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Abstract

This paper describes a method for finding wide-baseline
correspondences between images at locations along gradi-
ent edges. We find edges in scale space using established
methods and develop invariant descriptors for these edges
based on orientation and scale histograms. Because edges
are often found on occluding boundaries, we calculate and
store two descriptors per edge, one on each side, for ro-
bustness to occlusions. We demonstrate the effectiveness of
edge matching in the applications of wide-baseline corre-
spondence, structure from motion from line segments, and
object category recognition on the Caltech 101 dataset.

1. Introduction

Image edges have been studied since the early days
of computer vision [2] and have been used as low-level
features for applications as diverse as structure from mo-
tion [19, 3], segmentation [10], and recognition [15]. De-
spite their widespread utility, no local wide-baseline match-
ing technique is available for finding correspondence be-
tween edges in different images, as exists for point features
[9, 12, 22, 11]. In this paper, we propose a simple system for
matching edges using descriptors, akin to affine invariants
for points, and call these edge descriptors.

A point feature is anchored to a single position in an im-
age or image scale space, and its descriptor is a function
of the image within a region containing that point. SIFT
[9], for example, selects a distinctive point in scale space,
(x, y, σ) and develops a descriptor based on the position
and orientation of gradients taken at the selected scale, σ,
and falling within a circle centered at (x, y) with radius pro-
portional to σ. In contrast, edges are one-dimensional con-
tours, commonly thought of as separating regions of con-
stant intensity [2] or constant texture [16]. In the context
of the aperture problem, constant-intensity regions are non-
descriminative – they are all identical. This may lead one
to believe that it is not possible to create local image-based
descriptors for edges. However, it is important to note that
regions on either side of an edge are only smooth above a
particular scale, not at other scales. By considering multi-
ple scales, we can indeed develop distinctive local descrip-

tors anchored to edges with similar invariance properties as
point-based descriptors.1

To further complicate matters, edges are frequently
found on occluding boundaries, where a change in view-
point will violate the hypothesis of affine warping; the im-
age on one side of the occlusion will be inconsistent with
changing viewpoint. For point-features, this is fatal – the
image inside the support region of the descriptor can change
drastically, making matching impossible, and there is no
way to determine if the point of interest falls near an oc-
clusion when generating the descriptor (see Figure 3 for an
example of this effect). While edges are more likely to fall
on occluding boundaries, we know this a priori, and there
is a simple way to deal with them: separate the domain of
the support region into two parts, one on either side of the
edge, and develop a descriptor for each of these regions.
Using this bipartite descriptor allows us both to be robust to
occlusions and to detect them when matching, as only one
of the two descriptors will match when an edge falls on an
occluding boundary.

Edges naturally provide another key piece of informa-
tion useful for correspondence: ordering. Though an edge
may warp due to changes in viewpoint, the image informa-
tion along the same edge will never appear “out of order”
between viewpoints. It is important to emphasize that the
descriptors we present do not explicitly take into account
edge geometry2; they are primarily based upon image in-
formation in a region of scale space split by an edge. Edge
descriptors do, however, utilize the edge contour to separate
support regions into two sides, and they take into account
the ordering of pixels and directionality provided by edge
detection and chaining.

A brief summary of our algorithm is outlined here, with
details in following sections. Since we are finding descrip-
tors attached to edges, first these edges must be detected
in an image (§2.1). We use established techniques to find
edges in scale space, which are stored as lists of ordered tu-
ples (xt, yt, σt, ς+t , ς

−
t ) , where a different descriptor scale,

ς+, ς−, is computed for either side of the edge (§2.3). Along

1Of course, this is not true for all edges. Those which separate smooth
regions at all scales will not admit a distinctive descriptor along an edge or
at any point, for that matter.

2Arguments such as those presented in [23] indicate that for any view-
point invariant statistic, edge geometry is not discriminative.
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any given edge, canonical positions on either side are cho-
sen at the local extrema over these scales (§3.1). At each of
these anchors, a histogram of gradient orientations is com-
puted at scales other than σt (§2.4). These are stored in an
ordered list, which comprises the edge descriptor. Since the
same edge in differing images will, in general, have a dif-
ferent length, directonality of ordering, and missing parts,
we must account for this variability in the matching proce-
dure. We use the Smith-Waterman technique derived from
protein sequence matching ([17]) to find the best possible
match between any pair of edge descriptors (§3.3).

