

Abstract

Many successful recent approaches to texture

classification model texture images as distributions over a
set of discrete features, or textons, which correspond to a
partitioning of the space of responses to local descriptors
such as filter banks or image patches. This partitioning is
learned by unsupervised clustering of descriptor
responses taken from the dataset to be analysed. Here, we
explore a quantization of filter responses into a dictionary
of discrete features which is based on geometrical, rather
than statistical, considerations, resulting in a simple
texture description based on a dictionary of 'visual words'
which is independent of the images to be described. A
multi-scale classification scheme built on this dictionary
is evaluated. The results presented are, to the best of our
knowledge, state-of-the-art for the UIUCTex and KTH-
TIPS datasets, and close to the state-of-the-art for
CUReT, despite using a less sophisticated classifier.

1. Introduction
The classification of textures from single images taken

under arbitrary (and unknown) viewing and illumination
conditions has gained a great deal of attention over recent
years.

One approach which has proved particularly successful
for this task involves representing images statistically as
distributions of local features [1-10]. Such methods can
be coarsely characterised by i) how they represent an
image and ii) the classifier used. In this paper we are
interested in representation. Statistical approaches to
texture representation can be grouped by their treatment
of a set of sub-problems:

i) Which points in an image should contribute to its
representation? [6, 8] select a sparse set of points
using Harris-affine or Laplacian detectors, whilst [3,
4, 7, 10] describe every point in an image.

ii) How should these points be described? Much work
has focussed on this problem. Amongst others, [1, 4,
5, 7] employ the joint responses of various filter

banks, with the most successful being the rotation-
invariant MR8 of [4], also used in [7]; [6, 8] use
modified SIFT[11] and intensity domain SPIN
images; [3] uses a simple greyscale image patch for
its Joint descriptor, as well as an MRF representation;
and [10] describes local fractal dimension and length.

iii) Which of two paradigms for image representation
should be adopted? The choice here is between
modelling images as histograms over a dictionary of
features, or textons [3, 4, 7, 10] (which requires a pre-
training step to learn a feature dictionary); or
modelling images as signatures [6, 8] of features
derived adaptively for each image.

iv) How should responses to descriptors be grouped in
order to form a feature dictionary or image signature?
The shared tactic of methods which model joint
descriptor responses is to use k-means clustering to
partition descriptor-response space (feature space).
Hence each feature can be represented by a cluster-
centre. For methods within the texton dictionary
paradigm, this allows new descriptor values to be
assigned to a texton by finding the nearest cluster-
centre in feature space. Within the signatures
paradigm, being able to compute the ground distance
between cluster-centres allows use of the Earth
Mover’s Distance to measure the similarity between
images.

For the texton dictionary case, the pre-training
step typically calculates k cluster-centres for each of
the C classes to be analysed and then combines them
to produce kC textons. However, this may result in an
unnecessarily redundant set of features; [4] shows
that textons can be combined to produce a smaller set
with only a small loss in performance.

Given an image representation, classification
commonly proceeds by either nearest-neighbour matching
(returning the class of the training image whose
representation lies closest – with some metric, usually the

 statistic [3, 4, 10] or Earth Mover’s Distance [8] – to
that of the test image) or non-linear (kernel-based) SVMs
[6, 7]. k-nearest neighbours matching has also been
explored [7], but produces no improvement over nearest-
neighbour. [7] and [6] demonstrate the superiority of

Texture Classification with a Dictionary of Basic Image Features

Michael Crosier

University College London
London, UK

m.crosier@cs.ucl.ac.uk

Lewis D Griffin
University College London

London, UK
l.griffin@cs.ucl.ac.uk

978-1-4244-2243-2/08/$25.00 ©2008 IEEE

SVMs over NN for texture classification. However,
nearest neighbour classification remains useful for studies
focussing on description and representation due to its
relative poverty of implementation choices.

