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Abstract

Robustness to illumination variations is a key require-

ment for the problem of change detection which in turn is

a fundamental building block for many visual surveillance

applications. The use of ordinal measures is a powerful way

of filtering out illumination dependency in representing ap-

pearance, and several such measures have been proposed in

the past for change detection. By design, these measures are

invariant to unknown monotonic transformations that may

be caused due to global illumination changes or automatic

camera gain. However, previous work has left theoretical

and practical gaps that limit their full potential from being

realized. For instance, random noise has not been given a

principled treatment. In this paper, we formulate the change

detection problem in terms of order consistency and show

that in the presence of noise with known statistical proper-

ties, significance tests for order consistency yield much bet-

ter results than the state of the art. Since ordinal measures

require a reordering of patches, they are usually expensive

in practice (O(n*log n) at best). We improve upon this by

connecting the problem to monotonic regression, and ap-

plying a fast algorithm from the corresponding literature.

We also show that good trade offs between speed and accu-

racy can be made by quantization to achieve accurate and

very fast matching algorithms in practice. We demonstrate

superior performance on statistical simulations as well as

real image sequences.

1. Introduction

Order relationships in the visual signals we receive are a

powerful cue to succinctly and robustly represent visual in-

formation. We often describe objects and shades with ad-

jectives like ‘brighter’ or ‘darker’. Sketches, apart from dis-

playing object boundaries, often depict shading information

to illustrate brightness changes which are an important cue

to discerning the object geometry. Xie et al. [18] point out

that under assumptions of locally constant illumination and
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smooth surface geometry, the ordering between pixel inten-

sities is quasi-invariant to an ambient or point light source

intensity change. Ordering is also preserved under auto-

matic gain change, employed by most commercial cameras

to extend their dynamic range. Note that pixel orderings are

invariant to any monotonic transformation of the data. Due

to their robustness, order statistics have been used copiously

in vision techniques and algorithms in various forms. Gra-

dient orientations represent ordering information between a

subset of neighboring pixels. Feature descriptors based on

gradient orientations (e.g., in SIFT [10], GLOH [14]) have

been used in tracking [7, 17], object detection and recog-

nition [2, 6, 12, 13]) and image retrieval [9] among other

applications. Order statistics have also been used for stereo

correspondence [5, 19] and change detection [15, 18].

Various order-based statistics have been proposed pre-

viously and we review below only the ones most relevant

to our work. Bhat and Nayar [5] use rank-based statistics

for measuring similarity between two image patches. Zabih

and Woodfill [19] define local rank-based image transforms

- census and rank transforms and compare the transformed

patches. These approaches disregard the statistics of order

violations. One of the first works to model order statistics

was Xie et al. [18] who used noise statistics to transform the

image into a confidence image where each pixel is replaced

by a probability that it is likely (under a known noise model)

to retain its sign with respect to the most different pixel in

its neighborhood. Image blocks are then compared using

a symmetric Bhattacharyya correlation metric. Mittal and

Ramesh [15] determine the set of disjoint pixel pairs whose

relative orderings have changed and design a measure that

is a function of the intensity differences in a ”maximal” set

of these pixels. These two approaches, unlike previous oth-

ers, incorporate intensity into statistical measure of order

consistency resulting in better performance. However, since

they do not model the geometry of ranks (i.e. order) system-

atically or follow a rigorous probabilistic approach, they are

not optimal. This indeed is the motivation for our work.

Our work includes several important contributions: (1)

It fills an important gap in the usage of ordinal measures.
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In contrast to previous methods, we explicitly model noise

under which rank-consistency is tested. Our approach uses

a probabilistic generative model under which image patches

are generated. Using this model, we pose order-consistency

as a hypothesis validation problem using significance test-

ing. We show that this approach consistently produces bet-

ter results than previous approaches. (2) We show that the

proposed significance testing problem is equivalent to the

problem of monotonic regression allowing us to apply fast

algorithms from the monotonic regression literature. (3) In

general, ordinal statistics are expensive to compute as they

require sorting the data. We propose a method to trade off

sensitivity for speed and demonstrate that in practice, one

can get a very fast algorithm with a small drop in perfor-

mance.

