
 

 

Abstract 
 

To correctly estimate the camera motion parameters 
and reconstruct the structure of the surrounding tissues 
from endoscopic image sequences, we need not only to 
deal with outliers (e.g., mismatches), which may involve 
more than 50% of the data, but also to accurately 
distinguish inliers (correct matches) from outliers. In this 
paper, we propose a new robust estimator, Adaptive Scale 
Kernel Consensus (ASKC), which can tolerate more than 
50 percent outliers while automatically estimating the 
scale of inliers. With ASKC, we develop a reliable feature 
tracking algorithm. This, in turn, allows us to develop a 
complete system for estimating endoscopic camera motion 
and reconstructing anatomical structures from endoscopic 
image sequences. Preliminary experiments on endoscopic 
sinus imagery have achieved promising results.  

1. Introduction 
Endoscopic anterior skull based surgery has the 

potential to significantly reduce patient morbidities 
associated with operating on the undersurface of the front 
third of the brain. Of the anterior skull based approaches, 
the endoscopic transnasal approach to the sphenoid sinus, 
which is a small structure and is surrounded by major blood 
vessels, is most mature and utilized. Surgery in this area is 
technically challenging and requires an accurate appreciation 
of the patient’s anatomy. Failure to correctly interpret a 
patient’s anatomy can result in catastrophic outcomes.  

Traditional navigation systems [1, 2] rely on an external 
tracking system and fiducial or anatomical landmarks for 
registration. These systems have many fundamental 
limitations [3] in terms of accuracy and flexibility with the 
workflow in the operating room. Another approach to 
surgical navigation systems is to directly register 
endoscopic images to the patient anatomy [3, 4, 5].  However, 
this is nontrivial because endoscopic images involve a 
number of challenges such as low texture, abundant 
specularities and extreme illumination changes from the 
light source attached to the endoscope, and blurring from 
the movement of the endoscope. These difficulties may 
result in a number of outliers (including both feature 

localization errors and mismatches) which can not be 
easily handled by traditional robust statistical methods 
such as LMedS [6] and RANSAC [7].  

To recover the surface structure of surrounding tissues 
and further to register this information against a 
preoperative volumetric image (such as CT or MRI), we 
need not only to accurately estimate the motion of an 
endoscopic camera from endoscopic image sequences but 
also to correctly distinguish inliers from outliers. This can be 
realized by employing advanced techniques from robust 
statistics. 

1.1. Background on Robust Statistics 
Various robust estimation techniques have appeared in 

the literature during the last decades. Maximum-likelihood 
estimators (M-estimators) [8] minimize the sum of 
symmetric, positive-definite functions of residuals with a 
unique minimum at zero.  The Least Median of Squares 
(LMedS) estimator [6] minimizes the median of squared 
residuals. However, it has been shown that the breakdown 
points of M-estimators and LMedS are no more than 
50%,. Chen and Meer [9] modified the cost function of the 
M-estimators to create a projection based M-estimator 
(pbM-estimator). The authors of [10] and [11] further 
improved the performance of the pbM-estimator by 
modifying its objective function. All of these modifications 
are concentrated on the projection pursuit paradigm [9]. 
RANSAC [7] and its variant MSAC [12] can resist the 
influence of more than 50% outliers. However, the 
performance of RANSAC and MSAC depends on a user-
specified error tolerance (or the scale of inliers), which is 
not known a priori in many practical environments. 
MUSE [13], MINPRAN [14], ALKS [15], RESC [16] and 
ASSC [17] can deal with more than 50% outliers. 
However, MUSE needs a lookup table for the scale 
estimator correction. MINPRAN and ALKS are 
computationally expensive and cannot effectively deal 
with multiple structures with extreme outliers. RESC 
needs the user to tune many parameters. ASSC weights all 
inliers equally, thus it is less efficient.  

The main contributions in this paper are: (1) we employ 
kernel density estimation techniques to create a new robust 
estimator, Adaptive Scale Kernel Consensus (ASKC) 
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which can simultaneously estimate both the model 
parameters and the scale of inliers. ASKC can be treated as 
a generalized form of RANSAC [7] and ASSC [17] (see 
Section 2 for details); (2) we propose an effective feature 
tracking approach; and, (3) we integrate the robust ASKC 
estimator and the feature tracking approach into a 
complete system for estimating endoscopic camera motion 
and performing surface reconstruction of sinus anatomy 
from endoscopic image sequences. Experiments show our 
system has achieved promising results.  