In all of these methods, the partitioning of feature
space is accomplished by unsupervised clustering of local
descriptor responses using some variation of the k-means
algorithm. Labels are defined by cluster centres and
points are assigned to some label depending on which
cluster centre is closest to that point’s local descriptor;
thus, the clustering induces a Voronoi partition on feature
space.

In this paper we explore an alternative way to achieve
this partitioning, based on assigning a common label to
points which share the same predominant geometrically-
defined ‘type’ of local structure. Using a dictionary of
visual words which is pre-defined, rather than being
generated from the dataset to be analysed, produces a
simpler approach to classification and one which may
pick up on useful subtleties which are smoothed over by
the clustering process. It also obviates the need to ensure
that high dimensional feature spaces are sufficiently well
populated to allow accurate clustering.

By ‘type’ of local structure, we suggest that any local
geometric structure can be assigned to one of a finite
vocabulary of primitives which are somehow qualitatively
distinct. This is the premise of the Geometric Texton
Theory of [12], which categorizes local structure based on
the local symmetries which it possesses (see section 2).
This induces a partition on the filter-response space of six
Gaussian derivative filters. We refer to these features as
‘Basic Image Features’ or BIFs.

1.1. Related work
Aside from the methods detailed above which employ

k-means clustering to quantize descriptor responses into
discrete features over which the texture can be
represented statistically, Konishi & Yuille [13] have
divided filter-response space into a lattice by adaptively
quantizing the value of each of N filters, into bn bins,
separately; before modelling a texture as a distribution
over these ∏ bins. As with methods using k-means,
the partition is determined by analysis of the dataset in
question.

Local Binary Patterns [14] resemble our approach in
that each LBP scheme constitutes a pre-defined dictionary
of features over which images are represented
statistically. The main difference lies in the mathematical
basis for the choice of feature set, which in our case is
geometrical and in the case of uniform LBPs is based on
the statistical properties of texture images in general.

In the remainder of this paper, we describe a texture
classification system in which images are represented by
histograms over a dictionary of combinations of Basic

Image Features, rather than cluster-centre textons; present
a multi-scale histogram comparison technique; and
evaluate categorization performance on a range of popular
texture datasets. The results presented are, to the best of
our knowledge, state-of-the-art for the UIUCTex and
KTH-TIPS datasets, and close to the state-of-the-art for
CUReT, despite using a less sophisticated classifier.

2. Basic Image Features
Basic Image Features [12, 15] are defined by a

partition of the filter-response space (jet space) of a set of
six Gaussian derivative filters (Figure 1). This set of
filters describes an image locally up to second order at
some scale.

There are two stages to the derivation of this partition.
In the first, information which is intrinsic to the local
structure of the scene is separated from ‘extrinsic’
information resulting from uninteresting changes in
imaging setup. In the second, this intrinsic component is
quantized into regions corresponding to different types of
local image symmetries.

Figure 1: The filter bank used to calculate BIFs, consisting of
one zeroth-order, two first order and three second order
Gaussian derivative filters, all at the same scale. We refer to the
vector of responses as a local jet. It describes up to the second
order term of the local Taylor series. Note that in our
implementation, since we set the parameter of Algorithm 1 to
be zero, we do not need to compute responses to the zeroth order
filter.

The transformations which are considered
uninteresting for the purpose of calculating BIFs are
rotations, reflections, intensity multiplications and
addition of a constant intensity. Jet space is factored [16]
by these extrinsic transformation groups to produce an
intrinsic component in which all filter responses differing
only in one of these extrinsic factors are mapped to the
same point. Any partition of this intrinsic component will
therefore produce a set of features which are invariant to
rotations, reflections and these grey-scale transformations.

