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Abstract

In this work, we consider the dense reconstruction of

specular objects. We propose the use of a specularity con-

straint, based on surface normal/depth consistency, to de-

fine a matching cost function that can drive standard stereo

reconstruction methods. We discuss the types of ambiguity

that can arise, and suggest an aggregation method based

on anisotropic diffusion that is particularly suitable for this

matching cost function.

We also present a controlled illumination setup that in-

cludes a pair of cameras and one LCD monitor, which is

used as a calibrated, variable-position light source. We use

this setup to evaluate the proposed method on real data, and

demonstrate its capacity to recover high-quality depth and

orientation from specular objects.

1. Introduction

A popular class of systems for determining the 3D shape

of real-world objects relies on the notion of multi-view con-

sistency. These systems may be thought of as hypothesiz-

ing 3D points, then evaluating whether their projections into

two or more viewpoints are consistent with images taken

from those views. In the simplest case, the consistency is

evaluated based on color. More sophisticated systems might

evaluate the consistency of windows of pixels (as is the case

in many stereo systems), or might consider temporal vari-

ation (as in temporal active stereo or structured light sys-

tems). Any of these consistency criteria may be used to

construct a matching cost function, which is then used dur-

ing triangulation to find geometry (possibly augmented by

an additional stage to enforce global consistency or smooth-

ness). With few exceptions, however, such systems have

focused on reconstructing diffuse objects and scenes.

In this paper, we consider the problem of reconstruct-

ing specular objects, positioned in a scene or environment

of known geometry and appearance. Because the images

of these objects consist entirely of reflections of the scene

around them, simple consistency metrics based on color,

pixel windows, or temporal variation will not be effective.

Instead, we rely on a criterion that considers the reflec-

tion of the scene on a surface element. Specifically, we con-

sider the mirror reflection of a camera ray off a surface patch

with some hypothesized position and normal; the proposed

position/normal tuple exhibits specularity consistency if the

observed pixel is consistent with the intersection of the re-

flected ray and the (known) scene.

Given only a single camera position, we find that an in-

finity of position/normal tuples will necessarily satisfy the

consistency condition: for any proposed position, we can

find a normal such that the reflected ray hits any desired

scene point. Two camera positions, however, provide dis-

ambiguating information, and in most cases restrict us to

a single allowed position/normal (exceptions are discussed

later in the paper). Note that, in general, a point is recon-

structed not because different cameras observe the same

part of the scene reflected from it: they observe different

reflections that are both consistent with the hypothesized

position/normal.

This specularity consistency condition has been previ-

ously identified and exploited in other contexts [23, 5]. We

propose to use the constraint to define a matching cost func-

tion for two camera views, and demonstrate that the condi-

tion may be used for dense stereo reconstruction of specular

3D objects. We analyze our system on synthetic imagery,

and show real-world results. Our contributions include:

• defining a stereo matching cost function based on the

specularity consistency constraint;

• proposing a novel normal-based anisotropic diffu-

sion scheme for the matching cost, which strengthens

matches lying on a continuous surface;

• presenting a theoretical analysis of the ambiguities that

can arise from the specularity consistency constraint;

• obtaining dense and accurate 3D reconstructions of

specular objects, by directly exploiting this constraint.

2. Related work

Specular surfaces have been widely studied in the lit-

erature. By imposing continuity and smoothness con-

straints, depth can be indirectly obtained from normal es-

timates [12, 29]. Normal estimates for glossy surfaces can

be computed for example by fitting of explicit or parametric

models [13, 9, 18], or by direct detection of highlights [8].

On the other hand, most work on stereo reconstruction in

the presence of specularities attempts to avoid view depen-

dent effects. Approaches that cope with specular highlights
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Figure 1. The specularity consistency. An incorrect match x′

2 is

likely to produce normal hypotheses n′

1 and n′

2 that do not agree,

allowing us to reject the match. In contrast, the correct match will

always result in consistent normal estimates by the two cameras.

include capturing multiple views [2, 16], eliminating high-

lights with polarization filters [31, 19], treating them as oc-

clusions [15], or removing them from the captured images

prior to matching [28, 16, 34, 32].