Experimental results (§4) demonstrate the effectiveness
of our edge descriptors in the contexts of correspondence,
structure from motion, and category recognition.

1.1. Related work

There is a rich literature covering the concept of edge
detection, and we will not presume to review it thoroughly
here. Instead call attention to a few citations of direct ap-
plicability to this paper. One should first note that there are
many ways to define an “edge” in a static image. Following
Canny [2], edges separate regions of smooth intensity that
ideally differ by a step function in one direction (normal to
the edge). An alternative approach is to consider an edge
as separating two regions with sufficiently different image
statistics. These “texture edges” are commonly computed
with the compass operator [16], which finds an edge ori-
entation cutting a circular region such that the two halves
of that region have maximally different statistics. Both of
these approaches can be made multi-scale, where the scale
parameter determines the step size of gradient computations
and the support region surrounding a candidate location.

The method of edge detection we have chosen to im-
plement derives from Lindeberg [7]. This is a multi-scale
detector based on the zero-crossings of the second direc-
tional derivative of the image at a particular scale. Edges are
chained by evaluating every voxel in scale-space, assigning
it an orientation, and linking adjacent voxels if their posi-
tions and orientations are sufficiently close. Each position
along an edge is assigned a location, scale, orientation, and
edge strength. We use the output of this detector to localize
features and develop invariant descriptors.

Recently, Tsin et al. [21] have demonstrated a tech-
nique for edge tracking in video using the randomized for-
est learning framework [6]. Edges are initially selected by
hand, then tracked throughout a video sequence by learning
a forest of randomized decision trees, which act as a type
of image descriptor around a selected edge. This method
requires that the small-baseline assumption hold, as the de-
scriptor incorporates little invariance to wide-baseline de-
formations.

Mikolajczyk et al. [13] find descriptors that are anchored
to points along edges found using a multi-scale Canny de-

tector. At a given edge pixel, they select the scale at which
a Laplacian filter convolved with the image attains a maxi-
mal response. This defines the support region for the point
descriptor, which consists of gradient orientations weighted
by magnitudes on edge pixels, binned into a corse and fine
position grid. The domain of the support region is split in
half by finding a dominant orientation, and one descriptor
is computed for each side. While [13] and our technique
share a number of similarities, one primary difference (be-
yond details of the descriptor and edge detection) is that
[13] considers descriptors as independent; they find point-
features that fall on edges, whereas we seek a unified de-
scriptor for an entire edge.

2. Edge Descriptors

As our goal is to match edges in differing images, we
must develop descriptors that are both distinctive and insen-
sitive to the variability we expect under changing viewpoint,
illumination, and clutter. We begin at the level of the detec-
tor, which finds and links contiguous edges in scale space
(§2.1). Whereas point detectors produce binary results – a
feature is detected or not – the same edge in different im-
ages may be partially detected and can undergo changes
in length and geometry. Our descriptor, therefore, cannot
be unitary like SIFT (a fixed-length vector) but extensible,
growing with the length of the associated edge. It must also
be based on image statistics that are invariant to changes
in illumination and insensitive to viewpoint-induced warp-
ing, making gradient histograms the natural choice. In this
section, we develop the edge descriptors, including scale
selection, ordering, sidedness, and discretization. How we
match these descriptors is explained in §3.