The partition of the intrinsic component of jet space
which defines the Basic Image Features is based on
deciding which type of symmetry of the local image
geometry is most nearly consistent with the local jet [15].

c 02c 11c 20

c 10 c 01

c 00

A test is developed [15] which shows whether a filter
is sensitive to a certain local symmetry, i.e. whether it is
able to detect invariance under a group of transformations
(i.e. a prospective automorphism group). The type of
transformations considered are image isometries [17]:
spatial isometries combined with intensity isometries. The
possible automorphism groups of 2D images relative to
the class of image isometries, excluding cases containing
discrete periodic translations, are determined [15]. Hence
we can use our test to decide which filters in the span of
the second order Gaussian derivative family of figure 1
(i.e. which linear combinations of the filters) are sensitive
to each of these symmetries. (For example, the only such
filters which are sensitive to reflectional symmetry in
vertical lines (at some scale) are of the form
 centred on the line of reflection.) This allows the
regions of the intrinsic component of jet space which
represent each type of image symmetry to be identified.

Since most image structures are not perfectly
symmetrical, we base our partitioning scheme on deciding
which symmetry most approximately holds. By selecting
an appropriate subset of symmetry types (which deals
with the problem of some automorphism groups being
subgroups of others) and partitioning the intrinsic
component into Voronoi cells around their corresponding
regions using a metric induced by the filter response
space [16], we achieve this approximate symmetry
classification.

i. Measure filter responses

ii. Compute ,
4

iii. Classify according to the largest of:

, 2 , , 2 ,

Algorithm 1: Calculation of BIFs. For texture analysis we set the
parameter 0. See figure 2 for an illustration of the types of
symmetry captured by each of the seven BIFs.

The algorithm for computing Basic Image Features
from filter responses turns out to be very simple, and is
given in Algorithm 1. Figure 2 illustrates the types of
structure / symmetry which are represented by each of the
seven BIFs. One of these (the pink label of Figure 2)
represents a degenerate case of ‘flat’ structure which,
given its uniformity, contains every possible kind of local
symmetry. For this single category, a tunable parameter
determines how much ‘noise’ is tolerated before a region
is no longer considered to be flat; and hence is assigned to
another category. For texture analysis we do not want any
flattening of potentially important low-contrast structure,
and so we set this parameter so that this seventh label is

never used. Experiments confirm that this also produces
the best results. Hereafter, we will refer to a six-feature
system of BIFs.

An example of a texture image densely labelled with
the six BIF features computed at two different scales is
shown in figure 3.

Figure 2: Stereotypical image patches corresponding to each of
the seven BIFs defined by step iii of Algorithm 1. Colours
correspond to the labelling system of Figure 3.

Figure 3: An image of bark from the UIUCTex database [8],
with BIFs computed at scales 1 and 4. See Figure 2 for
a key to the colours used for labelling.

3. Method & Results

3.1. Features
Simply modelling an image as a histogram over six

categories would not be expected to be sufficiently
descriptive to represent a texture well (and indeed, using
histograms of BIFs at a single scale to represent each
image produces only 65% correct classification on the
CUReT database). In order to produce a less coarse
representation we need a way of combining this six letter
‘alphabet’ into a sufficiently descriptive collection of
‘words’. One way to achieve this is to describe local
configurations of BIFs, i.e. how local structure in the
image changes.

Varma & Zisserman [2] demonstrated the advantages
of rotationally invariant local description. A natural
choice is therefore to exploit the rotation-invariance of the
BIFs themselves by considering stacks, or ‘columns’, of
BIFs over scale; rather than a non-rotationally invariant
spatial configuration of BIFs. So our features describe the
change in local structure over scale.

Empirically we have found that a stack of four BIFs
distributed logarithmically in scale space over four
octaves (i.e. at scales 1,2,4 and 8 times the ‘base’),
resulting in a 64=1296 dimensional image representation,
seems to capture the right trade-off between specificity

, 2 , , 2 ,

and generality. For the rest of the paper, these features
will be referred to as BIF-columns. However, we do not
claim that this is an optimal way of using BIFs for local
description.

BIF-columns are illustrated in figure 4. We represent
images as distributions over these features, calculated at
every pixel.

