
The Logistic Random Field – A Convenient Graphical Model for Learning

Parameters for MRF-based Labeling

Marshall F. Tappen, Kegan G. G. Samuel, Craig V. Dean, David M. Lyle

University of Central Florida

School of Electrical Engineering and Computer Science Orlando, FL

{mtappen, kegan, cdean, dlyle}@eecs.ucf.edu

Abstract

Graphical models are fundamental tools for modeling

images and other applications. In this paper, we propose

the Logistic Random Field (LRF) model for representing a

discrete-valued graphical model. The LRF model is based

on an underlying quadratic model and a logistic function.

The chief advantages of the LRF are its convenience and

flexibility. The quadratic model makes inference easy to im-

plement using standard numerical linear algebra routines.

This quadratic model also allows the log-likelihood of the

training data to be differentiated with respect to any pa-

rameter in the model, enhancing the flexibility of the LRF

model. To demonstrate the usefulness of this model we use it

to learn how to segment objects, specifically roads, horses,

and cows. In addition, we demonstrate the flexibility of the

LRF model by incorporating super-pixels. We then show

that the LRF segmentation model produces segmentations

that are competitive with recently published results.

1. Introduction

Low-level vision tasks can be roughly divided into es-

timation problems and labeling problems. In estimation

problems, such as denoising [16, 18] or lightness estimation

[20], the goal is usually to predict pixel values. In labeling

tasks, which are the focus of this paper, the goal is to assign

the correct label, such as segment or discrete depth value,

to each pixel. Examples of labeling tasks include segmen-

tation [11] and stereo disparity [4] . Markov Random Field

(MRF) models have proven to be especially useful for low-

level tasks because they enable local clique potential func-

tions to describe distributions over large images. A number

of useful behaviors, such as smoothing or propagating in-

formation into locally ambiguous image areas, can be im-

plemented by setting the clique potentials correctly [22].

Two key problems encountered in the use of MRF mod-

els are inference and estimating the model parameters. The

inference task can be viewed as either finding the solution

with the highest probability, often referred to as the max-

imum a posteriori (MAP) solution, or the task of estimat-

ing the marginal probability distribution of every variable in

the MRF. The fundamental difficulty in working with MRF

models is the fact that when the graph representation of the

MRF has loops, both types of inference are, in all but a few

cases, NP-complete and intractable for the size of problems

that are typically encountered in low-level vision[4, 25].

This practical intractability has large ramifications on the

problem of estimating MRF model parameters. Maximum-

likelihood learning in MRF models requires the ability to

estimate the marginal probability distributions of the node

cliques in the model. Other non-probabilistic methods, such

as [5] or [24], require the ability to find the MAP solution.

In response to these intractability issues, much progress

has been made on approximate inference algorithms. To-

day, a number of powerful algorithms are available that

perform well [4, 26, 10] on the type of discrete-valued

MRF . Using these algorithms, it is possible to compute the

necessary quantities to learn parameters. Roughly speak-

ing, learning with approximate inference algorithms can be

viewed as first choosing a particular MRF model, then find-

ing an approximate inference algorithm that can be used to

perform the computations necessary to learn the model pa-

rameters.

In this paper, we propose an alternative to this approach.

As mentioned above, in certain cases exact inference in

MRF models is computationally feasible. Rather than find-

ing an inference algorithm to match a model, we propose

beginning with an MRF model where inference is exact,

fast, and convenient, such as a Gaussian MRF (GMRF),

then adapting it to perform labeling. As we will show, this

leads to a model that is:

• Easy to train

• Computationally efficient

• Flexible

1

978-1-4244-2243-2/08/$25.00 ©2008 IEEE



• Comparable in performance with more traditional
MRF models for labeling pixels.