2. The Adaptive Scale Kernel Consensus  
(ASKC) estimator 

2.1. The kernel density estimation 

Given a model parameter estimate θ̂ , the fixed 
bandwidth kernel density estimate with the kernel K(.) and 
a bandwidth h can be written as [18]:  
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In this paper, we consider two popular kernels, the 
Epanechnikov kernel ( )EK r  and the normal kernel ( )NK r : 
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The Epanechnikov kernel yields the minimum 
asymptotic mean integrated square error (AMISE) 
measure. However, the Epanechnikov profile is not 
differentiable at the boundary. As pointed out by the 
authors of [19], the path of the mean shift procedure 
employing a normal kernel follows a smooth trajectory.  

Although we are interested in investigating the 
properties of ASKC with the Epanechnikov kernel (termed as 
ASKC1) and the normal kernel (termed as ASKC2) in this 
paper, our method can employ arbitrary kernels.   

2.2. Estimating the bandwidth/the scale of inliers 
As noted above, the bandwidth h is a crucial parameter 

in kernel density estimation. An over-smoothed bandwidth 
selector with the scale estimate σ̂θ is suggested in [20]. 
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It is recommended that the bandwidth is set as ˆ
hc hθ  

(0< hc <1) to avoid over-smoothing ([20], p.62).  
Robust scale estimators (such as the median [6], the 

MAD [9], or the robust k scale estimator [15]) can be 
employed to yield a scale estimate. The authors of [17] 
have shown that TSSE, which employs the mean shift and 
the mean shift valley procedure, can effectively estimate 
the scale under multiple modes. The valley closest to zero 
detected by the mean shift valley procedure on the ordered 
absolute residuals can be a sensitive point to determine the 
inliers/outliers dichotomy.  

In our method, we use a procedure similar to TSSE. We 
use a robust k scale estimator (the k value is set to 0.1 so 
that at least 10 percent of the data points are included in 
the shortest window) to yield an initial scale estimate. In 
[17], the authors use the Epanechnikov kernel for both the 
mean shift and the mean shift valley approaches. This can 
be different in our case when we use different kernels. 

Figure 1 shows the procedure of the TSSE-like scale 
estimator. When the model parameter estimate θ̂  is 
incorrect, the detected valley is far away from the origin 
and the kernel density estimate at the origin is lower. In 
contrast, when the θ̂  estimate is correct, the residual 
value corresponding to the detected valley is closer to the 
origin and the kernel density at the origin is higher.   

 

  

 
 

   (a)              (b)         (c) 
Figure 1: Simultaneous scale estimate of inliers and outlier 
detection. (a). The detected peaks and valleys with incorrect 
model parameters (b) and correct model parameters (c).  

2.3. The ASKC estimator 
We assume that inliers involve a relative majority of the 

data, i.e., inliers may involve less than 50% of the data but 
they involve more data points than structured pseudo-
outliers. Our method considers the kernel density at the 
origin point as its objective function. Given a set of residuals 

ˆ 1,...,,
{ }i ni
r θ =  subject to θ̂ , the objective function of ASKC is:  
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The ASKC estimator can be written as: 
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If we consider the RANSAC estimator [7]:  

ˆ
ˆ

ˆ ˆarg max= nθ
θ

θ                            (8) 

and the ASSC estimator [17]: 
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where ˆn̂θ  is the number of inliers within an error 
tolerance (for RANSAC) or the scale of inliers (for ASSC) 
and ˆŜθ  is the estimated scale of inliers given a set of 

residuals relative to θ̂ ,  we can see that RANSAC and ASSC 
are actually special cases of ASKC with the uniform kernel: 
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where C is a normalization constant. 
More specifically, RANSAC is one case of ASKC with 

the uniform kernel and a fixed bandwidth, and ASSC is 
another case of ASKC with the uniform kernel and a 
variable bandwidth. However, the efficiency of the 
uniform kernel is low as it weights all inliers equally.  

To get the solution of equation (7), we need to sample a 
set of candidates. We can employ a random sampling 
scheme [6, 7], or a guided sampling technique [21].  