The rest of the paper is organized as follows. In Section

2, we pose the order consistency problem as a hypothesis

testing problem under additive noise. Section 3 presents

the statistical performance of the proposed model and com-

pares it with previously proposed methods. Section 4 maps

the hypothesis testing problem to monotonic regression. In

Section 5, we present a method to trade off sensitivity for

computational speed. In section 6 we validate the model by

doing comprehensive statistical comparison with previous

methods and by demonstrating its performance on real data

for the task of change detection. Finally, we conclude in

section 7.

2. Order Consistency and Significance Testing

In this section, we present the model used for testing or-

der consistency under measurement noise. We first explain

the notation used in the paper.

2.1. Notation

We use capital letters (e.g., X = (x1, x2, · · · , xn) ) to

denote vectors or (vectorized versions) of image patches.

Vectorization is arbitrary (for example, row-major) but fixed

for all patches. Let πX be the rank vector associated with

vector X . If X ∈ Rn, then the rank vector defines a bi-

jective mapping, πX : Z+
n → Z+

n where Z+
n is the set of

positive integers from 1 to n. If πX(i) = j, then X(i) is the

jth smallest entry in the vector. π−1 is the inverse mapping

of π. π−1
X (j) denotes the index of the jth smallest entry in

X . M is used for a monotonic transformation and M de-

notes the set of all monotonic transformations. We define

rank set S(π) to be the set of all vectors having the rank

π equivalently denoted it by S(X) if πX = π. We clar-

ify with an example: Let X = (4.2, 11, 2.3) ∈ R3. Then,

πX = (2, 3, 1) and π−1
X = (3, 1, 2).

2.2. The Model

Given a template patch P and a target patch Q, we seek to

establish if the patch Q is order-consistent with patch P .

We assume that Q is generated via the application of an

unknown monotonic transformation, M(·) to P and a sub-

sequent transformation the effects of which are represented

by the noise process ǫ with a known distribution Pǫ. For this

paper, we assume the noise process to be additive. Thus, our

model is given by (1) below.

Q = M(P ) + ǫ (1)

For several applications, it may be possible to constrain M
by a prior on the set of monotonic transformations. For this

paper, we assume complete ignorance of M . This implies

that M can be any monotonic transformation and we are

constrained to work with a representation that is invariant

to it. This invariance is expressed by the order relationships

between the pixels in P , represented completely by the rank

vector πP . Thus, we define the rank-consistency hypothesis

(i.e. the null hypothesis) H0,

H0 : Q = Q0 + ǫ s.t. Q0 ∈ S(πP ) (2)

We define the significance test for H0 as follows: Given

a significance level α, we fail to reject H0 if there exists

a patch Q0 such that the likelihood that Q is generated

from Q0 (rank consistent with P ) is greater than probabil-

ity pα. Otherwise, we reject H0. The existence of Q0 can

be tested by actually finding a Q0, rank consistent with P ,

which maximizes1 the probability P (Q|Q0) and testing if

P (Q|Q0) > pα – this is the approach we take in this paper.

Since the process of testing the hypothesis seeks a fea-

sible point in the rank set, it is helpful to understand the

geometry of the rank sets which we describe in Appendix

A. Note here that each rank set is convex, open and its

boundaries are (n−1) linear hyperplanes defined by equal-

ity constraints xi = xj . The hyperplanes contain the line

defined by xi = c ∀i and are perpendicular to the hyper-

plane, Hn .
=

∑n

i=1 xi =
∑n

i=1 i = n ∗ (n + 1)/2. Note

that if we embed the permutation polytope Sn
2 in Rn by

mapping the ranking π to the vector represented by π, then

each rank set contains the corresponding rank vector.