Below, Section 2 gives an overview of our approach,

which we refer to as the Logistic Random Field (LRF). To

demonstrate the effectiveness of the LRF model, we apply it

to three segmentation tasks: segmenting roads, horses, and

cows. The road experiments in Section 2.3 demonstrate the

use of the LRF in a real-world vision application; specifi-

cally road segmentation for use by autonomous land vehi-

cles in an urban environment. The horse and cow experi-

ments in Section 5.3 and 5.4 show that, in addition to the

usability advantages inherent in the LRF model, the LRF

model compares favorably with existing MRF models.

2. The Logistic Random Field Model

To understand the Logistic Random Field model, we will

first briefly review the logistic regression model for classifi-

cation, then describe a practical LRF configuration for find-

ing pixels belonging to roads in Section 2.3. Following this,

we show how the underlying ideas can be generalized to a

random field model and describe the actual LRF model in

Sections 2.7 and 2.8.

2.1. Background: Logistic Regression

In a classic logistic regression model, the probability that

a given sample, with feature vector φ, should be labeled+1
is:

p(+1|x) = σ(wT φ). (1)

The vectorw is a vector of weights that defines a line in the

feature space. The function σ(·) is the logistic function:

σ(a) =
1

1 + exp(−a)
(2)

Logistic regression can be viewed as taking the linear

function w
T φ, which ranges from −∞ to +∞, and con-

verting it into a probability, which ranges from 0 to 1. The
weight vector w can be found by directly optimizing the

log-likelihood of a training set.

2.2. From Samples to Images

The same underlying ideas can be applied to labeling

pixels in images. The probability of each pixel being la-

beled+1 could be calculated by applying σ(·) to each pixel
in a continuous-valued response image x.

The response image x could be computed in any man-

ner, since we are particularly interested in MRF models for

labeling the pixels, we will define the response image x to

be the MAP solution of a continuous-valued MRF model,

given the observations y:

x , argmax
x

p(x|y) (3)

(a) (b)

Figure 2. Road Example - image (a) shows a typical input image,

image (b) shows a manual ground-truth segmentation.

Note that as x grows larger at a particular pixel, the prob-

ability of that pixel having label +1 goes to 1.

2.3. Practical Example: Configuring an LRF to
Find Roads

Ideally, x should be generated from a model that is effi-

cient and makes parameter learning relatively simple. For

these reasons, we use the Gaussian Conditional Random

Field (GCRF) model proposed in [21] to generate x. In

this section, we will describe an implementation example of

configuring an LRF to solve the problem of correctly seg-

menting road pixels in an image. Figure 2 shows an exam-

ple image of a typical scene and the desired segmentation.

Similar to standard MRF formulations, such as [6], the

LRFmodel will have two major components. To show these

components, we will construct a weighted least-squares sys-

tem, C(x,y) that defines the LRF.
The first component in the LRF is based upon interac-

tions between the observed image and the labeling. The

weighted least-squares system based on these constraints is

formulated as:

C(x,y) =
∑

i

w(y; θ1) (xi − 10)
2
+

∑

i

w(y; θ2) (xi + 10)
2

(4)

Each term xi refers to the entry at pixel i in the response

image x.

These two types of terms pull each pixel to either−10 or
+10. While the response image should technically vary be-
tween−∞ and+∞, setting a particular pixel to+10makes
it’s probability of being equal to 1−(4×10−5). In practice,
ranging the values between −10 and +10 is sufficient.

2.4. Weighting Functions in the LRF

The weighting functions w(y; θ1) and w(y; θ2) primar-
ily determine the classification of a pixel. If w(y; θ1) grows
large, relative to w(y; θ2), the pixels will tend toward the
value of +10 and vice-versa. The vectors θ1 and θ2 contain

the parameters that the weighting functions use to estimate

the correct weight from the observation y.

