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Abstract

We introduce a general formulation, called non-negative
graph embedding, for non-negative data decomposition by
integrating the characteristics of both intrinsic and penalty
graphs [17]. In the past, such a decomposition was ob-
tained mostly in an unsupervised manner, such as Non-
negative Matrix Factorization (NMF) and its variants, and
hence unnecessary to be powerful at classification. In
this work, the non-negative data decomposition is stud-
ied in a unified way applicable for both unsupervised and
supervised/semi-supervised configurations. The ultimate
data decomposition is separated into two parts, which sep-
aratively preserve the similarities measured by the intrinsic
and penalty graphs, and together minimize the data recon-
struction error. An iterative procedure is derived for such a
purpose, and the algorithmic non-negativity is guaranteed
by the non-negative property of the inverse of any M-matrix.
Extensive experiments compared with NMF and conven-
tional solutions for graph embedding demonstrate the al-
gorithmic properties in sparsity, classification power, and
robustness to image occlusions.

1. Introduction

Techniques for non-negative and sparse representation
have been well studied in recent years to find non-negative
basis with few nonzero elements [5]. Non-negative Matrix
Factorization (NMF) [9] is the pioneering work for such a
purpose. It imposes non-negativity constraints in data re-
construction, and requires that the elements of the projec-
tion vectors, i.e., bases, together with the low-dimensional
representations, are all non-negative. This ensures that the
basis vectors shall be combined to form an image in a non-
subtractive way.

Li et al. [11] imposed extra constraints to reinforce the
basis sparsity of NMF; also matrix-based NMF has been ex-
tended to Non-negative Tensor Factorization (NTF) [4] for
handling the data encoded as high-order tensors. Wang et
al. proposed the Fisher-NMF [ 16], which was further stud-

978-1-4244-2243-2/08/$25.00 ©2008 IEEE

ied by Kotsia et al. [8], by adding an extra term of scatter
difference to the objective function of NMF. Tao et al. [ 13]
proposed to employ local rectangle binary features for im-
age reconstruction. Recently, Yan ef al. [ 18] proposed a su-
pervised algorithm for learning semantic localized patterns
with binary projections, and each non-overlapping subset
of features constitute a binary projection vector for feature
extraction.

There is psychological and physiological evidence for
parts-based representations in the brain [9]. But most pre-
vious algorithms for non-negative data decomposition are
unsupervised and motivated for data reconstruction. Hence,
they are still far from explaining the functions of the brain,
which shows great capability in learning and classifica-
tion. There were some attempts [ 16][8] to search for non-
negative representation in a supervised manner, but their so-
lution was derived by directly combining the objective func-
tions for NMF and the specific Maximum Margin Criterion
[10], which are essentially contrary to each other, hence the
solution is not the best for either data reconstruction or clas-
sification. Although varieties of dimensionality reduction
algorithms [2][3][6] have been proposed in pattern recogni-
tion, Yan ef al. claimed that most of them, such as Principal
Component Analysis (PCA) [7][14], LDA [1][12] and the
recently proposed Marginal Fisher Analysis (MFA) [17],
can be unified with a general formulation, called graph em-
bedding [17]. A natural question is whether there exists a
unified formulation to search for non-negative data decom-
position by following the criteria of different dimensional-
ity reduction algorithms. We give a positive answer to this
question in this work.

We present a general formulation, called non-negative
graph embedding, such that all the algorithms unified within
the graph embedding framework can be easily extended to
obtain their non-negative solutions. First, the ultimate data
decomposition is divided into two parts. One part preserves
the characteristics of the intrinsic graph, which describes
the favorite similarities of the data pairs, and the other re-
tains the characteristics of the penalty graph, which de-
scribes the unfavored similarities for the specific targets of a



certain algorithm. On the other hand, these two parts jointly
target the best reconstruction of the original data. Then,
an iterative procedure is presented to search for such two
parts, and the non-negativity of the solution is guaranteed
by the theoretical fact that the inverse of any M -matrix is
non-negative. Meanwhile, the auxiliary functions are used
to prove the algorithmic convergence.