We illustrate this in Figure 1, with an example for a patch

of size 3 pixels and isotropic Gaussian noise ǫ. Since the

rank sets are perpendicular to H3, we just show the projec-

tions of the rank sets on H3. The six possible rankings are

shown in square boxes. The associated rank sets are shown

using the three bounding hyperplanes (x1 = x2, x1 = x3

and x2 = x3) denoted by dashed blue lines. For the given

model patch P with πP = (3, 2, 1), Q0 is some arbitrary

vector in the rank set, S(πP ). To test H0, we just need to

find Q̂ such that Q̂ = argmaxQ0
P (Q|Q0).

1Technicality: Rank sets are open sets and except for the trivial case,

the maximization problem is not solvable on open sets. Hence, we solve

the problem on the closure of the appropriate rank set.
2The permutation polytope Sn is the convex hull of all permutations of

vector (1, 2, · · · , n). Refer to Definition 2.1 on page 6, [11].
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Figure 1. A 3D permutation polytope embedded in R3 and the as-

sociated ranks sets shown projected on the hyperplane x1 + x2 +
x3 = 6. P = (p1, p2, p3) is a model patch with p1 > p2 > p3.

Given a target patch Q and isotropic noise, the maximum likeli-

hood estimate is given by Qest (≡ Q̂), the perpendicular projec-

tion of Q on the hyperplane x1 = x2.

2.3. Isotropic Noise

Now consider the special case of isotropic noise. More

general cases, where different pixels can have different

noise, will be touched upon later (see Section 4). If the

noise, ǫ, is isotropic, the level sets of the noise density

function, fǫ(·), are spheres. Further, if the profile of the

noise density function is non-increasing, Q̂ can be obtained

by finding the minimum L2 distance between S(πP ) and

the vector Q. Q̂ is shown in Figure 1 as Qest for our 3-

pixel example and can be estimated by using the Projec-

tion Onto Convex Sets (POCS) algorithm [16]. Examples of

such distributions include the Gaussian and the Student’s t-

distribution. Note also that the rank sets can be represented

using linear inequalities. Thus, the problem of minimizing

the quadratic function represented by the squared-L2 norm

subject to these linear constraints is a quadratic program.

We present in Figure 2, Matlab code for estimating Q̂ using

the quadprog(·) function.

function[Q̂, ǫ̂] = rankConsistentEstimate(Q,P )

n = length(P );

[Psorted, indx] = sort(P ,’ascend’);

Q = Q(indx); H = eye(n); f = −Q;

A = zeros(n-1,n);

for i=1:n-1 A(i,[i:i+1]) = [1 -1]; end

b = zeros(n-1,1);

[Q̂ fval exitflag,output,lambda] = quadprog(H ,f ,A,b);

[indxsorted,indx2] = sort(indx);

Q̂ = Q̂(indx2);

ǫ̂ = Q - Q̂

Figure 2. Matlab code using quadprog(·) for estimating the vector

Q̂ closest in distance to Q (L2 norm sense) such that Q̂ ∈ S(πP ).

3. Statistical Validation

In this section, we provide statistical validation for the

proposed method. To do this, we construct the following

problem: Given a model patch P , the goal is to distinguish

between two sets of patches using the proposed method.

The first set, Q, consisting of patches Qi, is generated by

applying randomly chosen monotonic transformations (to

simulate global illumination changes or camera gain) to P
and then adding independent realizations of noise from the

random process ǫ to the result. For this experiment, ǫ is

additive white Gaussian noise. The second set, Q′, consist-

ing of patches Q′
i, is similarly generated from Pocc. Pocc is

generated from P by covering a random part of the patch

P with a ‘foreground’ patch such that there is a minimum

separation between the foreground and the background pix-

els (separation being a function of the noise standard de-

viation). This process simulates random partial occlusions

of P . The hypothesis is that when a foreground partially

occludes a background or that when two object classes are

being compared, there is a minimum subset of pixels which

can be used to distinguish the patches corresponding to the

two cases (the distance between the classes). The intra-class

variation is simulated here using additive noise and random

monotonic transformations of intensity. Thus, the set Q is

generated according to the model in (1) while Q′ is not. The

model image used for these experiments is a 50×50 portion

of the cameraman image shown in Figure 3. The occlud-

ing patch is of size 7 × 7 and the noise standard deviation

is σ = 40. We carried out 1000 runs each with indepen-

dent realizations from Q and Q′ according to the process

explained above. We use these 2000 runs to plot the ROC

curves shown in Figure 4.

