OnyxBT-Regular
 /OzHandicraftBT-Roman
 /PalaceScriptMT
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Palatino-Roman
 /PapyrusPlain
 /Papyrus-Regular
 /Parchment-Regular
 /Parisian
 /ParkAvenue
 /Penumbra-SemiboldFlare
 /Penumbra-SemiboldSans
 /Penumbra-SemiboldSerif
 /PepitaMT
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /PhotinaCasualBlack
 /Playbill
 /PMingLiU
 /Poetica-SuppOrnaments
 /PoorRichard-Regular
 /PopplLaudatio-Italic
 /PopplLaudatio-Medium
 /PopplLaudatio-MediumItalic
 /PopplLaudatio-Regular
 /PrestigeElite
 /Pristina-Regular
 /PTBarnumBT-Regular
 /Raavi
 /RageItalic
 /Ravie
 /rblmi
 /RefSpecialty
 /Ribbon131BT-Bold
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /Rockwell-Light
 /Rockwell-LightItalic
 /Rod
 /RodTransparent
 /RunicMT-Condensed
 /Sanvito-Light
 /Sanvito-Roman
 /ScriptC
 /ScriptMTBold
 /SegoeUI
 /SegoeUI-Bold
 /SegoeUI-BoldItalic
 /SegoeUI-Italic
 /Serpentine-BoldOblique
 /ShelleyVolanteBT-Regular
 /ShowcardGothic-Reg
 /Shruti
 /SimHei
 /SimSun
 /SnapITC-Regular
 /StandardSymL
 /Stencil
 /StoneSans
 /StoneSans-Bold
 /StoneSans-BoldItalic
 /StoneSans-Italic
 /StoneSans-Semibold
 /StoneSans-SemiboldItalic
 /Stop
 /STSongStd-Light-Acro
 /Swiss721BT-BlackExtended
 /Sylfaen
 /SylfaenARM
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Tci1
 /Tci1Bold
 /Tci1BoldItalic
 /Tci1Italic
 /Tci2
 /Tci2Bold
 /Tci2BoldItalic
 /Tci2Italic
 /Tci3
 /Tci3Bold
 /Tci3BoldItalic
 /Tci3Italic
 /Tci4
 /Tci4Bold
 /Tci4BoldItalic
 /Tci4Italic
 /TechnicalItalic
 /TechnicalPlain
 /Tekton
 /Tekton-Bold
 /TektonMM
 /Tempo-HeavyCondensed
 /Tempo-HeavyCondensedItalic
 /TempusSansITC
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldItalicOsF
 /Times-BoldSC
 /Times-ExtraBold
 /Times-Italic
 /Times-ItalicOsF
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Times-RomanSC
 /Trajan-Bold
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-CondensedMedium
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Umb10
 /Umbx10
 /Umbxsl10
 /Umbxti10
 /Umitt10
 /Umr10
 /Umsltt10
 /Umti10
 /Umtt10
 /Univers-Bold
 /Univers-BoldItalic
 /UniversCondensed-Bold
 /UniversCondensed-BoldItalic
 /UniversCondensed-Medium
 /UniversCondensed-MediumItalic
 /Univers-Medium
 /Univers-MediumItalic
 /URWBookmanL-DemiBold
 /URWBookmanL-DemiBoldItal
 /URWBookmanL-Ligh
 /URWBookmanL-LighItal
 /URWChanceryL-MediItal
 /URWGothicL-Book
 /URWGothicL-BookObli
 /URWGothicL-Demi
 /URWGothicL-DemiObli
 /URWPalladioL-Bold
 /URWPalladioL-BoldItal
 /URWPalladioL-Ital
 /URWPalladioL-Roma
 /USPSBarCode
 /VAGRounded-Black
 /VAGRounded-Bold
 /VAGRounded-Light
 /VAGRounded-Thin
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VerdanaRef
 /VinerHandITC
 /Viva-BoldExtraExtended
 /Vivaldii
 /Viva-LightCondensed
 /Viva-Regular
 /VladimirScript
 /Vrinda
 /Webdings
 /Westminster
 /Willow
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /WP-ArabicScriptSihafa
 /WP-ArabicSihafa
 /WP-BoxDrawing
 /WP-CyrillicA
 /WP-CyrillicB
 /WP-GreekCentury
 /WP-GreekCourier
 /WP-GreekHelve
 /WP-HebrewDavid
 /WP-IconicSymbolsA
 /WP-IconicSymbolsB
 /WP-Japanese
 /WP-MathA
 /WP-MathB
 /WP-MathExtendedA
 /WP-MathExtendedB
 /WP-MultinationalAHelve
 /WP-MultinationalARoman
 /WP-MultinationalBCourier
 /WP-MultinationalBHelve
 /WP-MultinationalBRoman
 /WP-MultinationalCourier
 /WP-Phonetic
 /WPTypographicSymbols
 /XYATIP10
 /XYBSQL10
 /XYBTIP10
 /XYCIRC10
 /XYCMAT10
 /XYCMBT10
 /XYDASH10
 /XYEUAT10
 /XYEUBT10
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZapfHumanist601BT-Bold
 /ZapfHumanist601BT-BoldItalic
 /ZapfHumanist601BT-Demi
 /ZapfHumanist601BT-DemiItalic
 /ZapfHumanist601BT-Italic
 /ZapfHumanist601BT-Roman
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU (Based on PDF Specification 4.01b, May 2007)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