The remainder of this paper is organized as follows: In
Section 2, we introduce the details of non-negative graph
embedding, followed by algorithmic analysis in Section 3.
Section 4 demonstrates the detailed experimental results,
and we conclude this paper in Section 5.

2. Non-Negative Graph Embedding

For a classification problem, we assume that the train-
ing sample data are given as X = [x1,x2,...,zN], Where
x; € R™, N is the total number of training samples,
and the corresponding class labels are denoted as {c;|¢c; €
{1,...,N.}}X¥ | with N, is the class number. Denote the
sample number of the cth class as n.. Since in practice the
feature dimension m is often very large, it is usually neces-
sary to transform the original high-dimensional data into a
low-dimensional feature space for facilitating and enhanc-
ing subsequent process. In this work, we address the prob-
lem of general non-negative data decomposition, applicable
for both unsupervised and supervised/semi-supervised con-
figurations. Note that we utilize in this work the following
rule to facilitate presentation: for any matrix A, A; means
the ith row vector of A, its corresponding lowercase version
a; means the ith column vector of A, and A;; denotes the
element of A at the ith row and jth column.

2.1. Motivations

Non-Negative Matrix Factorization (NMF) factorizes the
data matrix into one lower-rank non-negative basis matrix
and one non-negative coefficient matrix. Its objective func-
tion is,

min | X — WH]||, st. W,H >0, (1)
W,H

where W € R™*" is the basis matrix and H € R™ is
the coefficient matrix. Usually, rjmin(m, N) for dimen-
sionality reduction. NMF is unsupervised and has been
proposed for data reconstruction, and hence the derived co-
efficient matrix is unnecessary to be great at classification
capability. Classification is generally the ultimate target of
feature extraction, and hence it is desirable to derive non-
negative solution for data decomposition in supervised and
semi-supervised configurations.

Despite the different motivations of different algorithms
for dimensionality reduction, Yan et al. [17] claimed that
most of them can be explained within a unified framework,

called graph embedding. Let G = {X, S} be an undi-
rected weighted graph with vertex set X and similarity ma-
trix S € RV*N_ Each element of the real symmetric matrix
S measures for a pair of vertices the similarity, which is as-
sumed to be non-negative in this work. The diagonal matrix
D and the Laplacian matrix L of a graph G are defined as,

L=D-S, Di=Y_ S, Vi. )
j#i

Graph embedding generally involves an intrinsic graph
G, which characterizes the favorite relationship among the
training data, and a penalty graph G? = {X, SP}, which
characterizes the unfavorable relationship among the train-
ing data, with LP = DP — SP, where DP is the diagonal
matrix as defined in (2), and then two targets of graph-
preserving are given as follows,

{ maXpy1 Zi;éj Ik — hgl‘Hz‘S’fja 3)
mings Y, I} — 2S5,
where H' = [hi,hd, -+ hY] € RN are the desired
low-dimensional representations for the training data.

Although several procedures [ | 5] have been proposed to
tackle this problem, these solutions are not guaranteed to be
non-negative. Motivated by the non-negativity of the solu-
tion and the algorithmic commonness unified as graph em-
bedding, we study in this work a general framework, called
non-negative graph embedding, such that all the dimension-
ality reduction algorithms unified by graph embedding can
easily yield their non-negative solutions by following this
new formulation, and consequently the non-negative data
decomposition can be conducted in a supervised or semi-
supervised configuration.

2.2. Problem Formulation

To formulate the non-negative graph embedding, we fol-
low hereafter all the notations in Section 2.1. To make the
notations of NMF and graph embedding consistent, we di-
vide the coefficient matrix H into two parts, namely,

1
m=| 4| @)

where H'! is defined the same as in Eqn. (3), and H? =
[h3,h3,---  h3] € RU=DXN where d < r. Correspond-
ingly the basis matrix W is also divided into two parts,