2.1. Images and edge detection

We consider images to be positive-valued functions I :
Ω → R+; (x, y) 7→ I(x, y), together with the domain Ω ⊂
R2 where they are defined. So, when we say “image,” we
mean the pair (Ω, I) .= I. As edges are only meaningful at
a particular scale, all computations are performed on a scale
space formed by repeated convolution of the image with a
Gaussian kernel. [7]

A local edge detector is a functional D that maps
the image scale space onto a set of points that have
certain extremal properties, for instance D : I →
{(x, y, σ) | Iσvv(x, y) = 0, Iσvvv(x, y) < 0} .= E ⊂ R3

[7]. (Keeping with standard nomenclature, we refer to these
points as edgels.) Iσv is the derivative of the image at scale
σ in the direction v, and E is the set of points that are pu-
tatively on some edge, together with their intrinsic scale σ.
Here, scale σ equals the variance of the Gaussian kernel for
which a scale-normalized edge strength function is max-
imized [7]. On a contiguous subset of E one can define



a linking mechanism, formalized by a continuous function
L : [0, T ] → ε ⊂ E ; t 7→ L(t) = (x(t), y(t), σ(t)) ∈ ε.
This mechanism introduces an order among the edgels it
links, as well as a direction, for in general L(t) 6= L(T − t).

2.2. Image descriptors anchored to an edge
We denote an image descriptor, or feature, as any im-

age statistic, or a deterministic function of an image. Note
that this includes the image domain, Ω, as well as the image
values I(Ω). The simplest image “descriptor” associated to
an edge is the restriction of the image to the domain deter-
mined by an edge detector and particular linking:

I|L
.
= {(x̄, ȳ, I(x̄, ȳ)) | (x̄, ȳ) ∈ Bς(x, y); (x, y, ς) ∈ ε} (1)

where Bς(x, y) = {(x̄, ȳ) | (x − x̄)2 + (y − ȳ)2 ≤ ς2}
is a ball of radius ς centered in (x, y). This descriptor
is not very useful, as it exhibits no particular invariance
properties. Rather than the raw image values of I|Bς(x,y),
it is useful to employ other image statistics F : I →
RK ; (Ω, I) 7→ F (I(x, y))|(x,y)∈Ω, which we denote in
short-hand as F (I|Ω), designed to be insensitive to other
nuisance factors of the image-formation process; in §2.4 we
will discuss specific choices for F .

We introduce an ordered descriptor using the linking
mechanism L as follows:

φ(I|L) : [0, T ]→ RK ; t 7→ F
(
I|Bς(t)(L(t))

)
(2)

That is, φ(I|L) is a function that maps a position on an edge
to a vector based on the image region around that point.
Finally, we introduce an ordered sided descriptor by only
considering the portion of the domain Bς that is on one side
of the edge, that is

φ+(I|L) : [0, T ]→ RK ; t 7→ F
(
I|Hς+(t)(L(t))

)
(3)

where the “half-space”Hς+ is defined as

Hς+ ={(x̄, ȳ)∈Bς(x, y)|〈(x̄−x∗, ȳ−y∗), N(x∗,y∗)〉≥0} (4)

where

(x∗, y∗) = arg min
(x,y)∈ε

||(x̄, ȳ)− (x, y)||22

whereN(x∗,y∗) is the normal vector to the edge at the point
(x∗,y∗), closest to (x̄, ȳ) (see figure 1). One can similarly
define φ− by changing the sign of the inner product with
the normal.

If an edge domain intersects an occluding boundary,
then in general neither φ nor φ+/− are viewpoint invariant,
unless the object is polyhedral. Our working hypothesis is
that an ordered sided descriptor can be used in practice as
an image statistic that is insensitive to viewpoint variations
even in the presence of visibility artifacts, including occlu-
sions, while at the same time being discriminative enough to

(x*,y*)

! 

(x ,y ) N

Figure 1. The domain of an edge descriptor (4). Hσ lies on one
side of an edge within a circle of radius σ for a given anchor point.

enable applications to wide-baseline matching and object or
category recognition. To this end, we must introduce a way
to compare such descriptors. In the following sections, we
explore choices of the descriptor – the actual form of the
function F – as well as discuss the pratical computation,
which includes discretizing the function L.

2.3. Descriptor regions and discretization

Since we seek a local image descriptor for an edge, we
must define its supporting domain. Edge descriptors are
comprised of a list of gradient orientation histograms, each
of which is computed in a domain that is anchored to the
edge of interest. Choice of size and position of these do-
mains is important if we are to retain invariance to view-
point changes.

