
 

 

 
Abstract 

 
Many successful recent approaches to texture 

classification model texture images as distributions over a 
set of discrete features, or textons, which correspond to a 
partitioning of the space of responses to local descriptors 
such as filter banks or image patches. This partitioning is 
learned by unsupervised clustering of descriptor 
responses taken from the dataset to be analysed. Here, we 
explore a quantization of filter responses into a dictionary 
of discrete features  which is based on geometrical, rather 
than statistical, considerations, resulting in a simple 
texture description based on a dictionary of 'visual words' 
which is independent of the images to be described. A 
multi-scale classification scheme built on this dictionary 
is evaluated. The results presented are, to the best of our 
knowledge, state-of-the-art for the UIUCTex and KTH-
TIPS datasets, and close to the state-of-the-art for 
CUReT, despite using a less sophisticated classifier. 

 

1. Introduction 
The classification of textures from single images taken 

under arbitrary (and unknown) viewing and illumination 
conditions has gained a great deal of attention over recent 
years. 

One approach which has proved particularly successful 
for this task involves representing images statistically as 
distributions of local features [1-10]. Such methods can 
be coarsely characterised by i) how they represent an 
image and ii) the classifier used. In this paper we are 
interested in representation. Statistical approaches to 
texture representation can be grouped by their treatment 
of a set of sub-problems: 

i) Which points in an image should contribute to its 
representation? [6, 8] select a sparse set of points 
using Harris-affine or Laplacian detectors, whilst [3, 
4, 7, 10] describe every point in an image. 

ii) How should these points be described? Much work 
has focussed on this problem. Amongst others, [1, 4, 
5, 7] employ the joint responses of various filter 

banks, with the most successful being the rotation-
invariant MR8 of [4], also used in [7]; [6, 8] use 
modified SIFT[11] and intensity domain SPIN 
images; [3] uses a simple greyscale image patch for 
its Joint descriptor, as well as an MRF representation; 
and [10] describes local fractal dimension and length. 

iii) Which of two paradigms for image representation 
should be adopted? The choice here is between 
modelling images as histograms over a dictionary of 
features, or textons [3, 4, 7, 10] (which requires a pre-
training step to learn a feature dictionary); or 
modelling images as signatures [6, 8] of features 
derived adaptively for each image. 

iv) How should responses to descriptors be grouped in 
order to form a feature dictionary or image signature? 
The shared tactic of methods which model joint 
descriptor responses is to use k-means clustering to 
partition descriptor-response space (feature space). 
Hence each feature can be represented by a cluster-
centre. For methods within the texton dictionary 
paradigm, this allows new descriptor values to be 
assigned to a texton by finding the nearest cluster-
centre in feature space. Within the signatures 
paradigm, being able to compute the ground distance 
between cluster-centres allows use of the Earth 
Mover’s Distance to measure the similarity between 
images. 

For the texton dictionary case, the pre-training 
step typically calculates k cluster-centres for each of 
the C classes to be analysed and then combines them 
to produce kC textons. However, this may result in an 
unnecessarily redundant set of features; [4] shows 
that textons can be combined to produce a smaller set 
with only a small loss in performance. 

Given an image representation, classification 
commonly proceeds by either nearest-neighbour matching 
(returning the class of the training image whose 
representation lies closest – with some metric, usually the 

 statistic [3, 4, 10] or Earth Mover’s Distance [8] – to 
that of the test image) or non-linear (kernel-based) SVMs 
[6, 7]. k-nearest neighbours matching has also been 
explored [7], but produces no improvement over nearest-
neighbour. [7] and [6] demonstrate the superiority of 
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SVMs over NN for texture classification. However, 
nearest neighbour classification remains useful for studies 
focussing on description and representation due to its 
relative poverty of implementation choices. 