Naturally, for the class of objects we are considering

(i.e., smooth, glossy materials), view-dependent informa-

tion provides the most useful of constraints. A wide range

of methods derive local shape information from the identi-

fication and/or tracking of the distorted reflections of light-

sources and special known features [3, 4, 36, 22, 24]. These

methods tend to produce sparse reconstructions.

Dense measurements can be produced, for example,

by the general framework of light-path triangulation [14].

Within this framework, our method can be described as

a novel technique for 〈2, 1, 1〉-triangulation. Conversely,

Bonfort et al. [6] present a method for 〈1, 1, 2〉-triangulation

that requires just one viewpoint, but two known reference

points per ray. Outside of this framework, shape has been

recovered by rotating an object under known or unknown

illumination [33, 1], and by exploring the Helmholtz reci-

procity [35]. Recently proposed matching cost functions

that are especially suited to specular surfaces include light

transport constancy [10] and scatter-trace photography [17].

The idea of checking for normal consistency across dif-

ferent views has been originally proposed by Sanderson

et al. [23], in the context of feature matching of specular

highlights, and later used by Bonfort and Sturm [5], as part

of a voxel carving method for recovering the shape of spec-

ular objects. In contrast, by rephrasing this constraint as

a matching cost function, we can leverage decades of re-

search on stereo reconstruction [25]. In particular, we can

take advantage of efficient global matching algorithms that

produce satisfactory dense reconstructions even when the

matching cost functions are not particularly discriminant.

3. Triangulation by specularity consistency

The reconstruction method we propose relies on the abil-

ity to densely identify environmental scene points reflected

by a specular surface. This can be achieved by illuminat-

ing the specular object with a dense set of controllable light

sources. Various setups have been proposed to create a tem-

porally encoded lighting environment using monitor pix-

els as light sources [37, 30, 6]. Using a suitable encoding

scheme, the source position s of light reflected by a specu-

lar surface point p toward a camera can be decoded from the

camera’s intensity observations over time. In section 6, we

present a similar prototype system to evaluate our approach.

With the light source position s known, the normal n

at a point p ∈ IR3 can be easily computed as the bisector

n = (l + v)/‖l + v‖ between the lighting and viewing di-

rections: l = (s − p)/‖s − p‖ and v = (c − p)/‖c − p‖,

with c the center of projection of the observing camera. In

the context of stereo reconstruction, however, depths and

hence surface point positions are not known in advance. In-

stead, a candidate point p corresponding to a disparity hy-

pothesis has to be tested for consistency.

Consider figure 1. A point p on the specular surface

projects to pixel x1 as seen by camera 1. Assume we

also know the light source position s1 that casts a highlight

through x1. We want to find the corresponding pixel x2

to which p projects at camera 2, so we can triangulate for

its position. Naturally, we must be able to distinguish the

wrong candidate matches x′
2

from the correct match x2.

The figure shows an example of incorrect match x′
2
. By

triangulation, this match determines an incorrect position p′

along the line of sight through x1. Given p′ and s1, cam-

era 1 hypothesizes a normal direction n′
1
. Camera 2, on

the other hand, makes an independent normal direction hy-

pothesis n′
2
. This hypothesis comes from p′ and the light

source position s′
2

that casts a highlight through x′
2
. Recall

that, in the figure, p does not project to x′
2
. Some other

surface point p′′ does, with an independent normal direc-

tion n′′. This is the point responsible for the light source

position s′
2

that is visible through x′
2
. The independence

between points p and p′′ is likely to cause the normal direc-

tion hypotheses to disagree, in other words n′
1
6= n′

2
.