For the road segmenting task, we use a relatively simple

function to generate the weights. From the training images,



Figure 1. This figure shows the stages in the segmentation process. The leftmost image is the original image. The middle image shows the

intensity of the pixel responses after being processed by the LRF system. The rightmost image shows the result after the responses are run

through a sigmoid and thresholded.

we created 40,000 different 15 × 15 different patches for
use in calculating the features for our LRF model. We then

used k-means to greatly reduce the number of patches to

500 15 × 15 RGB cluster centers. The cluster centers re-
turned by k-means are used as the features for the LRF.

Given a patch of the input image from location i, yi the

weight of the first term in Equation 4 is

w(yi; θ1) = b1 +

500
∑

q=1

θ
q
1 exp

(

−||yi − µq||
2
)

a (5)

The term b1 is a constant bias term. The vector µq is one

of the 500 centers. Section 3 will discuss how the vector

parameter θ
q
1 can be learned from training data.

A similar weighting function is used for the second term

in Equation 4:

w(yi; θ2) = b2 +
500
∑

q=1

θ
q
2 exp

(

−||yi − µq||
2
)

a (6)

When the system is trained, the parameters, θ1, and θ2

will determine how these features are used to classify pixels.

2.5. Implementing Inter­Pixel Relationships

The power in MRF models lie in their ability to not only

model how the input relates to pixel labels, but to also ex-

press relationships between pixels. In this case, we will in-

corporate a relationship similar to the Potts model, where

nodes are encouraged to have the same value. This is done

by adding the term:
∑

<i,j>

w(y; θ3) (xi − xj)
2

(7)

to C(x,y). This term, which is summed over all neighbor-
ing nodes i and j, has a smoothing effect that encourages

neighboring nodes to have the same value. Just as above,

this is also weighted by a weighting function.

The weighting function for neighboring constraints uses

the same features described previously, in addition to hor-

izontal and vertical gradient magnitudes at each pixel. As

Figure 3. This figure shows some of the results when segment-

ing roads using the LRF system. Top: Original image. Mid-

dle: Ground-Truth segmentation mask. Bottom: Our segmentation

mask.

in previous systems, incorporating the gradient magnitude

prevents the system from smoothing across image bound-

aries [4, 14].

2.6. Results Segmenting Roads

With this basic model, we can train the weighting func-

tions using the learning method described in Section 3. Fig-

ure 3 shows examples of an image taken from a vehicle,

the ground-truth road segmentation, and the segmentation

returned by our system. Overall the system performs well,

correctly segmenting 89% of the road pixels. Using this

dataset, we can also examine the benefit of incorporating

the inter-pixel relationships into the LRF model. Figure 4

shows the ROC curves for models with and without inter-

pixel interaction. The incorporation of inter-pixel interac-

tions, which facilitate information being propagated across

the image, improves the systems ability to correctly label

pixels.



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.4

0.5

0.6

0.7

0.8

0.9

1

P
FA

P
d

 

 

With Propagation

Without

Figure 4. This figure shows the ROC curves for correctly detecting

road pixels in a data. Curves are shown for both a model that uses

only local evidence (shown in green) and a model that includes

inter-pixel relationships, shown in blue. Including the inter-pixel

relationships improves the performance of the system.

2.7. Formally Specifying Gaussian Conditional
Random Fields

In this section we review the formal definition of the

GCRF model. In the GCRF model, the negative log pos-

terior distribution over x, given an observation y, is

− log p(x|y) , C(x,y) − log Z, (8)

where

C(x,y) =

Nf
∑

k=1

∑

i,j

wk(i, j;y, θ)
((

x ∗ fk)(i, j) − rk(i, j
))2

(9)

The term (x∗fk)(i, j) denotes the value at location (i, j) in
the image produced by convolving x with a linear filter fk.

We assume that this image only contains those pixels where

the entire filter fits in x. In other words, we neglect pixels

where computing a convolution would require pixel values

outside of the image x.

The function rk(i, j) contains the estimated value of (x∗
fk)(i, j) at each pixel. For each filter fk, the function rk

uses the observed image y to estimate the value of the filter

response at each pixel.