W= [w!'w?, (5)

where W1 € R™*4 and W2 € Rm*(r=d),

The desired low-dimensional representation H ! of the
training data aims to retain properties of the intrinsic graph
and at the same time avoid the properties of the penalty



graph, and hence is unnecessary to be sufficient at recon-
structing the original data. Here, (W?2, H?) are consid-
ered as the complementary space of (W', H'), and they
together reconstruct the original data in an additive manner.
As stated in (3), there exist two objectives for graph embed-
ding. From the complementary property between H ' and
H?, the first objective in (3) is transformed into,

min » _ [|Af — 13|25 6)
i#£]

Then, we have the objective function for non-negative
graph embedding as follows,

min > NIht = hjl2Sy; + ) |IhF = h3|*SY,
i#£] i#£]
+A|X - WH|?, st. W,H >0, (7)

where ) is a positive parameter for balancing the two parts
for graph embedding and data reconstruction. In this work,
A may be set as 1 because the two parts are at similar scale
levels.

From the definitions in Eqn. (3), we have

T
> \n = hYI2Si; =Tr(H'LH") ®)
i#]

T
> |h? = n3|?SE = Tr(H*LPH*"). )
i#]

As stated in Section 2.1, W is the basis matrix and hence
it is natural to require that the column vectors of W are nor-
malized. But this constraint makes the optimization prob-
lem much more complex, and in this work, we compensate
the norms of the bases into the coefficient matrix and rewrite
the first two terms of (7) as

Tr(H'LH') = Tr(QH'LH QT),  (10)
Tr(H*LPH?") = Tr(QH*LPH?' QF), (1)

where the matrix Q1 = diag{||wi|, ||wi]],- -, |w}|} and
Q2 = diag{[[w?|], [w3ll,- - , [w?_ ]|} where w! denotes
the ith column vector of matrix Wk, k = 1,2.

Then, finally we have the objective function,

min Tr(QH'LH QT) + Tr(Q.H*LP H?' QY)
A X - WH|?, st. W,H>0. (12)

This objective function is biquadratic, and generally
there is no closed-form solution. We present in the next
subsection an iterative procedure for computing the non-
negative solution.

2.3. Convergent Iterative Procedure

Most iterative procedures for solving high-order opti-
mization problems transform the original intractable prob-
lem into a set of tractable sub-problems, and finally obtain
the convergence to a local optimum. Our proposed itera-
tive procedure also follows this philosophy and optimizes
H and W alternately.

2.3.1 Preliminaries

Before formally describing the iterative procedure for non-
negative graph embedding, we first introduce two concepts:
auxiliary function and M -matrix, and some lemmas which
shall be used for the algorithmic deduction and convergence
proof.

Definition-1 Function G(A, A’) is an auxiliary function
for function F'(A) if the conditions

G(A,A) > F(A), G(A A)=F(4), (13)

are satisfied.

Definition-2 A matrix B is called M -matrix if the con-
ditions, 1) the off-diagonal entries are less than or equal to
zeros, namely B;; < 0,7 # j; and 2) the real parts of all
eigenvalues are positive.

From these two definitions, we have two lemmas with
proofs omitted.

Lemma-1 If G is an auxiliary function, then F' is non-
increasing under the update

A — arg mjn G(A, AY, (14)

where ¢t means the t¢th iteration.

Lemma-2 If B is an M -matrix, the inverse of the matrix
B is non-negative, namely Bigl >0,Y14,7.

2.3.2 Optimize W for given H

For a fixed H, the objective function in (12) with respect to
the basis matrix 1/ can be rewritten as

FW)=Tr(WD"WT) + \| X - WH|?  (15)

where the matrix D" = diag{c}, -+ ,c}, ¢}, -+ ,c
the element c¢; = >, [|H} — H}[[*Si; and ¢ =
Zi;ﬁj ||H12,€ - kaHZSfj.

From the objective function, we notice that different row
vectors of W are independent to each other for optimiza-
tion, and hence the objective function can be further simpli-
fied into row-wise form as

F(W;) =W D"W[ + )| X; - W:H|]>,  (16)



where W; is the ith row vector of W and X is the 7th row
vector of the data matrix X. Here, we denote the function
FWi) = M| Xi — WiH|]?.