In contrast, the correct correspondence x2 actually im-

ages the point p. Triangulation produces the correct depth,

and the light source position s2 visible through x2 really is

reflected from p. Since both x1 and x2 observe the same

surface point, the normal direction hypotheses n1 and n2

will agree. Our framework for dense stereo reconstruction

exploits this fact.

4. Dense stereo framework

Dense stereo reconstruction generally requires a met-

ric that assesses a disparity hypothesis d for a given im-

age point (x, y). This is typically expressed by assigning a

matching cost value C(x, y, d) to this hypothesis. A stereo

matching algorithm then assigns minimum-cost disparities

to all pixels in a reference image, say, the image captured by



camera 1. Algorithms differ in whether disparity minimiza-

tion takes place locally or globally, and in how an overall

minimum is defined and computed [25]. However, match-

ing costs are universal, and arbitrary cost functions can be

directly used with most existing algorithms.

4.1. Matching Costs

Stereo matching cost functions are usually based on

image intensities and consider squared or absolute differ-

ences between candidate matching pixels in the image pairs.

That is, the cost of matching pixel (x, y) in image 1 with

pixel (x + d, y) in image 2 can be expressed, e.g., as

C(x, y, d) = ||I1(x, y) − I2(x + d, y)|| , (1)

with Ii(x, y) denoting the intensity at a pixel (x, y) in the

image captured by camera i.
In contrast to this, our reconstruction framework is based

on differences in normal hypotheses rather than intensities.

A given disparity hypothesis d for a pixel (x, y) corresponds

to a candidate point p in space. As explained in section 3,

p produces two normal estimates ni(p) from the two cam-

eras. We use the angular difference

δ(x, y, d) = cos−1
(

n1(p)⊤n2(p)
)

(2)

between the normal estimates as a correspondence measure

for a hypothesis (x, y, d). If p exactly coincides with a

specular surface, δ is expected to be zero. In a realistic

setting, however, there will be a slight error in the normal

estimate due to noise and to spatial and intensity quantiza-

tion, that is, the measured δ will deviate from the ideal δ0

by δ = δ0 + δ∗. Assuming the error term δ∗ to be mean-

free and normal-distributed with standard deviation σ, the

likelihood of δ(x, y, d) denoting a match is

P (x, y, d) =
1

σ
√

2π
e−

δ(x,y,d)2

2σ2 . (3)

In our experiments, we choose σ to be between 5◦ and 8◦,

depending on the data quality; using much different values

leads to a poor discrimination of matches. We therefore

set the matching cost function C(x, y, d) = 1 − P (x, y, d).
This cost function can now be used with a variety of existing

stereo reconstruction algorithms. Section 7 shows example

reconstructions using different alternatives.

4.2. Normalaware cost aggregation

In traditional (intensity-based) stereo, the cost computa-

tion is often extended to a window region around the point

of interest. This increases the reliability of the cost assess-

ment for textured regions. Cost aggregation within a win-

dow can be expressed as a 2D or 3D convolution

C′(x, y, d) = (w ∗ C)(x, y, d) (4)

with a window function w [25]. This convolution can al-

ternatively be expressed as a possibly anisotropic diffusion

process [26].

When w is anisotropic, it introduces a bias for a certain

slope during the surface reconstruction stage. In particu-

lar, if w is a 2-dimensional kernel over x and y (a com-

mon choice), the convolution corresponds to the integration

over a window in the image domain, introducing a bias for

image-parallel surface slopes.

We exploit the additional knowledge of normal direc-

tions to specifically bias the surface reconstruction to-

ward the surface orientation corresponding to the normals.