In all of these methods, the partitioning of feature 
space is accomplished by unsupervised clustering of local 
descriptor responses using some variation of the k-means 
algorithm. Labels are defined by cluster centres and 
points are assigned to some label depending on which 
cluster centre is closest to that point’s local descriptor; 
thus, the clustering induces a Voronoi partition on feature 
space. 

In this paper we explore an alternative way to achieve 
this partitioning, based on assigning a common label to 
points which share the same predominant geometrically-
defined ‘type’ of local structure. Using a dictionary of 
visual words which is pre-defined, rather than being 
generated from the dataset to be analysed, produces a 
simpler approach to classification and one which may 
pick up on useful subtleties which are smoothed over by 
the clustering process. It also obviates the need to ensure 
that high dimensional feature spaces are sufficiently well 
populated to allow accurate clustering. 

By ‘type’ of local structure, we suggest that any local 
geometric structure can be assigned to one of a finite 
vocabulary of primitives which are somehow qualitatively 
distinct. This is the premise of the Geometric Texton 
Theory of [12], which categorizes local structure based on 
the local symmetries which it possesses (see section 2). 
This induces a partition on the filter-response space of six 
Gaussian derivative filters. We refer to these features as 
‘Basic Image Features’ or BIFs. 

1.1. Related work 
Aside from the methods detailed above which employ 

k-means clustering to quantize descriptor responses into 
discrete features over which the texture can be 
represented statistically, Konishi & Yuille [13] have 
divided filter-response space into a lattice by adaptively 
quantizing the value of each of N filters, into bn bins, 
separately; before modelling a texture as a distribution 
over these ∏  bins. As with methods using k-means, 
the partition is determined by analysis of the dataset in 
question. 

Local Binary Patterns [14] resemble our approach in 
that each LBP scheme constitutes a pre-defined dictionary 
of features over which images are represented 
statistically. The main difference lies in the mathematical 
basis for the choice of feature set, which in our case is 
geometrical and in the case of uniform LBPs is based on 
the statistical properties of texture images in general. 

In the remainder of this paper, we describe a texture 
classification system in which images are represented by 
histograms over a dictionary of combinations of Basic 

Image Features, rather than cluster-centre textons; present 
a multi-scale histogram comparison technique; and 
evaluate categorization performance on a range of popular 
texture datasets. The results presented are, to the best of 
our knowledge, state-of-the-art for the UIUCTex and 
KTH-TIPS datasets, and close to the state-of-the-art for 
CUReT, despite using a less sophisticated classifier. 

2. Basic Image Features 
Basic Image Features [12, 15] are defined by a 

partition of the filter-response space (jet space) of a set of 
six Gaussian derivative filters (Figure 1). This set of 
filters describes an image locally up to second order at 
some scale. 

There are two stages to the derivation of this partition. 
In the first, information which is intrinsic to the local 
structure of the scene is separated from ‘extrinsic’ 
information resulting from uninteresting changes in 
imaging setup. In the second, this intrinsic component is 
quantized into regions corresponding to different types of 
local image symmetries. 

 
Figure 1: The filter bank used to calculate BIFs, consisting of 
one zeroth-order, two first order and three second order 
Gaussian derivative filters, all at the same scale. We refer to the 
vector of responses as a local jet. It describes up to the second 
order term of the local Taylor series. Note that in our 
implementation, since we set the parameter  of Algorithm 1 to 
be zero, we do not need to compute responses to the zeroth order 
filter. 

The transformations which are considered 
uninteresting for the purpose of calculating BIFs are 
rotations, reflections, intensity multiplications and 
addition of a constant intensity. Jet space is factored [16] 
by these extrinsic transformation groups to produce an 
intrinsic component in which all filter responses differing 
only in one of these extrinsic factors are mapped to the 
same point. Any partition of this intrinsic component will 
therefore produce a set of features which are invariant to 
rotations, reflections and these grey-scale transformations. 