 
 
 
 
 
 

 
 

 

Figure 2: The histogram of ASKC scores of 10000 random samples. 

By way of illustration,  

Figure 2 shows a histogram of ASKC scores (equation 
6) computed from 10000 random samples from the data in 
Figure 1 (a). It shows that most of the samples have small 
score values which means that the samples are most likely 
contaminated with outliers. To improve the computational 
efficiency, it is not necessary to run the TSSE-like 
procedure for all samples. We only run the TSSE-like 
procedure for the samples with high ASKC scores. With 
this strategy, only about 7% of the 10000 samples are 
further processed with the TSSE-like procedure. 

2.4. The ASKC procedure 

The procedure of the ASKC estimator is shown in 
Figure 3. In step 3, the purpose using data other than the 
sample candidate is to avoid extreme low scale estimates. 
In step 5, an additional TSSE-like procedure may refine 
the scale estimate for heavily contaminated data.  
 

Step 1: Select a sample candidate MI  
Step 2: Estimate the model parameters Ι̂θ  from MI.  
Step 3: Derive the residuals of the data points other than MI. 
Step 4: Get an initial scale by the robust k scale 

estimator. Calculate a coarse estimate of the ASKC 
score by (6). If it is larger than a certain value (say, 
half of the largest score so far), go to the next step. 
Otherwise, go to step 1. 

Step 5: Run the TSSE-like procedure to estimate the 
inliers’ scale and the bandwidth. If the valley is valid 
(i.e., the ratio of the kernel density at the peak and 
valley is large enough), go to the next step. Otherwise, 
go to step 1.  

Step 6: Compute the ASKC score by (6).   
Step 7: If the computed score is larger the current largest 

score, update the largest score and save the estimated 
parameters and the inliers’ scale. Otherwise, go to step 1. 

Step 8: Run step 1 to 7 many times, output the parameters 
and the inliers’ scale corresponding to the largest score.  

Figure 3.  The procedure of the ASKC estimator 

2.5. The performance of ASKC  
In this subsection, we test the performance of the ASKC 

estimator employing the Epanechnikov kernel (ASKC1) 
and the normal kernel (ASKC2) and we compare the 
performance of ASKC1/ASKC2 with those of several 
other robust estimators (ASSC, RESC, and LMedS).  
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Lines extracted by the robust estimators. 

In the first example, we generate three lines (each line 
contains 40 data points) and 380 random outliers. We 
apply the robust estimators to sequentially extract all three 
lines. As shown in Figure 4, both RESC and LMedS fail 



 

 

to extract any line. ASSC extracts one line but fails in two. 
ASKC1/ASKC2 successfully extract all three lines. 

In the second example, we use 3D data. There are 500 
data points including 4 planes (each contains 50 data 
points) and 300 randomly distributed outliers. Likewise, we 
sequentially extract all planes with the robust estimators.  
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Planes extracted by the robust estimators. 

Figure 5 shows that ASKC1/ASKC2 correctly extract 
all planes. In contrast, RESC succeeds on 2 planes while 
ASSC succeeds on 3. LMedS fails to extract any plane. 

3. Structure and motion recovery with ASKC 
We now consider a camera observing a 3D point X on 

a surface from two camera positions, the point X  will 
project to two image locations 1 1 1( , ,1)u v= Τx  and 

2 2 2( , ,1)u v= Τx . The following condition holds [22]:  
- -1

2 2 x 1 1[ ] 0Γ R =x xΤ ΤK K                     (11) 
where K1 and K 2 are respectively the intrinsic camera 
matrices corresponding to the two images. x[ ]Γ is the skew 
matrix of the translation vector Γ  and R is the rotation matrix.  

The essential matrix x=[ ]E Γ R  encodes the motion 
information of the camera. Given the camera matrices, the 
essential matrix E can be estimated using the nonlinear 
five-point algorithm [23]. The camera motion (R and Γ ) 
can be recovered from E by the Singular Value 
Decomposition (SVD) approach [22] and the translation 
can only be estimated up to a scale factor (we use  Γ%  to 
represent the estimated scaled translation vector 
and =Γ Γλ % ).  The scale λ  can be recovered by registering 
the reconstructed 3D model to a pre-operative CT scan [3].  