The auxiliary function of F'(W;) is defined as

G(W;, W) = WiD"WT + f(W}) + v f(W])(W; — WhHT

5 (Wi = WHR (W)W, ~ W),

where v f (W) is the gradient vector of f(WW;) with respect
to W; at the point W}. K;;(W}) = 6;; \WIHHT); /W,
where d;; is an indicator function

From the proof in [9], it is easy to prove that G(W;, W})
is the auxiliary function of F'(W;). Then, W/™' can be
computed by minimizing G(W;,W}.

3G(Wu 5

By setting = 0, we have

Wit =\ X; HY(K(W}) 4+ 2D")~? (17)

It is obvious that the updated basis vector Wf“ is still
non-negative if the matrices H and W/} are non-negative.
After the updating of W1, we normalize the column vec-
tors of W'*! and consequently convey the norm to the co-
efficient matrix, namely,

Hij < Hyj x ||wi™,V i, 4,
witt < Wit/ |wi |,V g,

(18)
19)

where w;H is the jth column vector of the basis matrix

WttL, Note that the updating of W and H in (18-19) will
not change the value of the objective function in Eqn. ( 12).

2.3.3 Optimize H for given normalized W

Then based on the normalized W in Eqn. (19), the objec-
tive function in (12) with respect to H for given W can be
written as

F(H) = Tr(H'LH ) +Tr(H2LP H2 )+ \| X - W H||?,

and here we denote f(H) = \|X — WH]|%
The auxiliary function of F'(H) is designed as

G(H,H") = Tr(H'LH' )+ Tr(H2LPH*" ) +-g(H, H'),

where we have
N

g(H,H') = f(H")+ > _Tr(v f(h5)" (h; — hb)) +
j=1

(hj — h5)T K7 (h)(hy — hY), (20)

l\D|’—‘

N
J=1

where K7 (hY%)i; = 6ij(AWTWHY); /H{

From the proof in [9], it is obvious that g(H, H?) is the
auxiliary function of f(H), and it is direct to conclude that
G(H, H?) is the auxiliary function of F'(H). Then a refined
H'™*! can be obtained by minimizing the objective function
G(H, H") with respect to H.

The gradient matrix of G(H, H') with respect to H is

OG(H,H! 2H'L

% - i 2H2LP i VI
HE N (h) (ha = RY), - KN (hiy) (hw — hiy)]. 21)
By setting w = 0, we can derive H'*! as fol-

lows. If : < d, then the 7th row vector, denoted as H f“, of
the coefficient matrix H ‘! can be updated by setting

OG(H, H! ;
% =2H,L+Vf(H})+(H;—H))K"' =0, (22)
where the matrix K' = diag{K'(h!);;, -+, KN (hY)i}.
Then, we have
H; = w! X(K'+2L)™* (23)

Similarly, if d < i < r, then H f“ can be updated by
setting

t
OG(H. HY) _ 2H,LP + Vf(H!) + (H; — H)K" =0,
OH,;
(24)
and then we have
H; = \w!l X(K'+2L7)7! (25)

To prove the non-negativity of new H ;, we have the fol-
lowing theorems.

Theorem-1 The matrices K¢ + 2L and K* + 2LP are
both M -matrices.

Proof: From the definition of K *, we have
) J t T t t
K;; = Kj(h-)ii =(\W Wh-)'/H

> \w; wth JHE = Mw;i||* > 0. (26)

It means that all diagonal elements of the diagonal matrix
K are positive. On the other hand, the matrix L and L?
are positive semidefinite, and the off-diagonal elements are
not larger than zero according the definition in Eqn. (3).
Then we can conclude that 1) the eigenvalues of the matri-
ces K' + 2L and K' + 2L” are all positive, and 2) the off-
diagonal elements of the matrices K° + 2L and K* + 2LP
are not larger than zero, so they are both M -matrices ac-
cording to the Definition-2. O

Since K* + 2L and K* + 2LP are both M -matrices, and
hence their inverses are both non-negative according to the



Lemma-2. Consequently we have the Theorem-2 as fol-
lows.

Theorem-2 The updated H; = \w! X (K® + 2L)~!
and H; = Mw! X (K + 2LP)~! are non-negative.