We compare our results to two representative order-

consistency measures from literature - one proposed by

Bhat and Nayar [5] and another by Mittal and Ramesh [15].

We refer to these as BN-κ and MR-κ respectively. BN-κ is

representative of a class of measures that only uses order re-

lationships between pixels and pixel intensities do not con-

tribute directly to the measure. In extensive experiments,

BN-κ is shown to outperform normalized cross-correlation

(NCC), sum of squared distances (SSD) and Zabih and

Woodfill’s rank transform [19] for image correspondence.

MR-κ is a recent state of the art measure that outperforms

those that use only order relationships, like those proposed

by Bhat and Nayar [5] and Zabih and Woodfill [19]. MR-

κ measure is constructed using both order relationships as

well as image intensities. However it is close in spirit to

BN-κ and can be looked as a recipe to make BN-κ robust to

intensity noise. The ROC curves in Figure 4 show clearly

that our method easily outperforms both BN-κ as well as

MR-κ. In Section 6 we show that our method also outper-

forms them for real image sequences. The superior perfor-

mance is due to the formal incorporation of noise statistics



into our method and below, we provide insights that help

explain this further.

BN-κ essentially counts the number of order violators

for every pixel. In other words, for every pixel i, the num-

ber of such pixels j are counted for which the sign of Pi−Pj

is different from the sign of Qi − Qj . This number is then

summed over all the pixels to get the measure BN-κ. This

measure has been quite successfully applied to several prob-

lems including stereo correspondence and motion estima-

tion. However, as pointed out in [15] and discussed by us

earlier, this method does not take into account the value of

image intensities in computing the change measure. Prob-

lems arise with this method when the number of violators

is large but relatively insignificant (due to noise in almost

constant areas) while the number of significant violators is

small (due to valid differences in the two patches). In such

a case, the former will overwhelm the latter. Indeed, we

found that BN-κ gives much better results when such situa-

tions are avoided.

MR-κ extends the basic idea of counting the number of

violators in two ways: (a) Instead of computing the number

of violator pixel pairs, they compute a statistic over these. In

the simplest case, the statistic is the absolute difference be-

tween the pixel pair (in other words, the standard deviation

of the data corresponding to the pixel pair). (b) Secondly,

the measure is computed as a sum over a maximal set of

pixel pairs with relative ordering changes and not over all

such pixel pairs. In essence, this approach finds a set so that

the statistics being summed up for pixel pairs remains un-

correlated. This in practice gives a very good measure.

Finally, our approach finds a projection onto rank-set

boundaries which obey the constraints: xi = xj = · · · =
xk and computes the l2 distance to the projected vector. The

l2 distance can be seen as summation of sample variances

over disjoint sets (bearing some relationship to MR-κ). It

is indeed the correct (and sufficient) statistic to use (given

a Gaussian noise model). This advantage is clearly brought

forth in the ROC curves.

4. Monotonic Regression

In this section, we show that the problem defined in Sec-

tion 2 can be mapped to a monotonic regression problem.

This connection enables the usage of fast and efficient al-

gorithms from the monotonic regression literature, to solve

our problem of rank consistency. In monotonic regression,

given an input sequence, the goal is to find the monotoni-

cally increasing or non-decreasing sequence that minimizes

the cost of deviating from the input sequence (i.e. the ‘clos-

est’ monotonic sequence to the input sequence, given a cost

function). Let Q̃
.
= Q(π−1

p (i)), i.e. the sequence obtained

by applying the permutation π−1
P to Q (recall that π−1

P (i)
denotes the index of the ith smallest entry in P ). The orig-

inal hypothesis H0 (equation 2) can now be mapped to the

Figure 3. Example for testing performance under AWGN N(0, σ2·
I). (a) Top-left: Model patch; (b) Top-right: Model patch with