Figure 4. Since sampling in scale space (left) decreases as scale
increases, our BIF-columns are actually more like pyramids
(right) in that they describe larger local regions of the image at
coarser scales.

We compute Gaussian derivative filter responses for an
image by convolution in the spatial domain (using the
Mathematica implementation from [18]). For points near
to the edge of the image, the convolution wraps around to
the opposite edge. Ideally, points where the full spatial
support of the filter does not lie within the image should
be discarded; however, we have found that this
consistently degrades performance, regardless of our
other implementation choices. We hypothesize that this
result is due, on the one hand, to the effects of poorer
sampling when these points are removed (and indeed, a
similar degradation is produced when we disregard points
randomly subsampled from across the image to simulate
this reduction in sampling), and on the other hand, the
possibility that the images which we have analysed are
sufficiently homogeneous that treating them cyclically is
not unreasonable. We use filter responses calculated at
every point in the image for the results presented here, but
note that this deserves further investigation.

Having represented a texture image as a histogram
over our dictionary of BIF-columns, we use nearest-
neighbour classification (as in [4]) to classify test images.
As a histogram comparison metric we employ the
Bhattacharyya distance, 1 . √ , rather than the more
commonly used chi-square statistic, since it has been
shown to possess superior theoretical properties in certain
situations [19]. However, in practice we have found the
results produced by both to be very similar.

Thus the single scale version of our method comprises,
at scale :

Representation:

• Compute a stack of four BIF-images at scales
, 2 , 4 , 8 , using Algorithm 1. Transpose to get

an array of BIF-columns representing each pixel in
the image.

• Count occurrences of each of the 64=1296 possible
BIF-columns and form a normalised histogram.

Classification:

• Train by computing a BIF-column histogram
(above) for each training image.

• Classify by computing a BIF-column histogram
(above) for the test image and finding the nearest
neighbour of the stored training histograms using
the Bhattacharyya distance.

We use this method to classify all of the textures in the
CUReT database (see section 3.3), using 43 training
images per class and calculating results over 100 random
splits into training and test images, as in [6], giving a
score of 98.2±0.1% (with 1). This is at least as good
as other methods using nearest-neighbour classification
(see table 1), showing that a geometrically derived set of
features can be at least as effective a representation for
texture as cluster-centre textons calculated from the
training data.

3.2. Comparison of image representations across
scale

Although our local BIF-column descriptors describe
the variation in local image structure across scale, they are
not scale-invariant. That is, despite being able to describe
interesting structures at a range of scales, each descriptor
is rooted at the same ‘base’ scale. In order to cope with
datasets which, unlike CUReT, contain significant scale-
differences between images of the same class, we
introduce a measure for combining distances between
histograms at a range of scales.

Hayman et al. [7] successfully adopt a pure learning
approach to this problem, in effect augmenting the
training set with a range of artificially rescaled versions of
the original training images. Although this works well on
the datasets tested, it implicitly assumes that texture
images have a single scale at which they are best
described, which may not be the case for certain classes
of textures.

We would like to maintain the links between
representations of the same image analysed at different
scales. For our multi-scale comparison we therefore first
compute a stack of histograms for each image at a range
of scales. Each histogram is calculated in exactly the same
way as for our single scale implementation. The ‘base
scale’ of the finest scale histogram – that is, the finest
scale in the BIF-columns over which the histogram is
computed – is 2 , and there is a separation between
each scale of one quarter octave. For computational
reasons, in this preliminary study we limit the number of

scales analysed to seven, making the base scale of the
coarsest scale histogram 2 . Thus, because our BIF-
columns span four octaves, the total range of scales
analysed extends from 0.84 to 22.6.

Given these histogram stacks for two images to be
compared, there are two components to our comparison.
The first deals with the problem of wanting to match
images dependant on their structure at all scales, rather
than one characteristic scale. The second addresses, for
example, images taken from different distances, by
allowing all possible translations of histogram stacks
relative to each other, as in figure 5.