After we obtain the updated H ‘1, the objective function
value can be further reduced by rearranging the row order
of the matrix H'*! along with the corresponding column
rearrangement of the matrix W1, Here, we rewrite the
objective function (12) as

Tr(HYL — LP)H'") + Tr(HLPH) + \| X — WH|2.

It shows that the rearrangement of 1 will not affect the sec-
ond term and \|| X — W H||?!, and hence we can rearrange
H such that the fist term is minimized. This purpose can be
easily achieved by selecting the d rows of H with minimal
values of H* (L — L7y H! 1T

The two-step procedure can be summarized as in Algo-
rithm 1. The matrices W and H are iteratively optimized
until the the convergence criterion is attained (see step 2.5
in Algorithm-1).

3. Algorithmic Analysis

In the section, we prove the convergence of the iterative
procedure.

Theorem-3 The iterative procedure listed in Algo-
rithm 1 converges to a local optimum.

Proof: Here we define

Algorithm 1. Non-negative Graph Embedding

1: Initialize W, HO as arbitrary non-negative matrices.
2: For t=0,1,2,...,Thaz, DO

1. For given H = H*, update the basis matrix IV as:
Wit =\ X; HT(K(W}) +2DM) 1,
where T/ is the ith row vector of TW*+1,
2. Normalize the column vectors of W +!,
Hyj < Hy x ™|, Vi, 5, @7
witt < witt/|wit) Vg (28)
3. For given W = WL update the matrix H as:
Ifi <d,
H = ! X (K 42L)7 L.
Else
HAY = !l X (K +2L7) 71,
where H ™! is the ith row vector of H'*!.

4. Rearrange the row order of H**! according to the
value of H!Y(L — LP)H!HT.

5. IF[[WiH — W < /mr e and |H'™ — HY|| <
VN1 € (¢ is set to 10~ % in this work), then break.

3: Output W = Wtand H = H*.

F(W,H) = Tr(H'LH'" )+ Tr(H2L?H*" )+A| X—WH|*. 4. Experiments

According to the updating rule for W, we have
FW™LHY) <GW™ W < F(W', HY).

On the other hand, according to the updating rule for H, we
have

FWHL HY < GHT, HY) < F(WH, HY).
Thus we can conclude that
FWL g < F(WE HY).
We also have F'(W? H) > 0, then F'(W?, H') decreases

monotonically and has lower bound; hence F(W'*, H') will
converge to a local optimum. O

I'The corresponding column order of T need also be rearranged.

In this section, we evaluate the effectiveness of our
proposed non-negative graph embedding framework com-
pared with the popular subspace learning algorithms includ-
ing Principal Component Analysis (PCA), Linear Discrimi-
nant Analysis (LDA), Marginal Fisher Analysis (MFA), and
other non-negative basis pursuit algrithms Non-negative
Matrix Factorization (NMF) and Localized NMF (LNMF).
For the NGE algorithm, the intrinsic graph and penalty
graph are set the same as those for MFA, where the num-
ber of nearest neighbors of each sample is fixed as 3 (2 for
FERET database) and the number of shortest pairs from dif-
ferent classes is set as 20 in this work.

4.1. Data Sets

In our experiments, we use three benchmark face
databases CMU PIE, ORL, and FERET 2. All images are

2 Available at http://www.face-rec.org/databases/.
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Figure 1. Objective function value decreases along with the in-
crease of the iteration number.

aligned by fixing the locations of the two eyes. The CMU
PIE (Pose, Illumination, and Expression) database contains
more than 40,000 facial images of 68 people. In our exper-
iment, a subset of five near frontal poses (C27, C0S, C29,
C09 and CO07) and illuminations indexed as 08 and 11 is
used, and therefore each person has ten images. For the
FERET database, we use seventy people with six images
for each person. The ORL database contains 40 persons,
each with 10 images. For all the three databases, the images
are normalized to 32-by-32 pixels, and half of the images
from each person are randomly selected for modeling train-
ing and the other half for testing.

