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Abstract
We present a minimal solution for aligning two images

taken by a rotating camera from point correspondences.
The solution particularly addresses the case where there is
lens distortion in the images. We assume to know the two
camera centers but not the focal lengths and allow the lat-
ter to vary. Our solution uses a minimal number (three) of
point correspondences and is well suited to be used in a hy-
pothesis testing framework. It does not suffer from numeri-
cal instabilities observed in other algebraic minimal solvers
and is also efficient. We validate our solution in multi-image
panoramic stitching on real images with lens distortion.

1. Introduction
This paper deals with panoramic image alignment,

which is the problem of computing geometric relationships
among images for the purpose of stitching them into com-
posites. In particular, we focus on feature-based techniques
[3, 4, 24] which have been shown to be capable of handling
large scene motions without initialization. Most feature-
based methods are typically done in two stages: pairwise
alignment and multi-image alignment. The pairwise stage
starts from feature (point) correspondences, which are ob-
tained through a separate feature extraction and matching
process, and returns an estimate of the alignment parame-
ters and a set of point correspondences that are consistent
with the parameters. Robust methods, such as RANSAC
[6], are often used to handle outliers in point correspon-
dences. The multi-image stage uses nonlinear optimiza-
tion techniques to further refine the alignment parameters,
jointly over all the images, based on the consistent point
correspondences retained in the pairwise stage. It is known
that the convergence of the multi-image stage depends on
how close the initial alignment parameters are to the opti-
mal values. However, an equally important fact, which is
often overlooked, is that the quality of the final result from
the multi-image stage depends on the number of consistent
point correspondences retained in the pairwise stage. When
the number of consistent point correspondences is low, the

multi-image alignment will still succeed but the quality of
the final result may be poor.

In the pairwise stage, it is commonly assumed that the
imaging system satisfies an ideal pinhole model. As a re-
sult, most methods only estimate either 3 × 3 homogra-
phies or “rotation + focal lengths” [3]. However, real imag-
ing systems have some amount of lens distortion. More-
over, wide-angle lenses that are commonly used for shoot-
ing panoramic images introduce larger distortions than reg-
ular lenses. Modeling lens distortion is critical for obtaining
high-quality alignment. One may think that it is sufficient
to model lens distortion at the multi-image alignment stage.
This strategy may work if all the correct correspondences
are kept at the pairwise alignment. However, without mod-
eling lens distortion at the pairwise stage, one would not be
able to retain all the correct correspondences. Among those
correct correspondences rejected by the model without lens
distortion, most are the ones close to image borders because
lens distortion effects are more pronounced for the points
close to image borders than those close to image centers.
Correspondences that have points close to image borders
are, on the other hand, more important for estimating lens
distortion, for the same reason that lens distortion effects
are larger there. Losing them at the pairwise stage makes it
difficult for the multi-image stage to correctly estimate lens
distortion. As a result, misalignment will show up when im-
ages are stitched together, particularly along image borders.
Therefore, it is crucial to estimate the lens distortion jointly
with other alignment parameters at the pairwise stage.

Solving lens distortion jointly with the geometry is not
a new idea. For instance, [7] proposed a linear algorithm
for estimating a homography and radial distortion from
point correspondences between two images which, in prin-
ciple, can be used for our problem with a subsequent auto-
calibration stage. However, the algorithm in [7] requires
five point correspondences. This increases considerably the
number of trials needed in RANSAC to maintain the same
level of confidence compared to the standard four corre-
spondences for homographies or three for “rotation + fo-
cal lengths” [3]. We show that using three point correspon-
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dence, which is minimal, we can estimate “rotation + focal
lengths + radial distortion.”

1.1. Relations to previous work

This work falls in the category of image stitching, which
is now considered as a mature topic in computer vision.
There exists an extensive literature on this topic. We will
only discuss closely related work here and refer the reader
to [10, 24] for more thorough expositions. [19] is a pixel-
based work that estimates lens distortion. The authors re-
ported better results when lens distortion was estimated.
[3, 4] represent the state-of-the-art in feature-based tech-
niques, but neither of them estimates lens distortion at the
pairwise stage. This work can be considered as an extension
of [3] to imaging systems with lens distortion.