The partition of the intrinsic component of jet space 
which defines the Basic Image Features is based on 
deciding which type of symmetry of the local image 
geometry is most nearly consistent with the local jet [15]. 
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A test is developed [15] which shows whether a  filter 
is sensitive to a certain local symmetry, i.e. whether it is 
able to detect invariance under a group of transformations 
(i.e. a prospective automorphism group). The type of 
transformations considered are image isometries [17]: 
spatial isometries combined with intensity isometries. The 
possible automorphism groups of 2D images relative to 
the class of image isometries, excluding cases containing 
discrete periodic translations, are determined [15]. Hence 
we can use our test to decide which filters in the span of 
the second order Gaussian derivative family of figure 1 
(i.e. which linear combinations of the filters) are sensitive 
to each of these symmetries. (For example, the only such 
filters which are sensitive to reflectional symmetry in 
vertical lines (at some scale) are of the form  
   centred on the line of reflection.) This allows the 
regions of the intrinsic component of jet space which 
represent each type of image symmetry to be identified. 

Since most image structures are not perfectly 
symmetrical, we base our partitioning scheme on deciding 
which symmetry most approximately holds. By selecting 
an appropriate subset of symmetry types (which deals 
with the problem of some automorphism groups being 
subgroups of others) and partitioning the intrinsic 
component into Voronoi cells around their corresponding 
regions using a metric induced by the filter response 
space [16], we achieve this approximate symmetry 
classification. 

 

i. Measure filter responses  
 

ii. Compute , 
4  

 
iii. Classify according to the largest of: 

, 2 , , 2 ,  

Algorithm 1: Calculation of BIFs. For texture analysis we set the 
parameter 0. See figure 2 for an illustration of the types of 
symmetry captured by each of the seven BIFs. 

The algorithm for computing Basic Image Features 
from filter responses turns out to be very simple, and is 
given in Algorithm 1. Figure 2 illustrates the types of 
structure / symmetry which are represented by each of the 
seven BIFs. One of these (the pink label of Figure 2) 
represents a degenerate case of ‘flat’ structure which, 
given its uniformity, contains every possible kind of local 
symmetry. For this single category, a tunable parameter  
determines how much ‘noise’ is tolerated before a region 
is no longer considered to be flat; and hence is assigned to 
another category. For texture analysis we do not want any 
flattening of potentially important low-contrast structure, 
and so we set this parameter so that this seventh label is 

never used. Experiments confirm that this also produces 
the best results. Hereafter, we will refer to a six-feature 
system of BIFs. 

An example of a texture image densely labelled with 
the six BIF features computed at two different scales is 
shown in figure 3. 

 
Figure 2: Stereotypical image patches corresponding to each of 
the seven BIFs defined by step iii of Algorithm 1. Colours 
correspond to the labelling system of Figure 3. 

 
Figure 3: An image of bark from the UIUCTex database [8], 
with BIFs computed at scales 1 and 4. See Figure 2 for 
a key to the colours used for labelling. 

3. Method & Results 

3.1. Features 
Simply modelling an image as a histogram over six 

categories would not be expected to be sufficiently 
descriptive to represent a texture well (and indeed, using 
histograms of BIFs at a single scale to represent each 
image produces only 65% correct classification on the 
CUReT database). In order to produce a less coarse 
representation we need a way of combining this six letter 
‘alphabet’ into a sufficiently descriptive collection of 
‘words’. One way to achieve this is to describe local 
configurations of BIFs, i.e. how local structure in the 
image changes. 

Varma & Zisserman [2] demonstrated the advantages 
of rotationally invariant local description. A natural 
choice is therefore to exploit the rotation-invariance of the 
BIFs themselves by considering stacks, or ‘columns’, of 
BIFs over scale; rather than a non-rotationally invariant 
spatial configuration of BIFs. So our features describe the 
change in local structure over scale. 