3.1. Feature detection and matching 
To estimate the motion parameters of a camera between 

a pair of images, we need to robustly detect features in the 
images and then match these features. We employ the 
SIFT feature detector [24] in our method. To find the 
matches between feature points, we use the SVD matching 
algorithm [25]. The reason that we employ the SVD 

matching algorithm rather than the SIFT matching 
function [24] is that we have found that the SVD matching 
approach can return more correct matches.  

Figure 6 shows one example where ASKC can correctly 
estimate the epipolar geometry and the scale of inliers, and 
select most correct matches even when outlier percentage 
is larger than 70%.  

 

 
 
 
 
           (a)         (b)       (c) 
 

 
 

 

               (d)         (e)        (f) 

Figure 6: (a) and (b) a pair of original sinus endoscopic images; 
(c) the matches obtained by the SVD-matching algorithm; (d) the 
matches selected by the ASKC estimator on the left undistorted 
image; (e) and (f) the recovered epipolar geometry. 

3.2. SIFT feature tracking 

Step 0: Initialize the SIFT feature list ( LF=1 ) and the 
chain matrix ( F=1C ).  

For F = 2,…N 
Step 1: Compute a set of potential matches between 

frame F and frame F-1 
Step 2: Select the matches which are consistent to the 

relative majority of data by the robust ASKC 
estimator 

Step 3: Maintain the SIFT feature list LF 
Step 4: Maintain the chain matrix FC  

End 
Step 5: Output the trajectories of the tracked SIFT 

features in FC  

Figure 7.  Overview of the SIFT feature tracking algorithm. 

We need to track SIFT features through a video 
sequence to derive the projection matrix at each frame and 
further recover the structure. To track a set of SIFT 
features {Si}i=1,…,m’, we maintain a feature list 

1,..., ' 1,..., '{ } { , , , }i i m i i i i i ml u v w s= == =L  which records, for each 
frame, the feature locations (ui, vi), the number of the 
frames that a feature is continuously tracked (wi), and the 
status (si) of each feature. For the Fth frame, we also 
maintain a chain matrix { }F F

i i=1,...m'=C C , where 

{( )}
i

F f f
i i i f=F-w ,...,Fu , v=C , to record all past locations 

(trajectories) of each tracked feature. The SIFT features at 



 

 

the frames F and F-1 are robustly matched and we can 
obtain newly selected matches =1,...,{( , )}F-1 F

j j j nS S . The 

status of each SIFT feature F
jS  may have three 

possibilities: (1) “active”, (2) “inactive”, and (3) “new”.   

(1) If a feature F-1
jS  of the match ( , )F-1 F

j jS S  has a 

correspondence with ( )F-1 F-1 F-1 F-1 F-1
i i i i iu , v , w , s  =l in the 

feature list LF-1, the status of F
jS in the list  LF is labeled as 

“active” and F
is =1. In this case, the location ( )F F

i iu , v of 
F
il is updated by the image coordinates ( , )

j j

F Fu vS S  of F
jS , 

and 1F F-1
i iw =w + .CF is updated with ( , )

j j

F F-1 F F
i i u v= UC C S S .  

(2) If there is no correspondence between F-1
il  and 

=1,...,{ }F-1
j j nS , F

is is labeled as “inactive” and 1F
is = − . We 

set 0F
iw = . When the number of times that the value of 

F
iw  continuously remains zero is larger than a threshold, 

we assume the feature is out of view and it is removed 
from the list LF and the chain matrix CF.  

(3) If there is no correspondence between F-1
jS  and 

1,..., '{ }F-1
i =i ml , we add the new feature F

jS  to LF and F
is  is 

labeled as “new”. We set ( , ) ( , )
j j

F F F F
m'+1 m'+1 S Su v u v= , 1F

m'+1w =  

and 0F
m'+1s = . CF is initialized with ( , )

j j

F F F
m'+1 S Su v=C  and 

the value of m’ is update ( = +1m' m' ).  
 
 
 
 
 
 

Figure 8. The trajectories of the tracked SIFT features. 

Figure 7 summarizes the procedures of the SIFT feature 
tracking algorithm. The trajectories of the tracked SIFT 
features on an endoscopic sinus image sequence are 
shown in Figure 8. We can see that most significant SIFT 
features are tracked. Even when the image is seriously 
blurred, there are still sufficient SIFT features tracked. 