AWGN, some Q ∈ Q; (c) Bottom-left: Partially-occluded model

patch with AWGN some Q ∈ Q′. Occluded region shown with

a white square; (d) Bottom-right: Estimate, Q̂, from (c) that is

rank-consistent with the model patch in (a).
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Figure 4. Performance under AWGN N(0, σ2 · I). ROC curves

show PAV, RM-κ and BN-κ. Example images shown in Figure 3.

following equivalent problem:

H0 : Q̃ = Q̃0 + ǫ̃ s.t. Q̃0(i) ≤ Q̃0(i + 1) ∀i ∈ Z+
n−1 (3)

Thus, the null hypothesis in (2) is replaced by the equiva-

lent hypothesis that Q̃ is generated by some monotonically

increasing sequence Q̃0 and additive noise ǫ̃. ǫ̃ is similarly

the permutation of ǫ induced by π−1
p . This is precisely the

hypothesis used for the monotonic regression problem. We

consider below special cases for which efficient algorithms

are available in the monotonic regression literature.

4.1. Independent Noise, Convex Cost

If the noise variables are independent, then the log-

likelihood factors into a sum of individual likelihoods, i.e.,

log Pǫ(Q̃|Q̃0) =
∑

i log pǫi
(Q̃(i)|Q̃0(i)). Let us define the

cost function, Ci(Q̃(i), Q̃0(i))
.
= − log pǫi

(Q̃(i)|Q̃0(i)).



Note that this is a very generic formulation which covers

anisotropic and heteroscedastic distributions. In fact, for

different pixels, noise distribution may be completely dif-

ferent. The monotonic regression problem admits a unique

solution if the cost Ci is convex. For such cases, there ex-

ist efficient algorithms to solve the problem. The distribu-

tions that this formulation can deal with include the Gaus-

sian, double-exponential, generalized error and Student’s t-

distribution among others. The most popular among such

algorithms is the pool-adjacent-violators (PAV) algorithm

[8, 3]. This problem is also called the isotonic regression

problem [4] especially if the cost functions are defined us-

ing the the lp norm.

In Figure 5, we give a pseudo-code for the PAV algo-

rithm. The algorithm maintains a set of blocks B(i) repre-

senting a set of adjacent pixels (Note that the block repre-

sents a vectorized image patch and adjacency implies neigh-

boring pixels in the vector). The first two elements of

B(i) represent the pixel indices of the first and last ele-

ments of the block. The third element represents the cur-

rent estimate of Q̂ using the pixels represented by B(i).
Initially the number of blocks is equal to the length of the

data. The while loop works by looking at adjacent blocks.

If a pair of adjacent blocks are violators, i.e. the esti-

mates corresponding to the blocks are in a decreasing order

(B(i){3} > B(i + 1){3}), then they are pooled together

into a larger block and the estimate is computed over the

pooled block. Finally, either all the blocks are in the right

order or there is only one block left. In either case, the block

wise constant estimate represented by the third element of

B(i)’s yields the final estimate Q̂.

The PAV algorithm is very simple but has a computa-

tional complexity O(n2). This is due to the while loop in

Step 5 requiring up to O(n2) iterations in the worst case.

function[Q̂, ǫ̂] = PAV(Q,P )

1. n = length(P );

2. [Psorted, indx] = sort(P ,’ascend’);

3. Q = Q(indx);

4. for i = 1 : n, B(i) = {i, i, Q(i)}; end

5. while there exists j s.t. (B(j){3} > B(j + 1){3}),

6. q̂ = argminq

∑b(j+1){2}
i=b(j){1} Ci(q(i), q);

7. R = {b(j){1}, b(j + 1){2}, q̂}.

8. replace B(j) and B(j + 1) by R.