Empirically we have found that a stack of four BIFs 
distributed logarithmically in scale space over four 
octaves (i.e. at scales 1,2,4 and 8 times the ‘base’), 
resulting in a 64=1296 dimensional image representation, 
seems to capture the right trade-off between specificity 

, 2 , , 2 ,  



 

 

and generality. For the rest of the paper, these features 
will be referred to as BIF-columns. However, we do not 
claim that this is an optimal way of using BIFs for local 
description. 

BIF-columns are illustrated in figure 4. We represent 
images as distributions over these features, calculated at 
every pixel.  

 
Figure 4. Since sampling in scale space (left) decreases as scale 
increases, our BIF-columns are actually more like pyramids 
(right) in that they describe larger local regions of the image at 
coarser scales. 

We compute Gaussian derivative filter responses for an 
image by convolution in the spatial domain (using the 
Mathematica implementation from [18]). For points near 
to the edge of the image, the convolution wraps around to 
the opposite edge. Ideally, points where the full spatial 
support of the filter does not lie within the image should 
be discarded; however, we have found that this 
consistently degrades performance, regardless of our 
other implementation choices. We hypothesize that this 
result is due, on the one hand, to the effects of poorer 
sampling when these points are removed (and indeed, a 
similar degradation is produced when we disregard points 
randomly subsampled from across the image to simulate 
this reduction in sampling), and on the other hand, the 
possibility that the images which we have analysed are 
sufficiently homogeneous that treating them cyclically is 
not unreasonable. We use filter responses calculated at 
every point in the image for the results presented here, but 
note that this deserves further investigation. 

Having represented a texture image as a histogram 
over our dictionary of BIF-columns, we use nearest-
neighbour classification (as in [4]) to classify test images. 
As a histogram comparison metric we employ the 
Bhattacharyya distance, 1 . √  , rather than the more 
commonly used chi-square statistic, since it has been 
shown to possess superior theoretical properties in certain 
situations [19]. However, in practice we have found the 
results produced by both to be very similar. 

Thus the single scale version of our method comprises, 
at scale : 

Representation: 

• Compute a stack of four BIF-images at scales 
, 2 , 4 , 8 , using Algorithm 1. Transpose to get 

an array of BIF-columns representing each pixel in 
the image. 

• Count occurrences of each of the 64=1296 possible 
BIF-columns and form a normalised histogram. 

Classification: 

• Train by computing a BIF-column histogram 
(above) for each training image. 

• Classify by computing a BIF-column histogram 
(above) for the test image and finding the nearest 
neighbour of the stored training histograms using 
the Bhattacharyya distance. 

We use this method to classify all of the textures in the 
CUReT database (see section 3.3), using 43 training 
images per class and calculating results over 100 random 
splits into training and test images, as in [6], giving a 
score of 98.2±0.1% (with 1). This is at least as good 
as other methods using nearest-neighbour classification 
(see table 1), showing that a geometrically derived set of 
features can be at least as effective a representation for 
texture as cluster-centre textons calculated from the 
training data. 

3.2. Comparison of image representations across 
scale 

Although our local BIF-column descriptors describe 
the variation in local image structure across scale, they are 
not scale-invariant. That is, despite being able to describe 
interesting structures at a range of scales, each descriptor 
is rooted at the same ‘base’ scale. In order to cope with 
datasets which, unlike CUReT, contain significant scale-
differences between images of the same class, we 
introduce a measure for combining distances between 
histograms at a range of scales. 

Hayman et al. [7] successfully adopt a pure learning 
approach to this problem, in effect augmenting the 
training set with a range of artificially rescaled versions of 
the original training images. Although this works well on 
the datasets tested, it implicitly assumes that texture 
images have a single scale at which they are best 
described, which may not be the case for certain classes 
of textures. 