4.2. Algorithmic Convergence and Sparsity

In this subsection, we examine the convergence and spar-
sity properties of the NGE framework. As proved in the pre-
vious section, the update rules given in Algorithm 1 guaran-
tees a local optimum solution for our objective function in
Eqgn. (7). In Fig. 1 we show how the objective function
value decreases with increasing iterations on the FERET
database. Our offline experiments show that generally NGE
converges after about 5000 iterations.

For the aforementioned three databases, in which the
faces are not strictly aligned, the original NMF algorithm
has difficulty in finding sparse and localized bases. Li et
al. [11] proposed the LNMF algorithm by adding an extra
constraint term for reinforcing the sparsity. The basis ma-
trices of NGE compared with those from NMF and LNMF
on CMU PIE, ORL and FERET databases are depicted in
Fig. 2-4, from which we can observe that: 1) the basis of
LNMF are much more sparse than those of NMF; and 2) the
basis of NGE are also very sparse, but its basis shows to be
the combination of small regions instead of a small single
region as in LNMF. The classification superiority of NGE
over LNMF as introduced in the next subsection indicates
that the discriminating information may be often character-
ized in a spatially contextual way.

4.3. Classification Capability

In this subsection, we evaluate the discriminating power
of the non-negative algorithm NGE compared with the non-
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Figure 2. Basis matrices of the nonnegative algorithms NMF (1st
row), LNMF (2nd row), and NGE (3rd row) based on the training
data of the PIE database.
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Figure 3. Basis matrices of the nonnegative algorithms NMF (1st
row), LNMF (2nd row), and NGE (3rd row) based on the training
data of the ORL database.
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Figure 4. Basis matrices of the nonnegative algorithms NMF (1st
row), LNMF (2nd row), and NGE (3rd row) based on the training
data of the FERET database.

negative algorithms, NMF and LNMEF, as well as the popu-
lar subspace learning algorithm PCA, LDA and MFA. The
results from the original raw pixels without dimensionality
reduction are taken as baselines. For LDA and MFA, we
first conduct PCA to reduce the data to the dimension of
N — N, where N is the number of training data and N is
the number of classes, beforehand for avoiding the singular
value issue as conventionally [ 1]. For all the non-negative
algorithms NGE, NMF and LNMF, the parameter r is set as
N x m/(N + m) in all the experiment settings, and d is
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Figure 5. Face recognition accuracies over different feature dimen-
sions for PCA, LDA, NMF, LNMF, MFA, and NGE algorithms on
the PIE database. For better viewing, please see the color pdf file.

simply set to be N, for NGE. For all these algorithms, we
report the best results by exploring all possible feature di-
mensions as conventionally [ | 7]. The comparison results on
PIE, ORL and FERET databases are listed in Fig. 1. From
these results, we can see that: 1) for the non-negative algo-
rithms, LNMF performs on average much better than NMF,
and NGE remarkably outperforms both NMF and LNMF
on all the three databases; and 2) for the supervised sub-
space algorithms, NGE is comparable with or even better
than MFA. On the PIE database, NGE significantly outper-
forms LDA and MFA, which is further validated by a more
detailed comparison of face recognition accuracies over dif-
ferent feature dimensions as depicted in Fig. 5.

Table 1. Classification accuracies (%) of different algorithms on
the three databases. Note that the number in parenthesis is the
feature dimension with the best result.

| Algorithm |  PIE | ORL | FERET |
Baseline 82.54 85.00 81.90
PCA 82.54 (124) | 85.50(105) | 81.90 (141)
NMF | 80.67 (208) | 74.00 (158) | 83.81 (174)
LNMF | 92.06 (108) | 87.50 (130) | 81.90 (172)
NGE 98.10 (127) | 95.50 (121) | 92.42 (152)
LDA 94.92(62) | 9450(39) | 91.60 (67)
MFA 95.87 (116) | 9550 (48) | 91.43(43)

4.4. Robustness to Image Occlusions

As showed in Fig. 2, 3 and 4, the discriminant bases from
NGE are sparse and localized, which indicates that NGE
is potentially more robust to image occlusions compared
with algorithms with holistic bases such as PCA, LDA and
MFA. To verify this point, we randomly add image occlu-
sions of different sizes to the testing images. Several exam-
ple faces from the PIE and ORL databases with occlusions
are depicted in Fig. 6. The detailed recognition results of
NGE compared with the above six algorithms are listed in
Fig. 7. From all these results, the observation can be made
that when the size of the occluded patch is less than 8-by-8