The intersection of the object surface with the epipolar

(xd-)plane of y corresponds to a minimum-cost ridge in the

cost function C(x, y, d). Any surface reconstruction algo-

rithm has to trace this ridge. In order to improve the precon-

dition of the surface reconstruction, we perform anisotropic

diffusion of the symmetrized cost function Fy(x1, x2) ≡
C(x1, y, x2 − x1), aggregating costs along the ridge direc-

tion predicted by the normal estimates. As shown in [20],

given a pair of rectified cameras, the unit tangent direction t

to the matching ridge at (x1, x2) can be expressed as

t ∝ (n⊤p
1
, n⊤p

2
)⊤ (5)

where n and pi are, respectively, the 2D projections of the

normal and position of the surface point at (x1, x2), on the

epipolar plane of y relative to camera i.
Following equation (4), we convolve Fy with a spatially-

varying, oriented Gaussian filter kernel g:

F ′
y(x1, x2) = (g ∗ Fy)(x1, x2) , (6)

where

g(u, v) = e−x
⊤
V

−1
x, x = (u, v)⊤ , (7)

is controlled by a spatially-varying variance ma-

trix V ∈ IR2×2, dependent on the location of the filter

application (x1, x2):

V = raaI + rd

∑

i∈{1,2}

titi
⊤+ Fy(x1, x2)t̄it̄i

⊤ . (8)

Here ti is the unit vector in the direction of the slope, ac-

cording to the normal estimate ni, and t̄i is unit length and

orthogonal to ti. Each summand after the summation sign

implements the variance matrix of an oriented Gaussian

along ti, each converging to an isotropic Gaussian as the

local matching cost reaches one. Adding the variance ma-

trices corresponds to convolving the respective Gaussians.

The additional summand raaI provides an anti-aliasing pre-

filter to guarantee a faithful discretization of g. In our im-

plementation we use an anti-aliasing radius of raa = 0.4 and

a diffusion speed of rd = 1.41; deviation from these val-

ues typically leads to a less stable cost aggregation, or to a
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Figure 2. Consistency values within an epipolar plane (red line) through a problematic region with many false matches. High confidence

values are displayed in red; the black line shows the result of a disparity optimization using dynamic programming. Anisotropic diffusion

according to the normal estimates attenuates false positives. The images show (from left to right) unmodified consistency values Fy(x1, x2)
and F ′

y(x1, x2) after 4 and 16 diffusion steps, respectively.

slow convergence, respectively. Finally, in order to ensure

energy preservation, each filter kernel is normalized after

discretization to add up to one.

By iteratively applying equation (6), minimum-cost

ridges are emphasized where both normal estimates agree

with the matching ridge, while spurious ridges are attenu-

ated. Figure 2 shows an example of a problematic epipolar

plane through the quarter dataset: the complex leaf pattern

on the coin, and the non-specular background object intro-

duce many spurious matches that are gradually smoothed

out by the diffusion process.

5. Ambiguities

Even disregarding interreflections, the specularity con-

straint can lead to ambiguities. An observation by camera i
can be described by a pair (xi, si), where xi is the pixel

coordinate and si the light source position that produces a

highlight through xi. Here, for simplicity, and without loss

of generality, we assume that the light source lies along the

baseline between the two cameras (as in figure 3). Ideally,

for any surface, and for each observation (x1, s1) by cam-

era 1, there would exist only one corresponding consistent

observation (x2, s2) by camera 2. Unfortunately, this is not

the case. We can distinguish between two types of ambi-

guity. A week ambiguity occurs when at least two differ-

ent observations, (x2, s2) and (x′
2
, s′

2
), are consistent with

(x1, s1). A strong ambiguity occurs when every observation

(x2, s2) is consistent with (x1, s1).