For practical purposes and to avoid redundancy, we com-
pute histograms at discrete collections of points along an
edge rather than on the entire continuum [0, T ]. We call
these positions anchors, and they will provide a canonical
discretization for edge descriptors. As the positions of the
anchors will influence our ability to match edges, we must
select them carefully. We are fundamentally seeking image
descriptors, hence the anchor positions should be tied to the
image statistics and not to the geometry of the edge. 3 If an
edge lies on an occluding boundary, such image statistics
will change incongruously with viewpoint on either side of
the edge – thus we must consider each side separately when
selecting anchors. In effect, an edge has two descriptors,
one for either side, each of which contains its own anchors
and histograms independent of the other.

Since the histograms store the crucial matching informa-
tion, we must select their support regions in a viewpoint-
insensitive way. The Laplacian operator has been shown
to produce scale-invariant regions for matching and is in-
sensitive to a wide range of viewpoint transformations [8].
We adapt this scale-selection technique to find a scale en-
velope independently on both sides of an edge. For each
point along an edge, we evaluate the integral of the Lapla-

3Regardless, since the edge geometry is not invariant under the defor-
mations we expect, it does not make sense to find a canonical frame for
our descriptor based on geometry.
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Figure 2. Scale envelopes and descriptor scale. (Left) The edge is plotted in green with its scale envelopes, ς+ and ς−, in red and cyan.
The descriptor scales for two points along the edge are indicated by the red (side +) and cyan (side -) circles. The edge normals at those
points are drawn as magenta arrows, along which are superimposed plots of the integral of the Laplacian vs. domain radius for that point
(yellow). The selected descriptor scale (extremal Laplacian response) for each point is drawn in the direction of the edge normal at that
point. (Right) Above, a plot of the lower edge envelope vs. length for the selected edge. Below, integral of the Laplacian vs. radius for the
point on the edge indicated with the cyan circle.

cian within a circular region of radius r split by the edge (so
that image information from only one side is used to com-
pute the envelope for that side, as in figure 1). The r for
which this integral attains an extremal value is selected as
the “descriptor scale” for that point on that side. We refer to
these as ς+ and ς− (Figure 2).

Given the scale envelopes, we now have an image-based
measure for selecting anchors on either side of an edge. We
choose anchors along the edge where the scale envelopes
attain their extremal values. This is a reasonable choice, as
although the scale envelopes may warp due to viewpoint
changes, their extrema should remain at stable locations
along the edge.

2.4. Gradient histograms

Of all possible F that we can use, we want to employ
one that is also insensitive to other nuisance factors of the
image formation process. It is well known that the gradi-
ent orientation of the intensity I(x, y) is normal to the iso-
contours, and that the collection of level lines of an image is
the maximal invariant with respect to contrast functions [1].
Therefore, it is natural to choose a statistic F based on gra-
dient orientations. Note that gradients for the descriptor in
[9] are computed at the intrinsic scale of the structure of in-
terest detected. In our case, at the intrinsic scale computed
at an edge location, the gradient orientation is constant on
either side (which, essentially, defines an edge at a particu-
lar scale). Thus, the descriptor must compound information
from all scales except the intrinsic scale σ.

Following [9], our descriptor F
(
I|Hςs(t)(Li(t))

)
at a

location Li(t) on side s of edge i is comprised of an orien-
tation histogram, binning over position and orientation, but
considering all scales at points within a circle of radius pro-
portional to ςs on side s of the edge. As in [9], orientations
are weighted by edge strength and a Gaussian centered on
the anchor point. Such a histogram is computed at all an-
chor locations on either side (§3.1) and stored in order. This
pair of ordered lists of histograms comprises the descriptor
for a single edge, φ(I|Li).