F1lh!.m:p1p1”1
- - - i
Figure 6. Sample images with occlusions from PIE (top row) and
ORL (bottom row) databases. From left to right, the occlusion

sizes are 0-by-0, 6-by-6, 8-by-8, 10-by-10, and 12-by-12 pixels
respectively.

pixels, all these algorithms seem to be able to conquer the
affect of image occlusions. However, when the occlusion
size grows larger than 8-by-8 pixels, the performance of the
algorithms with holistic basis e.g., PCA, LDA, and MFA,
will decrease quickly, while our algorithm NGE shows to be
much more robust to the image occlusions, with improve-
ments around 10 and 15 points separately over the second
best algorithm for the occlusion sizes of 10-by-10 and 12-
by-12 pixels. Another interesting observation is that NMF
and LNMF are only comparable with PCA in all the set-
tings °. One possible explanation for this may be that when
the image size is small, the bases from PCA are much more
robust to different affects, such as pose, illumination, and
expression variations as well as image misalignments.

4.5. Discussions

In this subsection, we would like to discuss and highlight
some aspects of our proposed NGE framework:

1. NGE is a general framework for non-negative data de-
composition. It can be integrated with any subspace
learning algorithm unified within the Graph Embed-
ding framework as introduced in [ | 7] to obtain (poten-
tially sparse) non-negative discriminant basis. In this
paper, we use MFA as a specific case, but the algorithm
is ready to be extended to incorporate other graph em-
bedding algorithms, unsupervised, supervised or semi-
supervised, as long as Theorem-1 is satisfied.

2. One similar work to NGE with LDA graph is the
Fisher-NMF [16] algorithm, which is further refined
in [8]. The experiments in [16] and [8] showed that
Fisher-NMF indeed has improved classification power
compared to the original unsupervised NMF and the
later proposed LNMF [ 1 1]. But its performance is lim-
ited as reported in [8] that the face recognition perfor-
mance of Fisher-NMF is inferior to LDA. Compared
to Fisher-NMF, our NGE framework is superior in the
following aspects: 1) in Fisher-NMF, the objective of
NMF and that of Maximum Margin Criterion [ 1 0] are

3The results reported in [1 1] are based on faces of size 112-by-92 pix-
els, where NMF and LNMF can easily beat PCA.
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Figure 7. Recognition accuracy vs. Occlusion patch size. Top:
results on the PIE face database. Middle: results on the ORL face
database. Middle: results on the FERET face database. For better
viewing, please see the color pdf file.

essentially contrary to each other, and hence the de-
rived data decomposition is neither the best for data re-
construction nor the best for classification, while NGE
provides a more reasonable mathematical formulation
for these two purposes, and thus performs much bet-
ter in classification; and 2) Fisher-NMF is designed by
adopting the philosophy of LDA, while NGE is a gen-
eral formulation.

3. All the experimental results validate the advantages of
the marriage of basis non-negativity and supervised
learning configuration, which inspires us to follow this
integrated direction when develop new subspace learn-
ing techniques.

5. Conclusions and Future Works

In this paper, we proposed a general formulation for de-
riving non-negative solutions for all dimensionality reduc-
tion algorithms unified within the graph embedding frame-
work. An iterative procedure was presented for such a pur-
pose, and the inverse non-negativity of the M-matrix guar-
antees the non-negativity of the solution. The classifica-
tion power and robustness to image occlusions are demon-
strated by a specific case of our framework based on the

MFA graphs. Further research on this topic includes: 1)
currently the computational cost for the training of NGE
is still relative high, more than two hours for a moderate
size database. It will be useful to further improve algorith-
mic efficiency for larger size databases; 2) how to explicitly
control the sparsity of the basis matrix while retaining the
non-negativity of the updating rule; and 3) how to extend
the current framework for tensor-based non-negative data
decomposition.
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