5.1. Weak ambiguities

Consider a pixel x′
2

from camera 2 that does not corre-

spond to x1 (figure 3). By triangulation, we can compute the

position p′ of the non-existent corresponding surface point:

p′(x1, x
′
2
) = (X ′, Z ′)⊤= (

x1T

x1 − x′
2

,
T

x1 − x′
2

)⊤, (9)

where T is the baseline distance between the two cameras.
From p′ and s1, we can compute the normal direction ex-

pected by camera 1 at p′. This normal direction is uniquely
determined by the intersection point n′

1
of the normal ray at

point p′ with the baseline between the two cameras. To find
the intersection, we use the angle bisector theorem on the
triangle formed by points p′, c1, and s1 to get

n
′

1(x1, s1, x
′

2) =
s1

p

X ′2 + Z′2

p

X ′2 + Z′2 +
p

(X ′
− s1)2 + Z′2

. (10)

If (x′
2
, s′

2
) is consistent with (x1, s1), then the light from

s′
2

must reflect at p′ towards the ray through x′
2
. Us-

ing p′ and n′
1
, and the angle bisector theorem on the triangle

formed by points p′, c2, and s′
2
, we get s′

2
(x1, s1, x

′
2
) =

−

n′

1

2
(T − 2X ′) + (T − 2n′

1)(X
′2 + Z′2)

n′

1

2 + 2T (X ′
− n′

1
) − (X ′2 + Z′2)

. (11)

Even though the ray through x′
2

does not hit a sur-
face point at p′ (this point would occlude p, which is
by assumption visible through x1), the ray may inter-
sect the surface at another depth Z ′′. For each possible
point p′′ = (X ′′, Z ′′)⊤= (x′

2
Z ′′+ T, Z ′′)⊤ along the ray

through x′
2
, we can calculate a normal direction that re-

flects s′
2

towards x′
2
. Once again, we use the angle bisector

theorem on the triangle formed by points p′′, c2, and s′
2

to
obtain n′′

2
(x1, s1, x

′
2
, Z ′′) =

T
p

(s2 − X ′′)2 + Z′′2 + s2

p

(X ′′
− T )2 + Z′′2

p

(s2 − X ′′)2 + Z′′2 +
p

(X ′′
− T )2 + Z′′2

. (12)
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Figure 3. Weak ambiguities. Given a surface point p, observed

as (x1, s1) by camera 1, and a false candidate match x′

2, the sur-

face cannot go through the intersection point p′. However, for ev-

ery point p′′ along the ray through x′

2, there is a surface orientation

that results in an observation (x′

2, s
′

2), consistent with (x1, s1).

In summary, the rays through x1 and x′
2

observe in-

dependent surface points, and intersect at a non-existent

hypotetical point p′ (equation (9)). Camera 1 expects p′

to have normal n′
1

(equation (10)). For each x′
2
, we can

compute a light source position s′
2

that causes (x′
2
, s′

2
)

to be consistent with (x1, s1) (equation (11)). Then, for

each point p′′ along the ray through x′
2
, we can compute

a normal direction n′′
2

that reflects light from s′
2

towards

the ray through x′
2

(equation (12)). Whenever the surface

goes through a point p′′ with the appropriate normal direc-

tion n′′
2

, there is weak ambiguity.

5.2. Strong ambiguities

Consider figure 4. A point p generates an obser-

vation (x1, s1) by camera 1. Take now an arbitrary

point p′ = (X ′, Y ′)⊤ being observed by camera 2 through

pixel x′
2
. The ray through x′

2
intersects the ray through x1

at a point that we can obtain from equation (9). Following

equations (11) and (12), we can obtain a normal direction

at p′ that makes the observation at x′
2

consistent with the

observation at x1.

In other words, each observation by camera 1 imposes

a normal field on the XZ-plane. Starting from any point in

the XZ-plane (i.e., an initial condition), any trajectory that

respects this normal field (i.e., solves the associated differ-

ential equation) will generate a strong ambiguity curve. The

curves in figure 4 were generated by numerical integration.

If the surface follows one of these curves, every observation

by camera 2 will be consistent with (x1, s1) by camera 1.

These are the strong ambiguity curves.

In theory, weak and strong ambiguities are extremely un-

likely. In practice, finite precision on the light source posi-

tion estimation, as well as noise and discretization artifacts

allow the phenomenon to manifest itself as wrong matches.