9. end while

10. nb = number of blocks B

11. for i = 1 : nb,

12. Q̂(B(i){1}) = · · · = Q̂(B(i){2}) = B(i){3}

13. end

14. ǫ̂ = Q - Q̂

15. indxInverse(indx) = 1 : n

16. Q̂ = Q̂(indxInverse); ǫ̂ = ǫ̂(indxInverse)

Figure 5. Pseudo-code for the PAV algorithm.

4.2. Noise with Exponential power distribution

When the noise ǫ has independent components that have

generalized error or exponential power distribution, the cost

is given by Ci(q, q0) = ‖ q(i)−q0(i)
ai

‖b
i . and ai and bi are the

respective scale and shape parameters. When the shape pa-

rameters are all 1 (independent Laplace noise), then the cost

reduces to the l1 norm formulation. In such a scenario, the

optimization problem in line 6 of the PAV algorithm in Fig-

ure 5 reduces to the estimation of median of the data. Sim-

ilarly, when shape parameters are all 2 (independent Gaus-

sian noise), the cost becomes quadratic and the correspond-

ing optimization problem in line 6 reduces to estimation

of mean of the data. Consequently, additional savings in

computation can be made by a simple mean-update3 strat-

egy whereby whenever two blocks B(i) and B(i + 1) are

merged, q̂ in line 6 is just a weighted average of B(i){3}
and B(i+1){3} where the associated block weights are the

respective sizes of the blocks.

Now, we carry out the same experiment as in Section 3.

However, this time we use independent additive Laplace

noise with variance σ2 = 400 and using the PAV algorithm

in Figure 5 with median calculation. The performance com-

parison with BN-κ and MR-κ is shown using ROC curves

in Figure 6.
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Figure 6. Performance under i.i.d. Laplace noise . ROC curves

are plotted for PAV, MR-κ and BN-κ. Example images used for

testing are shown in Figure 3.

5. qPAV - Trading off Sensitivity for Speed

While matching algorithms based on order relationships

between pixels are more robust than those based only on

pixel intensities, they are in general computationally more

expensive. In this section, we propose a trade off between

sensitivity and computational complexity based on quantiz-

ing the model P .

3We omit details as this modification is trivially evident.



First we identify the computational complexity of the

key steps of the PAV algorithm. (1) Sorting P is O(n ·
log n); (2) The while loop in PAV - worst case of O(m2)
iterations where m is the number of bins (= n for PAV);

and, (3) The optimization step in line 6 of the algorithm. We

note that both steps (1) and (2) can be made faster by quan-

tizing the model P . If the number of quantization levels are

m << n, then complexity of step (1) reduces to O(n) (by

using bucket sort, for example) and the complexity in step

(2) is reduced to O(m2).
We call this new algorithm, which finds the estimate on

the quantized model, the qPAV algorithm. The steps of this

new algorithm are: (1) Quantize4 the model P to P∆ using

a sensitivity parameter s. (2) Sort P∆ and construct Q̃. (3)

Initialize the blocks B(i) and follow the PAV algorithm. We

present the pseudo-code for qPAV in Figure 7. Let m be the

number of quantization levels and ∆m be the corresponding

quantization level. Note that the maximum number of initial

blocks is constrained to be the same as number of quantiza-

tion levels in P∆. Thus, the cost of PAV is reduced from

O(n2) to O(m2). Further, sorting can be done using the

bucket sort algorithm.

function[Q̂, ǫ̂] = qPAV(Q,P ,s)

1. P∆ = quantize(P ,s);

2. [P∆, indx] = sort(P∆,’ascend’);

3. Q = Q(indx);

4. ∆ = unique(P∆);

5. m = length(∆i);

6. for i = 1 : m,

7. jmin = min{j : P∆(j) = ∆i}

8. jmax = max{j : P∆(j) = ∆i}

9. q̂ = argminq

∑jmax

j=jmin Cj(q(j), q);

10. B(i) = {jmin, jmax, q̂};

11. end

12. Follow lines 4-16 in PAV pseudo-code.

Figure 7. Pseudo-code for qPAV - the quantized PAV algorithm.