3. Comparing edge descriptors
Consider two images I1 and I2 that potentially portray

the same scene. One can test this hypothesis by extracting
invariant descriptors independently on each image and then
comparing these descriptors. For each edge, we have two
descriptors, φ+ and φ−, each of which is comprised of a
list of gradient histograms. Therefore, our goal is to define
a distance

d (φ(I1|L1), φ(I2|L2)) . (5)

Hidden inside L is a choice of endpoints, corresponding
to t = 0 and t = T , as well as the parametrization: in
particular, if we replace t ∈ [0, T ] with τ

.= h(t) with
h being any continuous and monotonic function such that
h(0) = 0, h(T ) = T , we obtain a different value of
φ(I|L ◦ h) for each different h even though the underly-
ing descriptor is the same. In other words, h is a nuisance
parameter that must be factored out of the comparison. This
can be done in two ways: one is to choose amongst all pos-
sible parametrizations h one that is canonical, in the sense



of being tied to the data and chosen independently in each
image. The other is to write d above as a function of h1, h2,
and then define the distance as the minimum over h1, h2. In
practice, we use a combination of both for matching edge
descriptors across images.

3.1. Canonical edge descriptors
In order to make the descriptor φ independent of the

parametrization h, we can choose a canonical parametriza-
tion, ĥ, in a way that is dependent only on the data (with-
out requiring comparison between images) and repeatable
across viewpoints. One strategy, outlined in §2.3, consists
of selecting critical points on the time segment t ∈ [0, T ],
for instance all extrema of ςs(t), and then choose the warp-
ing ĥ that brings such points into fixed positions. For in-
stance, if t1, . . . , tN are N critical points in the interval
[0, T ], then we can select

ĥ : [0, T ]→ [0, T ] | ĥ(ti) = T (i−1)/(N−1), i = 1 . . . N (6)

with t1 = 0 and tN = T . Given this canonical warping,
we could simply compare the lists of histograms directly,
assuming all critical points of a particular edge are present
in all possible viewpoints. Unfortunately, this is typically
not the case due to the effects of clipping and rasterization.
The following sections detail our solution to this problem.

3.2. Matching edges with dynamic programming

The canonization procedure above allows us to define a
distance that can be computed in closed-form without the
need to solve costly optimization procedures as part of the
comparison. However, the choice of canonical element ĥ
is fragile, in that extrema of L can appear or disappear due
to noise, rasterization effects from viewpoint-induced warp-
ing, or incorrect edge linking on a particular image. Further-
more, despite fixing a canonical parameterization for each
edge, there are still a number of effects we need to account
for in the process of matching. These are: (a) differing start-
ing and ending points caused by clipping of an edge, (b) in-
consistent polarity, meaning the starting and ending points
of the edge are reversed, (c) loss of anchor locations in one
or both edges, and (d) matching one or both sides of the
edge descriptors (handling occluding boundaries).

A solution is to choose the optimal ĥi as part of the
matching process by defining d (φ(I1|L1), φ(I2|L2)) as the
minimum

min
h∈M

‖F
`
I1|Bςs

1 (t)(L1(t))
´
− F

`
I2|Bςs

2 (h(t))(L2(h(t)))
´
‖2

constrained to h belonging to the set of monotonic diffeo-
morphisms with fixed boundary conditions. A discrete ver-
sion of this problem can be solved using Dynamic Program-
ming, and is known as “dynamic time warping.” [20] Dy-
namic time warping (DTW) finds the optimal alignment be-
tween two discrete signals, sampled on differing grids, ac-
counting for missing parts and differing lengths.

DTW handles problems (a) and (c) automatically, as the
warping function allows differing endpoints and missing an-
chors. The effects of reversed polarity and separate match-
ing of the sides can be dealt with by simply calculating the
minimum of four path costs, one for each unique combi-
nation of reversal and sidedness. Note that there are only
four due to symmetry: reversing only one edge before DTW
yields the same cost as reversing only the other, and revers-
ing both is equivalent to no reversal at all. Since we assign
sides based on the normal vector along the edge, we know
that when computing DTW assuming the same polarity, we
have only to compare φ+

1 with φ+
2 and φ−1 with φ−2 , while

opposing sides are compared when assuming a reversal.

3.3. Smith-Waterman matching

While DTW can be applied to this problem in general,
we have found it more effective and efficient to utilize a
special case of DTW, most often used for protein sequence
alignment. The Smith-Waterman (SW) algorithm [17] is
used to find alignments in protein sequences allowing for
gaps, differing lengths, and errors. This is a natural analog
to our problem of edge descriptor matching, as geneticists
often need to match subsequences of proteins that include
gaps, errors, and mismatches. Unlike DTW, SW relies on
a fixed alphabet of possible “letters” in a sequence and a
defined matching score for all possible pairs of letters, in-
cluding a penalty for matching a letter to a gap.