This work is built upon a series of papers that modeled
lens distortion. [26] was the classical paper on camera cal-
ibration, in which a five-parameter lens distortion model
was discussed. [27] argued that for practical applications,
it was often sufficient and sometimes advantageous to con-
sider only the radial components. [7] was the first to in-
troduce the so-called “division” model for radial distortion.
The advantage of this model is that it leads to simple lin-
ear methods for recovering distortion parameters along with
other geometry parameters. This model was later adopted
by various researchers for related problems [2, 11, 13, 20]
and generalized for omnidirectional cameras [16]. In this
work, we use this model for panoramic image alignment.

This work is also related to recent advances in solving
minimal problems using techniques from Algebraic Geom-
etry [3, 11, 14, 18, 22]. Since we use a minimal number
of point correspondences, this work can be considered as a
new addition to the family of minimal solvers. However,
our solver is not based on Algebraic Geometry but instead
based on nonlinear optimization. It does not suffer from
numerical instabilities observed in [5, 12, 22]. Minimal
solvers with lens distortion were also considered before in
[8, 11], but not for the panoramic image alignment problem
in which we are interested.

2. The core two-view problem
In this section, we consider the core problem in the pair-

wise alignment stage, which is how to relate lens distor-
tion to point correspondences along with other geometric
parameters. We will show that it is possible to derive a con-
straint from only three point correspondences.

We consider two cameras with coincident optical cen-
ters viewing three points P1, P2 and P3. Let X1 ∈ R3 be
the coordinates of P1 with respect to the reference frame of
the first camera. We model the imaging process as an ideal
pinhole projection plus radial distortion. To be more pre-
cise, the pinhole model says that the projection of P1 on the
imaging plane of the first camera, q1 ∈ R2, is related to X1

by a perspective projection:

q1 = π(X1)
.
= [X11/X13,X12/X13]T , (1)

where X1 = [X11,X12,X13]T . We model the radial dis-
tortion with the model proposed by Fitzgibbon in [7]:

q1 =
p1

1 + κ1‖p1‖2
, (2)

where p1 ∈ R2 is the radially distorted point and κ1 ∈ R is
the radial distortion coefficient. Finally, our measurement
x1 ∈ R2, in image coordinates, is related to p1 through a
linear transformation K1 (intrinsic calibration):

x1 = K1 ◦ p1
.
=

[
f1 σ1

0 s1f1

]
p1 + c1, (3)

where f1 is the focal length, c1 is the camera center, s1
is the aspect ratio, and σ1 is the skew of the pixel. K1 is
invertible and its inverse K−1

1 is given by

p1 = K−1
1 ◦ x1

.
=

[
f1 σ1

0 s1f1

]−1

(x1 − c1). (4)

Combining equations (1), (2), and (3) together, we obtain

X1 ∼
[

K−1
1 ◦ x1

1 + κ1‖K−1
1 ◦ x1‖2

]
, (5)

where∼ indicates similarity relationship, i.e. the quantities
are equal up to a scale. Let X2 be the coordinates of P1 with
respect to the reference frame of the second camera and x2

be the radially distorted projection. We have

X2 ∼
[

K−1
2 ◦ x2

1 + κ2‖K−1
2 ◦ x2‖2

]
, (6)

where κ2 and K2 are the radial distortion coefficient and
the intrinsic calibration of the second camera respectively.
Since the two cameras are related by a rotation,R ∈ SO(3),
we have X1 = RX2.

Now let us consider a second point P2 which has coordi-
nates Y1 and Y2 with respect to the two reference frames.
The key idea for eliminating the rotation is to notice that
rotations preserve angles between vectors:

θX1Y1 = θX2Y2 , (7)

where θX1Y1 measures the angle between X1 and Y1. Us-
ing equations (5) and (6), we can express angles using dis-
torted projections as