Each term in C is also associated with a positive weight

wk(i, j;y, θ). Finally, the variable Z denotes the partition

function or normalizing constant for the distribution.

The cost functionC(x,y) can also be rewritten as in ma-
trix form by creating a set of matrices F1 . . . FNf

. Each

matrix Fi performs the same set of linear operations such

as convolving an image with a filter fi. In other words, if X̂
is a vector created by unwrapping the image X , then FiX̂ is
identical to X ∗ fi. These matrices can then be stacked and

C(x,y) can be rewritten as

C(x,y) = (F X̂ − r)T W (y)(F X̂ − r), (10)

where

F =











F1

F2

...

FNf











and r =











r1

r2

...

rNf











.

The matrix W (y) is a diagonal matrix that holds the
weights w(i, j;y). This diagonal matrix is a block-

diagonal matrix constructed from the diagonal sub-matrices

W1(y; θ) . . . WNf
(y; θ). Each entry along the diagonal in

the Wk(y; θ) matrices is equal to the weight of a term at a
particular pixel, wk(i, j;y, θ).
This matrix representation is used in Section 3 to de-

scribe the trainining methods.

2.8. Solving The Weighted Least­Squares System

Finding the image x that maximizes Equation 8 is equiv-

alent to solving the weighted least-squares system,C(x,y).
Thus, the probability that the label at pixel m, lm, should

have class +1 is:

p(lm = +1|y) = σ(xm) (11)

where xm is the pixel with index m from x. Again, the

response image x is the MAP solution to the distribution in

Equation 8. This solution can be expressed as:

x =
(

FT W (y)F
)

−1
FT W (y)r (12)

Expressing x as the above set of matrix-vector products

simplifies computing the gradients of the loss function de-

fined in Equation 13 when training.

3. Discriminative Training for LRFs

Similar to parameter fitting in the logistic regression

model, the parameters of the LRF can be found by maxi-

mizing the likelihood of the training data. In this section, we

will focus on describing how to optimize the vector param-

eter θ, which control the weight assigned to different terms.

This model is similar to those models used in [14, 5, 23].

The vector parameter θ can be found by minimizing the

negative log-likelihood of the training dataset. We define

the negative log-likelihood of a training image, denoted

L(θ) for a particular set of parameters θ, as

L(θ) =

Np
∑

i=1

log (1 + exp(−tixi)) (13)

where ti is the ground-truth of each pixel. Note that L(θ)
depends on θ via xi.

Using L(θ) as the optimization criterion, the gradient
with respect to a vector parameter θn can be easily com-

puted:

∂L(θ)

∂θn

=
∂L(θ)

∂x

T
∂x

∂θn

(14)



For reference, x is the response image that minimizes

C(x,y). With x being computed with a matrix inverse, it

can be differentiated analytically. The derivation of this gra-

dient is similar to the derivative of the gradient for a Gaus-

sian Condition Random Field Model, which is described in

[21]. The primary difference is that the GCRF model uses a

squared-error loss function rather than the logistic function

used here.

We will not derive the gradient here, but instead refer

the reader to [21]. The gradient can be expressed succinctly

using the matrix notation from Equation 10:

∂L(θ)

∂θi

=
∂L(θ)

∂x

T
(

FT W (y)F
)

−1
FT ∂W (y)

∂θi

(r − Fx)

(15)

An important practical issue regarding Equation 15 is

that the product
∂L(θ)

∂x
(AT W (y)A)−1 only needs to be

computed once per gradient iteration by taking advantage

of associativity in matrix multiplication. This makes the

overall complexity of computing the gradient O(N2). The
rest of the gradient calculations only involve convolutions

and point-wise operations.

With these gradient calculations, it is possible to op-

timize the model parameters using gradient descent tech-

niques.

4. Related Work on MRF Parameter Estima-

tion

The MRF models that are the focus of this paper are a

particular instance of a broader class of structured models.