For all experiments and results that follow, we use the

qPAV algorithm. The input parameter s represents the de-

sired sensitivity of the system and denotes the quantization

bin size. If it is set to 1, the quantization step is skipped and

qPAV becomes the original PAV algorithm.

We now demonstrate the effects of quantization on both

the speed and accuracy of the algorithm on the test example

constructed in Section 3 using the L2 norm as our cost func-

tion. In Figure 8 we show the ROC curves when the quan-

tization bin sizes are 1, 25, 50, 100, and 150. The number

of quantization levels decrease correspondingly - 215 (all

distinct values), 10, 6, 4 and 3. For comparison, we also

reproduce the ROC of the MR-κ [15] statistic. Note that we

4In this paper, we used uniform quantization. Better quantization strate-

gies can be used and are a part of future research.

outperform MR-κ even with 3 quantization levels. In Ta-

ble 1, we show the corresponding computation times for the

qPAV algorithm. The code used for the table is in Matlab

and uncompiled. Notice the trade off between speed and

computational accuracy.

In Table 2, we show results on real data for our C++

compiled code and compare the performance with both BN-

κ and MR-κ. These experiments were carried out on the

S3-T7-A sequence from the PETS 2006 database (refer

to Section 6 for details). These results demonstrate that (1)

We can methodically trade off sensitivity for speed using the

qPAV algorithm. (2) Both on real and simulated data, qPAV

outperforms MR-κ both in terms of speed and matching ac-

curacy.
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Figure 8. Performance of the qPAV algorithm under AWGN

N(0, σ2 · I). ROC curves are plotted for qPAV with different

quantization levels. Example images used for testing are shown

in Figure 3.

No. of bins 215 10 6 4 3

Time (msec) 240 15.7 11.7 7.8 7.1

Accuracy 0.963 0.953 0.933 0.916 0.869

Table 1. Table of computational performance vs. accuracy for

qPAV as a function of different quantizations levels for the Matlab

(uncompiled) implementation of qPAV. The time taken is average

over 1000 experiments conducted on a patch of size 50 × 50. Ac-

curacy rates are given at equal error rate, i.e., probability of missed

detection and false alarms are equal.

6. Application

Following the statistical experiments of section 3, we

now apply proposed qPAV algorithm to the application of

change detection on real surveillance video sequences from

the PETS 2006 database [1].

6.1. Change Detection

We provide results on a representative change detection

scenario from a surveillance video from the PETS 2006



MR-κ BN-κ qPAV-1 qPAV-5 qPAV-10 qPAV-25

0.9441 0.8623 0.9873 0.9842 0.9650 0.8871

0.0737 0.0361 0.0268 0.0241 0.0222 0.0217

Table 2. Table of computational performance vs. accuracy for

qPAV as a function of different quantizations levels for a C++ im-

plementation of qPAV. For comparison, we also give the time and

accuracy numbers for MR-κ and BN-κ. In the first row, the algo-

rithm name is given. Second row shows as performance numbers

the area under the ROC curve. The third row displays the corre-

sponding average time taken (msec) per patch of size 12 × 12.

Figure 9. Application of qPAV to change detection: Original im-

ages on left column, detections on right. Left column images from

top to bottom referred to as (a), (b), (c) and (d). Right column

images referred to as (e), (f), (g) and (h).

database [1] which is one of the standard datasets for evalu-

ating surveillance applications. For the reference patch we

used the initial image which corresponded to the ‘empty

scene’. This image (S3-T7-A.00000.jpeg from the

dataset) is not shown here but is similar to the image in

Figure 9 (a) minus the standing person visible in the frame

and his bag. We manually labeled several frames in the se-

quence for creating the ground truth for foreground objects.