In order to apply the SW algorithm to matching edge de-
scriptors, we must first transform our histograms into letters
in a fixed alphabet. We cluster all the histograms in an im-
age using K-means, assigning each a cluster center (each
cluster center is itself a histogram). The edge descriptors
are then transformed from lists of histograms to lists of let-
ters, one letter per cluster center. The Euclidean distance
between any pair of centers is used to define the matching
score for a letter pairing.

Like DTW, SW returns both an alignment and match-
ing score for the edge descriptors being compared. This
allows us to find matching edges as well as matching seg-
ments, which is important since edges can undergo clipping
between viewpoints.

4. Experiments

The following experiments demonstrate the utility and
effectiveness of edge descriptors for a variety of tasks.
These include the classic correspondence problem of
matching edges in image pairs portraying the same scene
or object, structure from motion (SFM) from line segments,
and object category recognition.



(a) Correct SIFT matches on the flamingo. (b) Erroneous SIFT matches on the flamingo. Most have
domains which cross an occluding boundary.

(c) Edge matches on the flamingo.

Figure 3. Occlusions and clutter. The
object of interest, a lawn flamingo, is
placed in front of two different back-
grounds. This is detrimental to SIFT
or similar point-feature descriptors, since
the descriptor domain cannot account for
occluding boundaries.

Figure 4. Change of viewpoint. Matching bicycle edges under viewpoint changes. There is some unavoidable confusion between the front
and rear wheels since no global geometric constrains are enforced in the matching.

4.1. Correspondence

As edge matching is our primary goal, we have exten-
sively tested our system on a variety of scenes that con-
tain edge features. Some examples are provided here of
scenes in which edge matching is successful despite chang-
ing viewpoint, clutter, variable background (an effect of
occlusion). In all figures in this section (3,4), like colors
indicate edge matches between the image pair (though the
colors are repeated, so it is not a one-to-one relationship).
Additionally, since we can find matching portions of edges,
these matched segments are displayed as a bold overlay on
top of the entire connected edge.

4.2. Straight-line structure from motion

To demonstrate a direct application of our edge matching
system, we implemented a front-end to C.J. Taylor’s 1994
algorithm for finding the structure and motion of a scene
from straight line segments [19]. In the original paper and
all subsequent work, edges are selected using a Canny edge
detector, then straight-line segments are matched by hand

across many views. [19] models a scene as a collection of
straight 3D line segments whose projections appear in the
input images. By minimizing the reprojection error between
these model lines and the data edges, parameters of the 3D
lines can be found along with the camera motion between
frames.

The original code and data Taylor used in his experi-
ments are available on the web ([18]), and we have demon-
strated the ability to automate these experiments using our
edge matcher as a front-end. First, edges are extracted and
descriptors generated on each data image, following which
these are matched against the first view, all according to
§2.1. Because the SFM algorithm requires straight edges,
we decompose these matched edges into straight segments
and use our knowledge of edge alignments to obtain cor-
respondence between these segments. We first match then
decompose because matching longer edges is more robust
than short segments. In any automatic matching procedure,
mismatches are inevitable. The original SFM procedure is
not robust to errors in correspondence (as matches are cho-



Figure 5. (Top four) Straight-line inlier segments used for SFM
shown in red. (Bottom four) Reprojections of edge segments onto
the original images. Light blue lines represent the reprojections of
edges estimated using Taylor’s original data. Heavy red lines are
the reprojections using automatically matched edge segments.

sen by hand), so we resort to using a RANSAC procedure to
pick inlier matches while finding structure and motion. An
alternative approach would be to make the optimizations in
[19] robust to mismatches by using robust statistical tech-
niques, such as M-estimators.

Our experiments show performance nearly as good as
Taylor’s original experiments using only line segments ex-
tracted and matched automatically (Figures 5, 6). The fi-
nal estimates are somewhat degraded in comparison to the
original since the edge matching system cannot match all
of the small edges in the scene and must discard ambiguous
matches, whereas the original experimental data is matched
by hand and includes the maximum number of edge seg-
ments.