θX1Y1 =
〈X1,Y1〉
‖X1‖ · ‖Y1‖

=

=

〈[
K−1

1 ◦ x1

1 + κ1‖K−1
1 ◦ x1‖2

]
,

[
K−1

1 ◦ y1

1 + κ1‖K−1
1 ◦ y1‖2

]〉
∥∥∥∥[

K−1
1 ◦ x1

1 + κ1‖K−1
1 ◦ x1‖2

]∥∥∥∥ · ∥∥∥∥[
K−1

1 ◦ y1

1 + κ1‖K−1
1 ◦ y1‖2

]∥∥∥∥ =

θX2Y2 =
〈X2,Y2〉
‖X2‖ · ‖Y2‖

=

=

〈[
K−1

2 ◦ x2

1 + κ2‖K−1
2 ◦ x2‖2

]
,

[
K−1

2 ◦ y2

1 + κ2‖K−1
2 ◦ y2‖2

]〉
∥∥∥∥[

K−1
2 ◦ x2

1 + κ2‖K−1
2 ◦ x2‖2

]∥∥∥∥ · ∥∥∥∥[
K−1

2 ◦ y2

1 + κ2‖K−1
2 ◦ y2‖2

]∥∥∥∥ (8)





(
〈x̄1, ȳ1〉+ F1(1 + λ1‖x̄1‖2)(1 + λ1‖ȳ1‖2)

)2(‖x̄2‖2 + F2(1 + λ2‖x̄2‖2)2
)(
‖ȳ2‖2 + F2(1 + λ2‖ȳ2‖2)2

)
=

(
〈x̄2, ȳ2〉+ F2(1 + λ2‖x̄2‖2)(1 + λ2‖ȳ2‖2)

)2(‖x̄1‖2 + F1(1 + λ1‖x̄1‖2)2
)(
‖ȳ1‖2 + F1(1 + λ1‖ȳ1‖2)2

)(
〈ȳ1, z̄1〉+ F1(1 + λ1‖ȳ1‖2)(1 + λ1‖z̄1‖2)

)2(‖ȳ2‖2 + F2(1 + λ2‖ȳ2‖2)2
)(
‖z̄2‖2 + F2(1 + λ2‖z̄2‖2)2

)
=

(
〈ȳ2, z̄2〉+ F2(1 + λ2‖ȳ2‖2)(1 + λ2‖z̄2‖2)

)2(‖ȳ1‖2 + F1(1 + λ1‖ȳ1‖2)2
)(
‖z̄1‖2 + F1(1 + λ1‖z̄1‖2)2

)(
〈z̄1, x̄1〉+ F1(1 + λ1‖z̄1‖2)(1 + λ1‖x̄1‖2)

)2(‖z̄2‖2 + F2(1 + λ2‖z̄2‖2)2
)(
‖x̄2‖2 + F2(1 + λ2‖x̄2‖2)2

)
=

(
〈z̄2, x̄2〉+ F2(1 + λ2‖z̄2‖2)(1 + λ2‖x̄2‖2)

)2(‖z̄1‖2 + F1(1 + λ1‖z̄1‖2)2
)(
‖x̄1‖2 + F1(1 + λ1‖x̄1‖2)2

)
(9)

where y1,y2 ∈ R2 are the radially distorted projections of
P2 in the two respective cameras.

To further simplify the problem, we make the follow-
ing assumptions: the two camera centers are known and co-
incide with the respective image centers; there is no pixel
skew and the pixel aspect ratio is 1, i.e. pixels are square;
the focal lengths for the two cameras may vary but the
radial distortion coefficients are the same. While the as-
sumption of known camera centers and square pixels are
typical for image stitching algorithms (see [24] for a dis-
cussion), one may think the assumption of varying focal
lengths contradicts that of constant distortion coefficients.
Indeed, it is true that the distortion coefficient changes when
a lens zooms. However, when a lens does not zoom or the
zoom amount is small, the distortion coefficient approxi-
mately stays constant, which is the most common scenario
for panoramic stitching: people do not zoom when they
shoot panoramas. Note that we cannot assume the focal
lengths to stay the same because they vary when the cam-
era focuses on objects with different depths even under the
same zoom. Under these assumptions, K−1

i ◦ xi reduces to
1
fi

x̄i where x̄i
.= xi − ci. We can rewrite equation (8) as

1
f2
1
〈x̄1, ȳ1〉+ (1 + κ

f2
1
‖x̄1‖2)(1 + κ

f2
1
‖ȳ1‖2)√

1
f2
1
‖x̄1‖2 +

(
1 + κ

f2
1
‖x̄1‖2

)2√ 1
f2
1
‖ȳ1‖2 +

(
1 + κ

f2
1
‖ȳ1‖2

)2
=

1
f2
2
〈x̄2, ȳ2〉+ (1 + κ

f2
2
‖x̄2‖2)(1 + κ

f2
2
‖ȳ2‖2)√

1
f2
2
‖x̄2‖2 +

(
1 + κ

f2
2
‖x̄2‖2

)2√ 1
f2
2
‖ȳ2‖2 +

(
1 + κ

f2
2
‖ȳ2‖2

)2
(10)

where κ = κ1 = κ2. An additional point P3 yields two
more equations:

1
f2
1
〈ȳ1, z̄1〉+ (1 + κ

f2
1
‖ȳ1‖2)(1 + κ

f2
1
‖z̄1‖2)√

1
f2
1
‖ȳ1‖2 +

(
1 + κ

f2
1
‖ȳ1‖2

)2√ 1
f2
1
‖z̄1‖2 +

(
1 + κ

f2
1
‖z̄1‖2

)2
=

1
f2
2
〈ȳ2, z̄2〉+ (1 + κ

f2
2
‖ȳ2‖2)(1 + κ

f2
2
‖z̄2‖2)√

1
f2
2
‖ȳ2‖2 +

(
1 + κ

f2
2
‖ȳ2‖2

)2√ 1
f2
2
‖z̄2‖2 +

(
1 + κ

f2
2
‖z̄2‖2

)2
(11)

1
f2
1
〈z̄1, x̄1〉+ (1 + κ

f2
1
‖z̄1‖2)(1 + κ

f2
1
‖x̄1‖2)√

1
f2
1
‖z̄1‖2 +

(
1 + κ

f2
1
‖z̄1‖2

)2√ 1
f2
1
‖x̄1‖2 +

(
1 + κ

f2
1
‖x̄1‖2

)2
=

1
f2
2
〈z̄2, x̄2〉+ (1 + κ

f2
2
‖z̄2‖2)(1 + κ

f2
2
‖x̄2‖2)√

1
f2
2
‖z̄2‖2 +

(
1 + κ

f2
2
‖z̄2‖2

)2√ 1
f2
2
‖x̄2‖2 +

(
1 + κ

f2
2
‖x̄2‖2

)2
(12)

where z̄1, z̄2 ∈ R2 are the radially distorted projections
of P3. There are three unknowns (f1, f2 and κ) in equa-
tions (10- 12). These three equations are generally indepen-
dent and sufficient to determine the unknowns. On the other
hand, we would not be able to derive three equations from
less than three point correspondences. Therefore, three is
the minimal number of point correspondences.

3. Minimal solvers
In this section, we will discuss two different methods for

solving equations (10-12). In particular, we will first present
a potential solver based on a Gröbner basis and discuss its
pros and cons. We will then present our special solver based
on nonlinear optimization.

3.1. Gröbner basis
We can rewrite equations (10-12) into a set of polyno-

mials equations by squaring both sides and re-arranging the
terms. The result is equations (9) (top of this page), where
Fi

.= f2
i and λi

.= κ/f2
i , i = 1, 2. Fi and λi are related by

λ1F1 = λ2F2. (13)

Using Macaulay 2 [9], we verified that equations (9) and
(13) are indeed sufficient to determine all four unknowns,
F1, F2, λ1 and λ2. It is possible to further constrain the
problem by noticing the following relationship:

[X1,Y1,Z1]

‖X1‖ · ‖Y1‖ · ‖Z1‖
=

[X2,Y2,Z2]

‖X2‖ · ‖Y2‖ · ‖Z2‖
, (14)

where [X,Y,Z] denotes the scalar triple product:
〈X,Y × Z〉, for any vectors X,Y,Z ∈ R3. This triple-
product based constraint is not algebraically independent
but can be used to remove extraneous solutions neverthe-
less. To be more precise, there are 96 solutions, both real
and complex, to equations (9) and (13), out of which 54
satisfy (14).

It is possible to construct a Gröbner basis from equa-
tions (9) and (13) and solve for the unknowns. We refer
the reader to [11, 21] for details on how to solve algebraic
equations using Gröbner basis. In this work we decided not
to pursue this route because we found that Gröbner basis-
based methods suffer from considerable numerical instabil-
ities for problems of high degree when they were imple-
mented numerically. This was also observed recently by



other computer vision researchers. For instance, [23] used
high-precision floating-point numbers and [12] used exact
rational arithmetic for this very reason. The price paid was
speed which we do not want to sacrifice. [5] proposed
an interesting method to improve numerical accuracy for
Gröbner basis-based solvers. But its effectiveness is yet to
be demonstrated for problems of high degree.