Figure 5: Multi-scale comparison of images and . We
compare histograms computed at seven base scales, of which
only four are shown here for clarity. Histogram stacks are
shifted up and down in scale relative to each other to allow
matching of similar features appearing at different scales in each
image.

To compare stacks of normalised BIF-column
histograms for images and , calculated at column-base
scales , , … , and , , … , respectively,
we take a weighted average of squared Bhattacharyya
distances computed at each pair of scales , ,

∑

1 ; . ;

∑ 1 (1)

where ; is the normalised BIF-column histogram
of image computed at scale and . The
weighting by discriminates against poorly

sampled coarse scale representations. Normalisation
allows direct comparison of distances for differently
shifted comparisons, allowing the multi-scale scheme to
be incorporated into our nearest neighbour classifier.

We emphasize the difference between multi-scale BIF-
columns, which describe the local variation of the texture
across scale (the local deep structure) at each point in an
image analysed at a certain scale; and multi-scale
histogram comparison which describes the global
variation over scale of the texture (representation) itself.

3.3. Classification results
We present classification results on three commonly

used datasets, using exactly the same method on each
with no tuning of parameters. To review, the main
elements of this method are i) the representation of a
texture at some scale as a histogram over a universal,
geometrically-defined dictionary of rotationally-invariant
features (BIF-columns); and ii) nearest-neighbour
classification using the multi-scale measure of section 3.2,
which is based on the Bhattacharyya distance.

The CUReT database [20] contains 61 classes, each
consisting of 205 images of some physical texture sample
photographed under a range of viewing and lighting
angles but without significant variation in scale or in-
plane rotation. In accordance with other studies which use
CUReT for classification, we consider only the 92 images
per class which allow the extraction of a 200x200 pixel
foreground region of texture.

The KTH-TIPS dataset [7] expands CUReT by
photographing new samples of 10 of the CUReT textures
at a subset of the viewing and lighting angles used in
CUReT but also over a range of scales, producing 81
200x200 pixel images per class. Although KTH-TIPS is
designed in such a way that it is possible to combine it
with CUReT in testing, we follow [6] in treating it as a
stand-alone dataset.

UIUCTex [8] contains 25 classes, each of 40 images
(640x480 pixels) with significant changes in scale and
viewpoint as well as non-rigid deformations; although
with less severe lighting variations than CUReT. Unlike
the other two datasets, UIUCTex is uncalibrated. In terms
of intra-class variations in appearance, this is the most
challenging of the commonly used testbeds for texture
classification.

For testing, we select 100 different random
training/test splits for each dataset, as in [6], and report
the mean number of correct classifications. Comparative
results are presented in Table 1, for training on 43, 40 and
20 images per class from the CUReT, KTH-TIPS and
UIUCTex datasets respectively.

First, note that our multi-scale scheme produces a
small but significant improvement on the CUReT
database over the single scale results reported in section
3.1. Since CUReT does not contain significant intra-class
variation in scale, scale-shifting of histogram stacks (see
figure 5) would not be expected to be useful. Figure 6
confirms this, showing that shifting is rarely used when
CUReT images are classified correctly by our multi-scale
algorithm, but is often seen in incorrect categorizations,
suggesting that shifting is only used in cases where no
good match is available at the same scale. This
improvement therefore reflects a combination of the
added descriptive power of using filters at scales better
matched to the structures present in certain textures, with

scale

appropriate use of this multi-scale information in
classification. Figure 7 shows examples of images which
are misclassified by our algorithm.

 CUReT

43 training
images per
class

UIUCTex

20 training
images per
class

KTH-TIPS

40 training
images per
class

Multi-scale
BIF-columns

98.6±0.1% 98.8±0.1% 98.5±0.1%

Varma &
Zisserman -
MR8 [4]

97.43%

Varma &
Zisserman –
Joint [3]

98.03% 78.4±2.0%† 92.4±2.1%†

Hayman et
al. [7]

98.46±0.09% 92.0±1.3%† 94.8±1.2%†

Lazebnik et
al. [8]

72.5±0.7%† 96.03% 91.3±1.4%†

Zhang et al.
[6]

95.3±0.4% 98.3±0.5% 95.5±1.3%

Broadhurst
[21]

99.22±0.34%

Table 1: Classification scores for our, and a number of state-of-
the-art methods, on three well-known datasets. Results are as
originally reported, except for those marked † which are taken
from [6].