3.3. Structure recovery from endoscopic images 

We assume a calibrated camera is used and the optical 
distortion is removed by undistortion [27]. 

Let ( , , , 1)i i i iX Y Z=X Τ  be a 3D point in the world 
system. The 3D point iX  is projected to an image point 

F
ix at the frame F by a 3x4 projection matrix FP . We have: 

F
i F i= Px X                              (12) 

Let the first camera be at the center of the world 

coordinate, we have:  
P1 = K[I|0] and 1 1 = [ | ]P R ΓF F FK             (13) 

where 1
FR  and 1 ΓF  are respectively the rotation and the 

translation of the camera at the Fth frame relative to those 
of the camera at the first frame. Note: The camera matrix K  
of the endoscope remains fixed throughout the sequence. 

Step 1: Extract the SIFT features by the SIFT detector [24]. 
Step 2: Initialize the structure  

step 2.1: Choose two initial frames and detect potential 
matches by the SVD-matching algorithm [25].  

step 2.2: Select the correct matches by ASKC and calculate 
the motion parameters of the endoscopic camera. 

step 2.3: Initialize the structure { iX } by triangulation 
[22].  

Step 3: Maintain the structure. 
step 3.1: Obtain matches between the frames F and F-1. 
step 3.2: Track the SIFT features using the feature 

tracking algorithm proposed in  subsection 3.2. 
step 3.3: Compute the projection matrix PF by the 

method proposed in subsection 3.3.  
step 3.4: Compute the 3D points corresponding to the 

new SIFT features and add them to the 3D structure.  
step 3.5: Refine the existing 3D points that correspond 

to the tracked SIFT features 
step 3.6: Repeat step 3.1 to 3.5 until the last frame. 

Step 4: Output the reconstructed 3D structure =1,..., M{ }i iX  
and the projection matrices =1,...,i i N{P } . 

Figure 9.  Overview of the reconstruction algorithm. 
At the beginning, the structure is initialized using two 

selected frames through triangulation [22].  
For a new frame F, we relate it to its previous frame 1F − . 

Assuming we have known 1 1
1 1 1 = [ | ]P R ΓF F F− − −K  at the 

frame F-1, FP  can be written as:  
1 1 1 1 1

1 1[ | ]P R R R Γ ΓF F F
F F F F F F F
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From equations (12), (14) and (15), we can derive:   
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If we define the following:  
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We can calculate the scale value λF by:  
T -1 T( ) (A A ) AF F,i F,i F,i F,iiλ = Β                    (18) 

However, as both the feature’s location { }ix and the 3D 
points may be in error, we estimate λF in a robust way: 

( ) 1

1 1argmax
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F
i j j j

r
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n h hλ =
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∑ˆ                 (19) 

where F ( ( ))F
j j F ir i= − λ∑ P X̂x  and hj is estimated from 

equation (5) with the robust k scale estimator.  
After FP̂  is estimated, the 3D points { iX } having 

correspondences to the tracked SIFT features are refined:   

iX̂ =
-1

0

P
iw

F j
i F j i

j

Minimize −
−

=

−∑∑ ˆ X̂x             (20) 

Newly appearing 3D points are initialized and added to 
the structure. Figure 9 gives an outline of the 
reconstruction algorithm. 

4. Experiments  

4.1. Data Collection  
We collected endoscopic sinus image data on a 

cadaverous porcine specimen. Images were captured using 
a Storz Telecam, 202212113U NTSC with a zero degree 
rigid rod monocular endoscope, 7210AA. An external 
tracking system (Optotrack, Northern Digital Corp. 
Waterloo) was used to measure and record the motion of 
the endoscope during the procedure of image acquisition 
and we use the Optotrack motion data as the ground truth 
to which the estimated endoscopic motion was compared. 
Images from a standard optical calibration target were also 
recorded using the endoscope before the data collection 
was performed. We perform an offline calibration [26] of 
the endoscope using a Matlab Camera Calibration Toolkit [27].  

4.2. Motion estimation 
To evaluate the performance of our system, first, we 

compare our proposed robust estimator ASKC 
(ASKC1/ASKC2) with five other robust estimators 
(LMedS, MSAC, RANSAC, RESC and ASSC) in motion 
estimation. Following [12], we used a median scale 
estimator for MSAC. For RANSAC, we specify the error 
tolerance value with which optimal results are achieved.   