3.2. Optimization

In addition to suffering from numerical instability issues,
Gröbner basis-based methods make no use of prior knowl-
edge in a given problem. For instance, in the absence of any
prior knowledge, we still know that the two focal lengths are
real and positive and the distortion coefficient is a small real
number around 0. In practice, we can often obtain known
ranges for the focal lengths and distortion coefficients from
EXIF data in the images. The inspiration for our new solver
comes from the belief that we should have a more efficient
solver if we can make use of the prior knowledge.

We cast the root-seeking problem into an optimization
framework. In particular, we propose to minimize the fol-
lowing objective function:(
θX1Y1 − θX2Y2

)2
+
(
θY1Z1 − θY2Z2

)2
+
(
θZ1X1 − θZ2X2

)2
.

(15)
It is obvious that the roots to equations (9) and (13) are

the minima. Note that cost (15) is not an arbitrary algebraic
quantity, but is geometrically meaningful. In fact, it mea-
sures the cumulative difference between corresponding an-
gles. Since cost (15) is in a form of nonlinear least squares,
we use Levenberg-Marquardt [17] with analytical deriva-
tives to perform the optimization. The initial values for the
unknowns are obtained as follows: We use our prior knowl-
edge for κ as the initial value (κ0) since the distortion coef-
ficient usually does not vary significantly. In the absence of
prior knowledge, we just use κ0 = 0. We then solve equa-
tions (9), assuming κ is known, to obtain initial values for
(f1, f2). Given κ = κ0, equations (9) reduce to

(
〈x̃1, ỹ1〉+ F̃1

)2(‖x̃2‖2 + F̃2

)(
‖ỹ2‖2 + F̃2

)
=

(
〈x̃2, ỹ2〉+ F̃2

)2(‖x̃1‖2 + F̃1

)(
‖ỹ1‖2 + F̃1

)
,(

〈ỹ1, z̃1〉+ F̃1

)2(‖ỹ2‖2 + F̃2

)(
‖z̃2‖2 + F̃2

)
=

(
〈ỹ2, z̃2〉+ F̃2

)2(‖ỹ1‖2 + F̃1

)(
‖z̃1‖2 + F̃1

)
,(

〈z̃1, x̃1〉+ F̃1

)2(‖z̃2‖2 + F̃2

)(
‖x̃2‖2 + F̃2

)
=

(
〈z̃2, x̃2〉+ F̃2

)2(‖z̃1‖2 + F̃1

)(
‖x̃1‖2 + F̃1

)
,

(16)

where

x̃i =
x̄i/f

p
i

1 + κ0

f
p
i
‖x̄i‖2

, ỹi =
ȳi/f

p
i

1 + κ0‖ȳi/fpi ‖2
, z̃i =

z̄i/f
p
i

1 + κ0‖z̄i/fpi ‖2
,

(17)
and fp1 and fp2 are given by the prior knowledge (we use
fp1 = fp2 = 0 in the absence of prior knowledge). F̃1 and F̃2

can be solved using the three-point algorithm in [3]. Finally,
the initial values for f1 and f2 are given by

foi = fpi

√
F̃i, i = 1, 2. (18)

We note that the Levenberg-Marquardt part is a fairly small
problem (three unknowns and three squared terms) and can
be implemented very efficiently.

4. Solving for the rotation
Once we know the focal lengths and the distortion coef-

ficient, it is straightforward to compute the rotation. Using
equation (5), we can compute X1

‖X1‖ as follows:

X1

‖X1‖
=

1√
1
f2
1
‖x̄1‖2 + (1 + κ

f2
1
‖x̄1‖2)2

[
x̄1/f1

1 + κ
f2
1
‖x̄1‖2

]
.

(19)
Similarly, we can compute X2

‖X2‖ , Y1
‖Y1‖ , Y2

‖Y2‖ , Z1
‖Z1‖ , and

Z2
‖Z2‖ . We can then invoke the solver of [3] to obtain the
rotation.