Parameter estimation for structured models has been a topic

of considerable interest recently. This section reviews sev-

eral significant algorithms in this area. Section 4.1 will dis-

cuss the advantages and disadvantages of the LRF models

in comparison with the algorithms discussed here.

In [5], Collins shows how the perceptron algorithm can

be adapted to discriminatively train a structured model for

classification. At each iteration, the algorithms must re-

compute the optimal labeling under the model, then update

the weights appropriately. While it can be shown that the

perceptron algorithm converges when the data is linearly

separable, convergence has not been proven when the data

is not linearly separable.

Taskar et al. shows how the parameters of a structured

model can be found in a maximum margin framework [23].

Using this framework, the weights in a model similar to that

used in Section 2.8 can be found with convex optimization.

Taking a probabilistic approach, Wainwright et al. [27]

have proposed upper-bounds on the log-partition function

for discrete-valued graphical models. This allows for pa-

rameters to be estimated by minimizing an upper-bound of

the negative log-likelihood of the training data. Levin et

al. use this technique to learn parameters in their feature-

choosing algorithm. Hinton’s Contrastive Divergence ap-

proach has also proven successful in learning MRF param-

eters [8, 7].

Pseudo-likelihood methods [1] are also a popular ap-

proach for finding MRF parameters [12]. However, Blake

et al. have pointed out potential instabilities [2] and Vish-

wanathan et al. have found that the pseudo-likelihood leads

to over-smoothed estimates.

4.1. Advantages and Disadvantages of the LRF

A key difference between our approach and these previ-

ous approaches is that the LRF formulation is based on a

quadratic model. The quadratic model is specifically cho-

sen to allow the optimal solution of the underlying quadratic

cost model to be differentiated with respect to the model

parameters. This enables the log-likelihood of the training

data to be differentiated with respect to the model parame-

ters.

The advantages of the LRF model include:

• Convenience – The LRF, as mentioned previously, is
based on a quadratic model. This makes it possible

to perform inference and parameter estimation using

standard linear algebra routines.

• Convergence – Because the LRF model allows exact
gradients to be computed, the training procedure can

be guaranteed to converge by choosing the appropriate

optimization algorithm.

• Flexibility – The fact that the log-likelihood is dif-
ferentiable is a significant advantage because it allows

greater flexibility in constructing the parameterization

of the model. Any parameter can be optimized, as long

as the cost function C(x,y) can be differentiated with
respect to that parameter. For instance, parameters in-

side sigmoid-type functions can be directly optimized.

In some other popular models for learning MRF pa-

rameters, such as the max-margin model, only weights

on features can be optimized. This limits the type of

parameterizations that can be used. In addition, the

LRF model can accommodate arbitrarily large clique

potentials.

The most significant disadvantage of the LRF model is

that the optimization criterion is not convex, due to the ma-

trix inversion step. This makes the training procedure sus-

ceptible to falling into local minima. Due to the underlying

quadratic model, the LRF model is also limited to associa-

tive problems, similar to [23].

4.2. An Example of the LRF’s Flexibility: Super­
Pixels

Incorporating super-pixels into the MRF model is a good

example of the LRF’s flexibility and convenience. The basic



idea behind super-pixels is to over-segment the image into a

large number of small segments then assume that all of the

pixels in each segment will have the same label [17]. In this

section, we will show how the LRF model can be adapted to

use super-pixels through a trivial modification to the model

and the system source code.

To incorporate super-pixels, we constructed a super-

pixel matrix, which we will denote as S. This matrix con-

verts a super-pixel image with NS super-pixels into a stan-

dard image with Np pixels by copying the value associated

with each super-pixel image to all of the image pixels asso-

ciated with that super-pixel. Practically if S is an Np × NS

matrix, each row will have one column that is equal to 1,

with all of the remaining columns being equal to 0.