4.3. Category recognition

Another application which may benefit from edge de-
scriptors is category recognition. This topic has been heav-
ily researched in recent years with many data sets and tech-
niques emerging. The Caltech 101 data set [4], which in-

Figure 6. Reprojections of edge segments onto the original images
of the hallway sequence. Light blue lines represent the reprojec-
tions of edges estimated using our edge features, and heavy red
lines show our edge features used for SFM. The reprojections align
very closely with the original straight-line segments the system se-
lected as inliers.

cludes 101 categories of objects plus a background cate-
gory, has become one of the benchmarks for testing recog-
nition algorithms. To determine whether or not perfor-
mance in this task can be improved by the inclusion of edge
descriptors, we evaluate two recognition systems on Cal-
tech 101 with the inclusion of edge descriptors and with-
out. Both [14] and [5] are “bag of features” techniques, the
former being the most basic version and the latter includ-
ing a spatial model which improves performance. In the
simplest terms, these consider images as collections of vi-
sual “words,” which are formed using hierarchical K-means
clustering of SIFT descriptors (weighted histograms of gra-
dient orientations). These are used to train a classifier to
discriminate between categories.

Our methodology in this case differs from previous ex-
periments. Because the bag of features technique finds pro-
totype feature histograms, the simple algorithms that we test
assume that a single type of descriptor is extracted from the
data. At root, edge descriptors are lists of orientation his-
tograms very similar to SIFT descriptors, except they are
computed over multiple scales on a domain that covers only
one side of an edge. To test the most basic scheme for
adding these features to the bag, we find edge descriptors
as usual but do not consider them in a chain. Rather, we
sample the histograms that are developed along each edge
and treat them as individual features. This makes the addi-
tion of edge descriptors transparent to the classifier.

Even using this simple scheme to add our new features,
we find a significant boost in recognition performance. Ta-
ble 1 summarizes our results. We perform two sets of ex-
periments, one using the basic bag of features from [14]
and one with the spatial pyramid matching technique of [5].



For each, the classifier is given either SIFT features alone
or SIFT features plus edge descriptors; all other parameters
of the classifier remain identical between trials. Results are
reported as confusion matrices whose entries indicate the
proportion of times images from a class i are classified as
class j; rows and columns sum to 1. The ideal result is the
N ×N identity matrix, where N is equal to the number of
classes. For clarity of presentation, we show only the mean
and median of the diagonal of a confusion matrix, indicat-
ing the overall frequency of correct classifications.

The addition of edge descriptors boosts average perfor-
mance on Caltech 101 using both classification techniques.
We hypothesize that the accurate detection of edges and de-
scriptor splitting on either side provides additional robust-
ness to the effects of occlusions, as illustrated in Figure 3.
Standard SIFT descriptors encompass an entire circular do-
main, whether or not this domain crosses the boundary be-
tween foreground objects and background. This is mitigated
by incorporating edge descriptors, as some of the features
given to the classifier will be robust to this effect. We an-
ticipate further gains in performance when we incorporate a
more systematic method of categorization that includes the
edge descriptor chaining mechanism.

Mean confusion
SIFT only SIFT+Edges Difference

Bag 0.4246 0.4999 0.0753
SPM 0.5434 0.6253 0.0819

Median confusion
Bag 0.3515 0.4479 0.0964
SPM 0.5300 0.6214 0.0914

Table 1. Mean and median performance (mean or median of di-
agonal of confusion matrix) for each technique using SIFT only,
SIFT+Edges, and the differential.

5. Conclusions
We have presented a method for matching edges in dif-

ferent images of the same scene undergoing wide-baseline
viewpoint changes. By taking advantage of edge ordering
and sidedness, these descriptors are robust to the effects of
occlusion and edge clipping, as well as illumination and
affine deformations. Our results demonstrate the effective-
ness of the technique for a variety of tasks, including corre-
spondence, SFM, and category recognition. We anticipate
that continued research will yield more benefits for category
and object recognition.
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