We would like to maintain the links between 
representations of the same image analysed at different 
scales. For our multi-scale comparison we therefore first 
compute a stack of histograms for each image at a range 
of scales. Each histogram is calculated in exactly the same 
way as for our single scale implementation. The ‘base 
scale’ of the finest scale histogram – that is, the finest 
scale in the BIF-columns over which the histogram is 
computed – is 2 , and there is a separation between 
each scale of one quarter octave. For computational 
reasons, in this preliminary study we limit the number of 

 



 

 

scales analysed to seven, making the base scale of the 
coarsest scale histogram 2 . Thus, because our BIF-
columns span four octaves, the total range of scales 
analysed extends from 0.84 to 22.6. 

Given these histogram stacks for two images to be 
compared, there are two components to our comparison. 
The first deals with the problem of wanting to match 
images dependant on their structure at all scales, rather 
than one characteristic scale. The second addresses, for 
example, images taken from different distances, by 
allowing all possible translations of histogram stacks 
relative to each other, as in figure 5. 

 
Figure 5: Multi-scale comparison of images  and . We 
compare histograms computed at seven base scales, of which 
only four are shown here for clarity. Histogram stacks are 
shifted up and down in scale relative to each other to allow 
matching of similar features appearing at different scales in each 
image. 

To compare stacks of normalised BIF-column 
histograms for images  and , calculated at column-base 
scales , , … ,  and , , … ,  respectively, 
we take a weighted average of squared Bhattacharyya 
distances computed at each pair of scales , , 

 
∑

1 ; . ;  

∑ 1  (1)  

where ;   is the normalised BIF-column histogram 
of image  computed at scale  and . The 
weighting by  discriminates against poorly 

sampled coarse scale representations. Normalisation 
allows direct comparison of distances for differently 
shifted comparisons, allowing the multi-scale scheme to 
be incorporated into our nearest neighbour classifier. 

We emphasize the difference between multi-scale BIF-
columns, which describe the local variation of the texture 
across scale (the local deep structure) at each point in an 
image analysed at a certain scale; and multi-scale 
histogram comparison which describes the global 
variation over scale of the texture (representation) itself. 

3.3. Classification results 
We present classification results on three commonly 

used datasets, using exactly the same method on each 
with no tuning of parameters. To review, the main 
elements of this method are i) the representation of a 
texture at some scale as a histogram over a universal, 
geometrically-defined dictionary of rotationally-invariant 
features (BIF-columns); and ii) nearest-neighbour 
classification using the multi-scale measure of section 3.2, 
which is based on the Bhattacharyya distance. 

The CUReT database [20] contains 61 classes, each 
consisting of 205 images of some physical texture sample 
photographed under a range of viewing and lighting 
angles but without significant variation in scale or in-
plane rotation. In accordance with other studies which use 
CUReT for classification, we consider only the 92 images 
per class which allow the extraction of a 200x200 pixel 
foreground region of texture. 

The KTH-TIPS dataset [7] expands CUReT by 
photographing new samples of 10 of the CUReT textures 
at a subset of the viewing and lighting angles used in 
CUReT but also over a range of scales, producing 81 
200x200 pixel images per class. Although KTH-TIPS is 
designed in such a way that it is possible to combine it 
with CUReT in testing, we follow [6] in treating it as a 
stand-alone dataset. 

UIUCTex [8] contains 25 classes, each of 40 images 
(640x480 pixels) with significant changes in scale and 
viewpoint as well as non-rigid deformations; although 
with less severe lighting variations than CUReT. Unlike 
the other two datasets, UIUCTex is uncalibrated. In terms 
of intra-class variations in appearance, this is the most 
challenging of the commonly used testbeds for texture 
classification. 

For testing, we select 100 different random 
training/test splits for each dataset, as in [6], and report 
the mean number of correct classifications. Comparative 
results are presented in Table 1, for training on 43, 40 and 
20 images per class from the CUReT, KTH-TIPS and 
UIUCTex datasets respectively. 