Despite not being modified to suit each dataset, our
method produces consistently good results across all three
databases. To the best of our knowledge, the results for
multi-scale BIF-columns exceed the best reported for the
UIUCTex and KTH-TIPS datasets. For CUReT,
Broadhurst [21] has achieved 99.22% correct
classification by using a Gaussian Bayes Classifier with
marginal filter distributions. The method which we report
achieves superior performance to other methods which
use nearest-neighbour classification.

4. Conclusions and Further Work
We have presented a multi-scale texture classification

algorithm which, without any tuning of paramaters,
produces what we believe to be state-of-the-art results on
two widely-used texture datasets; and close to state-of-
the-art results on a third.

Figure 6: The distribution of histogram-stack shifts (figure 5)
used by our multi-scale algorithm for images which are correctly
(red) and incorrectly (black) classified.

Figure 7: Three examples of texture images from the CUReT
dataset [20] which are misclassified by our multi-scale BIF-
columns algorithm (left); the images to which they were
incorrectly matched (centre); and ‘nearest misses’ from the
correct class (right). Top: Terrycloth mistaken for Pebbles. Like
many misclassified textures, these are perceptually very similar.
Middle: Ribbed Paper mistaken for Corn Husk. In this particular
case, scale invariance may have been a disadvantage. Bottom:
Corduroy mistaken for Plaster B, showing very little perceptual
similarity.

The novelty of our system lies in the fact that we use a
geometrically-derived dictionary of features over which
images are represented, rather than pre-training a
dictionary of textons for each dataset by clustering. This
results in a simpler and more general approach.

That a universal dictionary can outperform one trained
to the dataset in question shows that clustering is certainly
not an optimal way to produce features for statistical
texture representation.

Degree of histogram-stack shifting

Pr
op

or
tio

n
of

 im
ag

es

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
0.0

0.2

0.4

0.6

0.8

The main focus of this paper has been on image
representation and so we have avoided using more
sophisticated classifiers for ease of implementation.
However, a number of studies [6, 7, 22] have shown that
Support Vector Machines consistently outperform nearest
neighbour matching for tasks of this kind, and so this is
an obvious direction for improvement.

We also make no claims about the optimality of our
BIF-columns (as opposed to other ways of combining
BIFs) or multi-scale scheme, both of which we plan to
investigate further.

Acknowledgements
EPSRC-funded project ‘Basic Image Features’

EP/D030978/1.

References

[1] T. Leung and J. Malik, "Representing and
Recognizing the Visual Appearance of Materials using
Three-dimensional Textons," International Journal of
Computer Vision, vol. 43, pp. 29-44, 2001.

[2] M. Varma and A. Zisserman, "Classifying Images of
Materials: Achieving Viewpoint and Illumination
Independence," in Computer Vision - ECCV 2002: 7th
European Conference on Computer Vision,
Copenhagen, Denmark, May 28-31, 2002.
Proceedings, Part III, 2002, p. 255.

[3] M. Varma and A. Zisserman, "Texture classification:
are filter banks necessary?," in Computer Vision and
Pattern Recognition, 2003. Proceedings. 2003 IEEE
Computer Society Conference on, 2003, pp. II-691-8
vol.2.

[4] M. Varma and A. Zisserman, "A Statistical Approach
to Texture Classification from Single Images,"
International Journal of Computer Vision, vol. 62, pp.
61-81, 2005/04/25/ 2005.

[5] O. G. Cula and K. J. Dana, "Recognition methods for
3D textured surfaces," in Proceedings of SPIE
Conference on Human Vision and Electronic Imaging
VI, San Jose, 2001.