Modifying the underlying GCRF model is trivial. Us-

ing the notation from Equation 10, the matrix F is replaced

with FS where FS = FS. The only other modification in-

volves the loss function. We wish to use the original cost

function, so we will introduce an intermediate image, xs,

which is the current super-pixel image. The image x will

continue to represent the full image with x = Sxs. Using

this intermediate representation, the gradient from Equation

14 can be rewritten as

∂L(θ)

∂θn

=
∂L(θ)

∂x

T

S
∂xs

∂θn

(16)

Hence, the full gradient can be rewritten as

∂L(θ)

∂θi

=
∂L(θ)

∂x

T

S
(

FT W (y)F
)

−1
FT ∂W (y)

∂θi

(r −Fx)

(17)

4.2.1 Practical Benefits of Super-Pixels

The major benefit of super-pixels is an increase in speed.

When used with the horses images (Section 5.3) we ob-

served a 30% reduction in the time required to compute gra-

dients. However, overall performance dropped to 91%. One

could take advantage of the speed increase by using super-

pixels to perform fast initial training to perform a general

initialization to system weights; this could then be followed

by more in-depth training to better refine the model weights.

5. Comparing the LRFModel with Traditional

MRF Models

In this section, we demonstrate how the LRF model can

be as expressive and useful as a standard MRFmodel. To do

this, we implemented an object-segmentation system simi-

lar to that described by Levin [14].

Segmentation is a very active area of research. Recent

systems have made advances such as incorporating 3D cues

[9] and making it possible to be trained using unsupervised

data sets [28]. While we believe that our segmentation re-

sults are good, our primary motive is to see if utilizing an

LRF instead of standard MRF model degrades the system’s

performance. Hence, we have focused on the model similar

to that in [14]. This will enable us to ensure that the LRF

formulation is not only convenient to work with, but also

can also produce results that are just as good as traditional

MRF models.

5.1. Datasets

To compare the performance of the LRF model with

traditional MRF models we chose two datasets: cows and

horses. The images in the cow dataset were from video se-

quences used by [13, 15] for lame horse identification and

segmentation. The horse dataset was taken from the Weiz-

mann Horse database used by Borenstein [3] for segmenta-

tion.

Our system is trained to maximize the probability that a

given pixel is part of the desired object. To measure seg-

mentation accuracy we labeled a pixel, x, as belonging to

the object if P (x = +1|y) > 0.5 in the LRF result. Similar
to Levin [14], we report the percentage of correctly classi-

fied pixels in the resulting segmented image.

5.2. Features

For the cow and horse datasets local evidence is gath-

ered using features similar to those used in [14]. Each fea-

ture consists of an image patch, a segmentation mask, and a

spatial window. It is helpful to understand the feature gen-

eration process by thinking in terms of generating a feature

response image for each feature. These response images

contain the response of a feature at every pixel in the im-

age.

A feature response image is created using the following

steps:

1. Compute the absolute value of the normalized correla-

tion between the image and the feature’s image patch

at every pixel in the image.

2. Find the maximum of this image within the feature’s

spatial window.

3. Place the segmentation mask at this point. Those pix-

els in the sementation mask that belong to the object

are labeled +1, while those that do not are labeled -1

4. Scale this image by the maximum absolute normalized

correlation found in Step 2.

5. Generate a set of twenty binary feature images that

compare every pixel against thresholds in the range

[-1,1]. Each binary response retains its sign from

Step 3.



Figure 5. Testing results on cows. Top: Original images. Mid-

dle: LRF segmentation masks. Bottom: Resulting segmentations

denoted by red outline.

The purpose of the final step is to allow the system to

learn appropriate thresholds on the feature responses. One

advantage of this approach is that all of the thresholds are

considered in parallel.

The feature image patches, segmentation masks, and

spatial windows were taken from patches in the training

set. These features were chosen using a greedy method that

maximized the probability of correct segmentations using

only the features.