5. Robust solutions and bundle adjustment
The core solver presented in Sections 3 and 4 are not

intended to be used directly on point correspondences be-
cause it can neither make use of more than three point cor-
respondences nor deal with outliers or noise in point corre-
spondences. Instead, the solver is best used in a hypothesis
testing framework, such as RANSAC [6], to handle outliers
and noise. We refer the reader to [4, 10] for more details on
how to use RANSAC for panoramic image stitching.

It is often necessary to further refine the parameters ob-
tained by the robust solutions for better results. This step
is known as bundle adjustment [25]. In general, there are
two bundle adjustments involved: pairwise and multi-image
bundle adjustments. We will briefly discuss the multi-image
bundle adjustment here, since the pairwise one can be con-
sidered as a special case. Our multi-image bundle adjust-
ment optimizes the following geometric cost function:

M∑
i=1

N∑
j=1

wij‖x̂ij(θj , φj ;Ri, fi,ki|ci)− xij‖2, (20)

where M is the number of images and N is the num-
ber of chains of consistent point correspondences. Con-
sistent means that all the points are projections of the
same point in space. This point is denoted as Xj

which is parameterized by spherical coordinates (θj , φj)
with respect to a chosen reference frame, i.e. Xj =
[cos(θj) cos(φj), cos(θj) sin(φj), sin(θj)]T . xij is the
measured projection of Xj in the i-th image and wij is the
associated weight. wij = 0 if Xj does not appear in the i-
th image; otherwise, it is a positive number. Ri, fi, ki, and
ci are the rotation, focal length, radial distortion coefficient
and image center of the i-th image respectively. x̂ij is the
measurement equation given by

x̂ij(θj , φj ;Ri, fi,ki|ci) = fik̂i(π(RiX); ki) + ci (21)

where k̂i(q; ki) = q(1 + ki1‖q‖2 + ki2‖q‖4) for any q ∈
R2 where ki = [ki1,ki2]T . Note that we have switched the
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Figure 1. This plot shows the convergence rate of the proposed
solver against the distortion coefficient on random geometry. Our
solver is able to converge correctly over 80% time for distortion
coefficients ranging from −0.14 to 0.25. We refer the reader to
Section 6 for details of the plot.

distortion model from [7] to [27] because the latter has two
parameters and better represents the distortion effects. It is
easy to go from the model of [7] to that of [27] by noticing
the following relationship in equation (2):

p = q(1+κ‖p‖2) = q(1+κ‖q‖2+2κ2‖q‖4+O(‖q‖6)). (22)

The unknowns in equation (20) are θj , φj , j = 1, . . . , N ,
and Ri, fi,ki, i = 1, . . . ,M . Observing that cost (20)
is in a nonlinear least squares form, we optimize it using
Levenberg-Marquardt [17], which can be implemented effi-
ciently using sparse techniques [25].

6. Experiments
The first experiment we did was to test the convergence

rate of our optimization-based two-view solver presented
in Section 3.2. To that end, we used synthetic data where
we had ground truth. For a given distortion coefficient, we
generated three noise-free point correspondences from ran-
dom geometry according to equation (2). In particular, we
randomly generated three points in space whose projections
in one image were uniformly distributed in [−0.5, 0.5] ×
[−0.5, 0.5] and whose depths were uniformly distributed
in [1.3, 1.7]; The axis of the rotation between two images
was randomly sampled within a 30o cone around the y-axis
and the magnitude of the rotation was randomly sampled
in [−π6 ,

π
6 ]; The two focal lengths are randomly sampled

in [0.5, 1.5] which corresponds to a range from 17 mm to
50 mm for 35-mm film cameras. These settings are typical
for panoramas. We fed the point correspondences into our
solver and recorded if the algorithm found the correct so-
lution. For each distortion coefficient, we repeated the test
10, 000 times and the whole process was repeated for 51
values of the distortion coefficient ranging uniformly from
−0.25 to 0.25. The results are presented in Figure 1. As
one can see, our solver is able to get over 80% time correct
for distortion coefficients ranging from −0.14 to 0.25. The
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Figure 2. The left plot shows the percentage of correct correspon-
dences that our proposed solver (blue solid line) and the three-
point algorithm in [3] (red dashed line) can retain for distortion
ranging from −0.25 to 0.25. Our solver averages at above 75%
while that of [3] is considerably lower for most distortion coeffi-
cients. The right plot shows the number of trials needed to obtain a
RANSAC confidence of 0.995. Our solver (blue solid line) needs
only 15 trials on average while [3] (red dashed line) needs many
more trials on average. We refer the reader to Section 6 for details
on how these two plots are generated.