[6] J. Zhang, M. Marszalek, S. Lazebnik, and C. Schmid,
"Local Features and Kernels for Classification of
Texture and Object Categories: A Comprehensive
Study," in Computer Vision and Pattern Recognition
Workshop, 2006 Conference on, 2006, p. 13.

[7] E. Hayman, B. Caputo, M. Fritz, and J.-O. Eklundh,
"On the Significance of Real-World Conditions for
Material Classification," in Computer Vision - ECCV
2004, 2004, pp. 253-266.

[8] S. Lazebnik, C. Schmid, and J. Ponce, "A sparse
texture representation using local affine regions,"
Pattern Analysis and Machine Intelligence, IEEE
Transactions on, vol. 27, pp. 1265-1278, 2005.

[9] S. Lazebnik, C. Schmid, and J. Ponce, "A sparse
texture representation using affine-invariant regions,"
in Computer Vision and Pattern Recognition, 2003.

Proceedings. 2003 IEEE Computer Society
Conference on, 2003, pp. II-319-II-324 vol.2.

[10] M. Varma and R. Garg, "Locally Invariant Fractal
Features for Statistical Texture Classification," in
Proceedings of the {IEEE} International Conference
on Computer Vision, Rio de Janeiro, Brazil, 2007.

[11] D. G. Lowe, "Object recognition from local scale-
invariant features," in Computer Vision, 1999. The
Proceedings of the Seventh IEEE International
Conference on, 1999, pp. 1150-1157 vol.2.

[12] L. D. Griffin and M. Lillholm, "Feature category
systems for 2nd order local image structure induced
by natural image statistics and otherwise.," in SPIE
6492(09):1-11, 2007.

[13] S. Konishi and A. L. Yuille, "Statistical cues for
domain specific image segmentation with performance
analysis," in Computer Vision and Pattern
Recognition, 2000. Proceedings. IEEE Conference on,
2000, pp. 125-132 vol.1.

[14] T. Ojala, M. Pietikainen, and T. Maenpaa,
"Multiresolution gray-scale and rotation invariant
texture classification with local binary patterns,"
Transactions on Pattern Analysis and Machine
Intelligence, vol. 24, pp. 971-987, 2002.

[15] L. D. Griffin, M. Lillholm, and M. Crosier, "Basic
Image Features (BIFs) arising from analysis of Local
Symmetry," in ECCV '08 (submitted).

[16] L. D. Griffin, "The 2nd order local-image-structure
solid," IEEE Trans Patt Anal Mach Intell, vol. 29, pp.
1355-1366, 2007.

[17] L. D. Griffin, "Symmetries of 1-D images," Journal of
Mathematical Imaging & Vision, 2008.

[18] B. M. ter Haar Romeny, Front-End Vision and Multi-
Scale Image Analysis: Kluwer Academic Publishers,
2003.

[19] N. A. Thacker, F. J. Aherne, and P. I. Rockett, "The
Bhattacharyya Metric as an Absolute Similarity
Measure for Frequency Coded Data.," Kybernetika,
vol. 34, pp. 363-368, 1997.

[20] O. G. Cula and K. J. Dana, "Compact representation
of bidirectional texture functions," in Computer Vision
and Pattern Recognition, 2001. CVPR 2001.
Proceedings of the 2001 IEEE Computer Society
Conference on, 2001, pp. I-1041-I-1047 vol.1.

[21] R. E. Broadhurst, "Statistical estimation of histogram
variation for texture classification," in Proc. Intl.
Workshop on Texture Analysis and Synthesis Beijing,
2005, pp. 25–30.

[22] B. Caputo, E. Hayman, and P. Mallikarjuna, "Class-
specific material categorisation," in Computer Vision,
2005. ICCV 2005. Tenth IEEE International
Conference on, 2005, pp. 1597-1604 Vol. 2.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