These can be particularly problematic if the surface resem-

bles a strong ambiguity curve.

x
′

2

ZZ

X

x1

c1 c2

p

s1

p′

x2

Figure 4. Strong ambiguity curves. An observation (x1, s1) by

camera 1 imposes a normal field on the XZ-plane. If a surface

conforms to this normal field, every observation (x2, s2) by cam-

era 2 will be consistent with (x1, s1). In other words, we have a

strong ambiguity.

6. Acquisition

Specular triangulation requires a camera pair and an ap-

paratus to illuminate an object with a dense set of calibrated

light sources. To that end, the cameras acquire images of

the object being lit by a temporally encoded light pattern.

In principle, we can use any light pattern that allows us to

find the identity of a single light source Li in a specular

reflection observed by a camera at ci.

Efficient encoding schemes, such as gray-code patterns,

exist; however, specular reflection is subject to a convolu-

tion with a specular lobe. Accordingly, the chosen pattern

has to be robust under convolution. A very robust encoding

would be to trigger one light source at a time. For each sur-

face point, the light source Li
max is determined that produces

a maximum intensity response under observation from cam-

era i. The temporal location of the maximum response is

comparatively stable even under convolution with a specu-

lar lobe. For a dense set of many light sources, however,

this procedure is highly inefficient.

In order to reduce acquisition times, we use multiple lin-

ear light sources instead of a dense set of single point light

sources [11]. During acquisition, the linear light sources

are swept through space. For each surface point, the maxi-

mum response during each sweep is determined. In a good

approximation, these maxima occur when the linear light

source covers Li
max. Accordingly, we intersect the locations

of the corresponding illuminating lines to obtain the posi-

tion si of Li
max.

6.1. Acquisition Procedure

We have implemented a system that performs the linear

light source sweeps by displaying horizontal and vertical

stripes on an LCD monitor. The stripes are 0.5 cm wide

and are sequentially shifted by one stripe-width on each

frame. Scanning times could be improved by multiplexing

the stripes with Hadamard patterns [27], but we give prefer-

ence to quality over speed in the acquisition system in order



Figure 5. Photograph of our experimental setup. The object is

placed in front of the monitor, facing the camera pair. The cam-

eras capture image pairs while the monitor displays sweeping lin-

ear light sources. The small projector visible above the cameras is

used for comparison with structured-light reconstructions.

to avoid additional sources of error. Figure 5 shows our ex-

perimental setup. Both the camera pair and the monitor’s

location with respect to the cameras are calibrated. Know-

ing the light source locations si, specular triangulation can

be performed as described in section 3.

In practice, the crucial part is a reliable estimation

of Li
max from the intensity variation over time of each ob-

served point. Camera noise and the discretization of the

line sweep prevent us from directly picking the stripe lo-

cation with the maximum intensity response. Instead, we

obtained good results by fitting a Gaussian mixture model

I(t) =

n
∑

i

aie
−

(t−µi)2

σ2
i (13)

to the data, and taking the maximum intensity point in time

as µi of the narrowest Gaussian lobe (i.e., for i with min-

imum σi). The use of multiple Gaussians allows the fit to

approximate diffuse and ambient reflectance contributions

by wider lobes, with the specular peak corresponding to a

single, narrow lobe.

A common choice for fits of Gaussian mixture models is

the Expectation Maximization algorithm. In our case, how-

ever, it is not applicable, as the support of the measurements

is truncated. Instead, we use a general non-linear fit to equa-

tion (13). In experiments with real data, we found that, for

most specular materials, the peak can reliably be detected

with even a single lobe. See figure 6 for sample temporal

reflectance profiles of measurements of a coin.

In the proposed setup, the maximum-response peaks µh

and µv of the horizontal and vertical sweep, respectively,

directly correspond to a monitor location (x, y) ∝ (µh, µv),

which in turn allows us to determine si.

Figure 6. (Top) Temporal response measurements at different

points of a coin. (Bottom) Corresponding measured intensity pro-

files. Measurements are shown in blue, and the fit of a single Gaus-

sian lobe is shown in green.