First, note that our multi-scale scheme produces a 
small but significant improvement on the CUReT 
database over the single scale results reported in section 
3.1. Since CUReT does not contain significant intra-class 
variation in scale, scale-shifting of histogram stacks (see 
figure 5) would not be expected to be useful. Figure 6 
confirms this, showing that shifting is rarely used when 
CUReT images are classified correctly by our multi-scale 
algorithm, but is often seen in incorrect categorizations, 
suggesting that shifting is only used in cases where no 
good match is available at the same scale. This 
improvement therefore reflects a combination of the 
added descriptive power of using filters at scales better 
matched to the structures present in certain textures, with 

  
 
 

 
 

scale 



 

 

appropriate use of this multi-scale information in 
classification. Figure 7 shows examples of images which 
are misclassified by our algorithm. 

 

 CUReT 

43 training 
images per 
class 

UIUCTex 

20 training 
images per 
class 

KTH-TIPS 

40 training 
images per 
class 

Multi-scale 
BIF-columns 

98.6±0.1% 98.8±0.1% 98.5±0.1% 

Varma & 
Zisserman - 
MR8 [4] 

97.43%   

Varma & 
Zisserman – 
Joint [3] 

98.03% 78.4±2.0%† 92.4±2.1%† 

Hayman et 
al. [7] 

98.46±0.09% 92.0±1.3%† 94.8±1.2%† 

Lazebnik et 
al. [8] 

72.5±0.7%† 96.03% 91.3±1.4%† 

Zhang et al. 
[6] 

95.3±0.4% 98.3±0.5% 95.5±1.3% 

Broadhurst 
[21] 

99.22±0.34%   

Table 1: Classification scores for our, and a number of state-of-
the-art methods, on three well-known datasets. Results are as 
originally reported, except for those marked † which are taken 
from [6]. 

Despite not being modified to suit each dataset, our 
method produces consistently good results across all three 
databases. To the best of our knowledge, the results for 
multi-scale BIF-columns exceed the best reported for the 
UIUCTex and KTH-TIPS datasets. For CUReT, 
Broadhurst [21] has achieved 99.22% correct 
classification by using a Gaussian Bayes Classifier with 
marginal filter distributions. The method which we report 
achieves superior performance to other methods which 
use nearest-neighbour classification. 

4. Conclusions and Further Work 
We have presented a multi-scale texture classification 

algorithm which, without any tuning of paramaters, 
produces what we believe to be state-of-the-art results on 
two widely-used texture datasets; and close to state-of-
the-art results on a third. 

 

 
Figure 6: The distribution of histogram-stack shifts (figure 5) 
used by our multi-scale algorithm for images which are correctly 
(red) and incorrectly (black) classified. 

 
Figure 7: Three examples of texture images from the CUReT 
dataset [20] which are misclassified by our multi-scale BIF-
columns algorithm (left); the images to which they were 
incorrectly matched (centre); and ‘nearest misses’ from the 
correct class (right). Top: Terrycloth mistaken for Pebbles. Like 
many misclassified textures, these are perceptually very similar. 
Middle: Ribbed Paper mistaken for Corn Husk. In this particular 
case, scale invariance may have been a disadvantage. Bottom: 
Corduroy mistaken for Plaster B, showing very little perceptual 
similarity. 

The novelty of our system lies in the fact that we use a 
geometrically-derived dictionary of features over which 
images are represented, rather than pre-training a 
dictionary of textons for each dataset by clustering. This 
results in a simpler and more general approach. 

That a universal dictionary can outperform one trained 
to the dataset in question shows that clustering is certainly 
not an optimal way to produce features for statistical 
texture representation. 
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The main focus of this paper has been on image 
representation and so we have avoided using more 
sophisticated classifiers for ease of implementation. 
However, a number of studies [6, 7, 22] have shown that 
Support Vector Machines consistently outperform nearest 
neighbour matching for tasks of this kind, and so this is 
an obvious direction for improvement. 

We also make no claims about the optimality of our 
BIF-columns (as opposed to other ways of combining 
BIFs) or multi-scale scheme, both of which we plan to 
investigate further. 
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