In addition to the base features, we also added features

corresponding to the horizontal and vertical gradient mag-

nitudes at each pixel in the image.

5.3. Horses

The horse dataset is comprised of 328 images from the

Weizmann Horse Database. This set was randomly sepa-

rated into 197 training images and 128 testing images, 3 of

the images were removed due to poor ground truth represen-

tation. When measuring the LRF Model for segmentation

we were able to produce an average classification of 94.6%

across the testing set. Figure 6 shows some of the segmen-

tation results obtained with horses. Our results were close

to those reported in [14] at 95%.

5.4. Cows

The cow dataset is comprised of 110 images from the

training data of Leibe [13]. This set was randomly sep-

arated into 80 training and 30 testing images. When we

measured the performance of the LRF system on the testing

portion of the cow dataset as done by Levin [14] we ob-

tained an average classification rate of 97%. This compares

well with Levin [14], which reported 92% accuracy. Figure

5 shows some of the segmentation results obtained on the

cow dataset.

6. Conclusion

We have proposed a new model for representing a

discrete-valued Markov Random Field. The Logistic Ran-

dom Field, or LRF, model is computationally efficient, flex-

ible and convenient. When using the LRF model, com-

puting gradients for parameter estimation can be accom-

plished in polynomial time using basic linear algebra rou-

tines. Also, every parameter in the LRF model can be po-

tentially differentiated and optimized. This flexibility and

convenience makes the LRF a potentially valuable tool for

applications relying on discrete-valued graphical models.

In addition to demonstrating the flexibility of the LRF

model by incorporating super-pixels, we have shown that

when applied to the task of segmenting specific objects, the

LRF model produces results that are competitive with ap-

proaches that use more traditional MRF models.

Several learning mechanisms for graphical models have

been introduced recently, but no controlled comparisons be-

tween these different methods are available. In the future, it

would be valuable to set up a rigorous comparison, similar

to the recent evaluations of inference algorithms by Szeliski

et al. [19].

References

[1] J. Besag. Statistical analysis of non-lattice data. The Statis-

tician, 24(3):179–195, Sept 1975.

[2] A. Blake, C. Rother, M. Brown, P. Perez, and P. Torr. Inter-

active image segmentation using an adaptive gmmrf model.

In European Conference on Computer Vision (ECCV), 2004.

[3] E. Borenstein and S. Ullman. Learning to segment. In Euro-

pean Conference on Computer Vision (ECCV), May 2004.

[4] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate en-

ergy minimization via graph cuts. IEEE Transactions of Pat-

tern Analysis and Machine Intelligence, 23(11):1222–1239,

2001.

[5] M. Collins. Discriminative training methods for hidden

markov models: Theory and experiments with perceptron al-

gorithms. In EMNLP 2002, 2002.

[6] W. T. Freeman, E. C. Pasztor, and O. T. Carmichael. Learn-

ing low-level vision. International Journal of Computer Vi-

sion, 40(1):25–47, 2000.

[7] X. He, R. Zemel, and M. Carreira-Perpinan. Multiscale

conditional random fields for image labelling. In In 2004

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), 2004.

[8] G. Hinton. Training products of experts by minimizing con-

trastive divergence, 2000.

[9] D. Hoiem, A. N. Stein, A. A. Efros, and M. Hebert. Re-

covering occlusion boundaries from a single image. In Pro-

ceedings of the IEEE International Conference on Computer

Vision, 2007.

[10] V. Kolmogorov. Convergent tree-reweighted message pass-

ing for energy minimization. IEEE Transactions on Pattern



Testing results on dark colored horses. Testing results on patched or light colored horses.

Figure 6. Top: Original images. Middle: LRF segmentation masks. Bottom: Resulting segmentations denoted by red outline.

Analysis and Machine Intelligence (PAMI), 28(10):1568–

1583, October 2006.

[11] M. P. Kumar, P. H. S. Torr, and A. Zisserman. OBJ CUT.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, San Diego, 2005.