6.2. Properties

The approach requires free lines of sight between the sur-

face point and the two cameras, as well as from the point

to the two light sources in the reflection direction. This

imposes constraints on the object geometry. Similar con-

straints are also present with other photometric reconstruc-

tion techniques, such as photometric stereo. Unlike photo-

metric stereo, which suffers from normal bias in the case

of (partial) self-shadowing, specularity consistency only re-

quires a narrow free cone of sight to the lighting environ-

ment, and is hence more robust against such bias.

A practical limitation of the proposed setup, however, is

the relatively small solid angle covered by the monitor. In

order for a point to be reconstructed, the reflection of (po-

tentially different) areas of the monitor must be visible by

both cameras observing the point. Only points with normals

falling within a narrow range satisfy this requirement. Nor-

mals outside of this range result in gaps in the reconstruc-

tion. We are currently investigating alternative layouts that

will reduce this problem by covering a larger solid angle.

7. Results

Using the setup described in the previous section, we

captured two real datasets: a quarter and a mirrored sphere.

In order to evaluate our method in ideal conditions, we also

generated synthetic data for a Greek panel and for an an-

alytic sphere, using the same calibration parameters as the

real scanner. The simulated datasets were processed by the

same pipeline as the real datasets, starting with simulated

camera images instead of real images.

In order to demonstrate the versatility of the proposed

cost function, we use two different stereo reconstruction al-

gorithms. Figure 7 shows a reconstruction of the simulated

sphere dataset using Markov Random Fields stereo recon-

struction [7]. All other reconstructions were obtained using

dynamic programming. Results are shown in figure 8.

In general, we have found that our triangulation stage



Figure 7. Rendering from discrete matches produced by Markov

Random Fields stereo reconstruction [7], evaluated on a simulated

dataset of a sphere using our specularity constraint.

consistently produces high-quality normals, but can gener-

ate incorrect depth estimates (compare the first and second

columns of figure 8). Due to the geometry of the capturing

setup, an incorrect match can result in a large error in the

reconstructed depth, whereas the normal estimate computa-

tion tends to be more robust to such errors.

Nevertheless, normal and depth are not independent, and

we therefore use the measured normals to improve the qual-

ity of the depth estimates. To this end, we use the opti-

mization method described in [21]. Recall the idea is to

formulate an energy minimization problem whose solution

attempts to reconcile both measurements. Since the method

expects to correct relatively small depth variations, we it-

erate the process to produce larger corrections. The third

column of figure 8 shows the result of such optimization,

which produces great improvements.

The mirrored sphere shows the entire range of orienta-

tions that can be reconstructed by our system. As discussed

in section 6.2, reconstruction is only possible for points

within the overlapping images of the monitor as seen by

both cameras. For further illustration, figure 8(h) shows the

reflection of the monitor in the sphere as seen from one of

the cameras.

For the quarter dataset, we also attempted to obtain ge-

ometry with a structured light scanner. The projector, used

exclusively for this experiment, is visible in figure 5. Fig-

ure 8(d) shows the resulting reconstruction. The artifacts

demonstrate the difficulties arising from scanning specular

objects with active triangulation. Attempts to obtain the

shape of the mirrored sphere using structured light projec-

tion consequently failed completely.

8. Conclusions

We have demonstrated the use of a specularity consis-

tency criterion, based on consistency of position/normal tu-

ples, for dense stereo matching in specular scenes. The

fact that normals are closely related to the geometry be-

ing reconstructed allows us to aggregate matching costs in

a meaningful manner, biasing the stereo reconstruction to-

ward the measured surface orientation. In addition, the nor-

mal information can be used to refine the output of the

stereo algorithm, yielding low noise and detailed recon-

structions. We have demonstrated the applicability of the

proposed criterion, using a simple acquisition setup based

on two cameras and a monitor.
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