performance degrades for distortion coefficients lower than
−0.14. It is interesting to notice that our solver works better
for pincushion distortion (positive κ) than barrel distortion
(negative κ). We remark that it is not necessary to have a
convergence rate of 100% because the solver is intended to
be used in a hypothesis testing framework.

The second experiment we did was to check if our solver
was able to retain more correct correspondences than an al-
gorithm that did not estimate lens distortion. The algorithm
we compared with is the three-point one in [3] which is the
state-of-the-art for varying focal lengths. Again, we used
synthetic data for the sake of ground truth. Both our solver
and that of [3] were wrapped in a RANSAC framework. For
each distortion coefficient, we generated 200 noisy point
correspondences from random geometry which is the same
as in the first test. The noise we added to point correspon-
dences was zero-mean Gaussian with standard deviation set
to 0.1% of the image width. The maximum number of trials
for RANSAC was set to 500 and the desired confidence was
set to 0.995. For each distortion coefficient, we repeated
the test 10, 000 times. The results are presented in Figure 2
where the blue solid lines are our solver and the red dashed
lines are that of [3]. Our solver outperforms that of [3]. In
particular, our solver is able to retain over 75% correct point
correspondences in less than 15 trials on average. One im-
portant implication of these two plots is that although our
solver is more expensive than the three-point algorithm in
[3], the entire RANSAC process with our solver on images
with lens distortion may be significantly faster because of
fewer trials and a higher inlier ratio.

Figure 3 shows a comparison on real images with and
without lens distortion estimation. The top row is two input
images. We used SIFT features [15]. The middle row is
the result obtained without lens distortion estimation. The
composition mode is cylindrical. We alpha-blended the two



Figure 3. Comparison on real images with and without lens distor-
tion estimation: The top row was two input images. The middle
row was the result obtained without lens distortion estimation. We
can see visible mis-alignments in the crosswalk region. The bot-
tom row was the result obtained with lens distortion estimation.
The improvement in alignment quality is clear.

images with equal weights in the overlapping regions. One
can see visible mis-alignments in the crosswalk region. The
bottom row is the result obtained with lens distortion es-
timation. Again, the two images were alpha-blended with
equal weights in the overlapping regions. The improvement
in alignment quality is clear.

Figure 4 shows the importance of multi-image bundle
adjustment. The first composite is created with pairwise
bundle adjustment but without multi-image bundle adjust-
ment while the second is created with both. Lens distortion
is estimated in both cases. Images are simply stacked one
onto another without alpha-blending. One can observe that
the alignment is better in the second composite that uses
multi-image bundle adjustment.

Finally, in Figure 5 we show several examples of our en-
tire pipeline on real images. Again, features were extracted

using SIFT [15]. The top row is a stitch made from 6 im-
ages. The middle row is stitched from 35 images. The bot-
tom row is a full 360o panorama stitched from 23 images.
Blending is done using the algorithm in [1].

7. Conclusions
This paper has extended the three-point solver in [3] to

include a correction for lens distortion. The main contri-
bution is a minimal solver for simultaneous estimation of a
single radial distortion coefficient, a rotation and two focal
lengths. Our solver uses only three point correspondences
and is well suited for use in a hypothesis testing framework.
Although it is possible to use a Gröbner basis to solve the
resulting polynomial equations, we have chosen to solve the
problem in an optimization framework. The advantages are
being able to make use of prior knowledge and being free
from numerical instability issues. The cost we optimize is
a geometric one instead of an algebraic one. Although our
solver is more expensive than the three-point algorithm in
[3], it is potentially much faster when the entire RANSAC
process is considered for images with lens distortion be-
cause it is able to get more correct correspondences in fewer
RANSAC trials. In future work, we plan to improve the
convergence rate of the proposed solver for large barrel dis-
tortion and explore the case where the distortion coefficients
in two images are different.
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