[12] S. Kumar and M. Hebert. Discriminative random fields: A

discriminative framework for contextual interaction in classi-

fication. In Proceedings of the 2003 IEEE International Con-

ference on Computer Vision (ICCV ’03), volume 2, pages

1150–1157, 2003.

[13] B. Leibe, A. Leonardis, and B. Schiele. Combined object cat-

egorization and segmentation with an implicit shape model.

In ECCV’04 Workshop on Statistical Learning in Computer

Vision, pages 17–32, Prague, Czech Republic, May 2004.

[14] A. Levin and Y. Weiss. Learning to combine bottom-up and

top-down segmentation. In ECCV (4), pages 581–594, 2006.

[15] D. Magee and R. Boyle. Detecting lameness using ‘re-

sampling condensation’ and ‘multi-stream cyclic hidden

markov models’. Image and Vision Computing, 20(8):581–

594, 2002.

[16] J. Portilla, V. Strela, M. Wainwright, and E. P. Simon-

celli. Image denoising using scale mixtures of gaussians

in the wavelet domain. IEEE Trans. Image Processing,

12(11):1338–1351, November 2003.

[17] X. Ren and J. Malik. Learning a classification model for seg-

mentation. In Proceedings of the IEEE International Confer-

ence on Computer Vision, volume 1, pages 10–17, 2003.

[18] S. Roth and M. Black. Field of experts: A framework for

learning image priors. In Proceedings of the IEEE Confer-

ence on Computer Vision and Pattern Recognition, volume 2,

pages 860–867, 2005.

[19] R. Szeliski, R. Zabih, D. Scharstein, O. Veksler, V. Kol-

mogorov, A. Agarwala, M. F. Tappen, and C. Rother. A com-

parative study of energy minimization methods for markov

random fields. In ECCV (2), pages 16–29, 2006.

[20] M. F. Tappen, E. H. Adelson, and W. T. Freeman. Estimating

intrinsic component images using non-linear regression. In

The Proceedings of the 2006 IEEE Computer Society Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

volume 2, pages 1992–1999, 2006.

[21] M. F. Tappen, C. Liu, E. H. Adelson, and W. T. Freeman.

Learning gaussian conditional random fields for low-level vi-

sion. In IEEE Conference on Computer Vision and Pattern

Recognition (CVPR07), 2007.

[22] M. F. Tappen, B. C. Russell, and W. T. Freeman. Effi-

cient graphical models for processing images. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, volume 2, pages 673–680, 2004.

[23] B. Taskar, V. Chatalbashev, D. Koller, and C. Guestrin.

Learning structured prediction models: A large margin ap-

proach. In ICML, 2005.

[24] B. Taskar, S. Lacoste-Julien, and M. Jordan. Structured

prediction via the extragradient method. In Y. Weiss,

B. Schölkopf, and J. Platt, editors, Advances in Neural Infor-

mation Processing Systems 18, Cambridge, MA, 2006. MIT

Press.

[25] M. J. Wainwright. Estimating the “wrong” graphical model:

Benefits in the computation-limited setting. Journal of Ma-

chine Learning Research, 7:1829–1859, September 2006.

[26] M. J. Wainwright, T. S. Jaakkola, and A. S. Willsky. Map

estimation via agreement on (hyper)trees: Message-passing

and linear-programming approaches. IEEE Transactions on

Information Theory, 51(11):3697–3717, November 2005.

[27] M. J. Wainwright, T. S. Jaakkola, and A. S. Willsky. A new

class of upper bounds on the log partition function. IEEE

Transactions on Information Theory, 51(7):2313–2335, July

2005.

[28] J. Winn and N. Jojic. Locus:learning object classes with un-

supervised segmentation. In Proceedings of the IEEE Inter-

national Conference on Computer Vision, volume 1, pages

756–763 Vol. 1, 2005.