For testing our change detection algorithm, each 360 ×
288 image frame was divided into 12× 12 patches for a to-

tal of 720 patches per frame. We show two representative

frames in Figure 9(a) and (c). We ran the change detection

algorithm based on qPAV as well as using MR-κ and BN-κ

and constructed the ROC for each case. The designated task

was to correctly detect all foreground patches while reject-

ing the background ones. These ROC curves are plotted in

Figure 10. They show clearly that the qPAV algorithm gives

10% better results than MR-κ and 20% better than BN-κ at

equal error rates (when the probability of missed detection

equals that of false alarms). We also show two change de-

tection results from the qPAV algorithm in Figure 9(e) and

(g) for Figures (a) and (c) respectively. For detecting these

changes, we estimated the noise standard deviation in the

video and set the detection threshold at 95% significance.

Our next experiment involved applying a gamma trans-

formation to these images to simulate automatic gain

changes in the camera. Two sample images showing the ef-

fects of gamma transformation are presented in Figure 9(b)

and (d). Notice the change in intensity and saturation levels.

The experimental setup is the same as before and the task is

that of change detection in presence of such intensity varia-

tions. The corresponding ROC curves are presented in Fig-

ure 11. They show that all the algorithms maintain their rel-

ative performance vis a vis the earlier experiment (without

the gain changes) and that qPAV maintains its better perfor-

mance. The changes detected by the qPAV for Figure 9(b)

and (d) are also shown in (f) and (h) respectively.

Along with the above experiments, we have applied

our change detection algorithm on several videos from the

PETS 2006 database both with and without simulated gain

changes. These videos have been uploaded as additional

material with the paper.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ROC, Without monotonic transformation

False alarm rate

T
ru

e
 d

e
te

c
ti
o
n
 r

a
te

 

 

BN−κ

MR−κ

qPAV

Figure 10. Performance of qPAV, RN-κ and BN-κ on the PETS

data. Examples shown in figs. 9(a), (c), (e) and (g).

7. Conclusions and Future Work

We have presented in this paper, a formal probabilis-

tic approach for testing order consistency between image

patches when the noise probability distribution is available

to us. We have demonstrated, both with statistical simu-
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Figure 11. Performance of qPAV, RN-κ and BN-κ on PETS data

under arbitrary gamma transformations. Examples shown in 9(b),

(d), (f) and (h).

lations of additive random noise as well as with results on

real surveillance videos that the proposed algorithm works

better (in both speed and accuracy) than the best reported in

the literature. We modeled the problem using a generative

framework and formulated it as a significance testing prob-

lem. This helped us show its equivalence to the monotonic

regression problem. Finally, we addressed the problem of

large computational costs associated with the order consis-

tency methods. We took one of the most popular mono-

tonic regression algorithms and showed that we could make

it very fast by quantizing the model representing the ranks,

while incurring only a very small drop in performance. We

also demonstrated that our algorithm can be used for fast

change detection in video surveillance. There are several

directions in which the work can be extended: (1) Integrat-

ing appropriate priors (e.g. on the monotonic transforma-

tion), (2) Investigating the effect of different quantization

schemes beyond uniform quantization used in this work,

(3) Using the active set approach proposed by Best and

Chakravarty [4] for qPAV implementation, and, (4) Extend-

ing it for other problems such as registration, object recog-

nition, etc.
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Appendix A: Geometry of rank sets

• (P1) Number: There are (n!) rank sets which partition Rn.

• (P2) Convexity: Each subset S(πi) is convex.

• (P3) Boundaries δS(πi): The boundaries are linear hyper-

planes derived by equality constraints. Each subset S(πi)

can be described by exactly (n−1) linear inequalities. Thus,

the subset is adequately described by (n − 1) hyperplanes

with passing through origin. The hyperplanes are described

by xi − xj ≥ 0. The boundaries are all perpendicular to the

hyperplane Hn .
=

∑n

i=1
xi =

∑n

i=1
i = n ∗ (n + 1)/2.

• (P4) Intersection
⋂

S̄(πi): Intersection of the closures of

rank sets contain all the constant patches (and nothing else),

i.e.,
⋂

πi∈Π

¯S(πi) = {X ∈ Rn|X = k · 1, k ∈ R}. Thus,

the boundaries represent a sheaf of planes passing through

the axis (or pencil) represented by X = k · 1.