To get quantitative results, we apply the methods to one 
hundred pairs of endoscopic sinus images. The distance 
between the positions of the endoscopic camera in each 
pair of images is larger than 1mm. To measure the 
accuracy of the motion estimation, both translation error 
and rotation error are tested. We use a formula similar to 
that of [28].  

Each of the methods is run for the 100 pairs of images. 
The median error values, the mean error values and the 
standard variances of the estimate errors in translation and 
rotation are used to evaluate the performance of the methods.  

From Table 1, our methods (ASKC1/ASKC2) achieve 
the most accurate results among the comparative methods. 
LMedS and MSAC achieve the worst results as the 
median scale estimator is not robust to more than 50% 
outliers. RANSAC with a user-specified error tolerance 
achieves better results than LMedS and MSAC, but worse 
than the rest. This is because RANSAC requires different 
error tolerance values for different image pairs and it is 
hard to find a global optimal value. The results of ASSC 
are better than those of RESC but less accurate than those 
of ASKC1/ASKC2. Between ASKC1 and ASKC2, ASKC2 
outperforms ASKC1 in the translation estimation while 
ASKC1 is slightly better in rotation estimation.   

 Translation Error  Rotation Error 
 Median Mean Std.Var. Median Mean Std.Var.

LMedS 27.904 28.895 13.971 2.722 3.238 2.269 
MSAC 26.554 27.182 12.877 2.660 3.038 2.016 

RANSAC 7.520 7.828 4.837 0.636 0.676 0.375 
RESC 6.009 10.833 15.068 0.262 0.952 1.955 
ASSC 5.125 5.652 3.855 0.303 0.360 0.247 

ASKC1 4.401 5.215 3.643 0.231 0.273 0.173 
ASKC2 4.196 4.997 3.615 0.255 0.299 0.200 

Table 1.  Quantitative evaluation of the different methods on 
100 pairs of sinus images. Both the translation error and the 
rotation error are in degrees. 

4.3. Structure reconstruction  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10. Top row: the first, middle and last frame of the image 
sequence. Middle row: the recovered structure corresponding to 
the top row. Blue points are the newly recovered 3D points. 
Bottom row: (left) another view of the final recovered structure; 
(middle and right) two views of the final recovered structure by M1. 

We test our reconstruction algorithm with a sinus image 
sequence including 130 frames with the frame size of 



 

 

640x480. The endoscope performed several movements 
(sideways, forward, and backward) during the acquisition 
of the image sequence. The image sequence was digitally 
captured at a rate of roughly 30 frames per second. As a 
result, the baselines between the consecutive frames are 
too close together which results in ill-conditioned epipolar 
geometry estimation. To avoid this problem, we only 
consider a set of key frames that are far enough apart for 
the motion and structure recovery. 

We use the reconstruction algorithm proposed in 
subsection (3.3) to recover the structure of the sinus. We 
choose to use ASKC2 in the system but ASKC1 can also 
be employed in the system.  

Figure 10 shows the reconstruction results on the sinus 
image sequence. As we can see the main structure of the 
surrounding tissues of the sinus is recovered by our 
system. In comparison, when we use the LMedS estimator 
and estimate the projection matrices {Pi}i=1,2, …, N  by the 
approach in  [29] (we call it as M1), it fails to recover the 
structure and most recovered 3D points are clustered in a 
small area pointed out by the arrow (see the middle and 
right column of the bottom row in Figure 10).  

5. Conclusions 
In this paper, we present a new robust estimator 

(ASKC) that can tolerate more than 50% (or even 80%) 
outliers. We also propose a reliable feature tracking 
algorithm that can track features even when images 
involve significant blurring, illumination changes and 
geometry distortion. We integrate ASKC and the feature 
tracking approach to a complete system for motion and 
structure recovery from sinus endoscopic image 
sequences. The primarily experiments show that ASKC 
outperforms several other robust estimators (including 
LMedS, MSAC RANSAC, RESC, and ASSC) and our 
system has achieved promising results.  

Acknowledgement 
This work has been supported by the National Institutes 

of Health under grant number 1R21EB005201 - 01A1. 

References 
[1] Y. Kosugi, et al. An Articulated Neurosurgical Navigation 

System Using MRI and CT Images. T-BME.147-152, 1988. 
[2] M. Scholtz, et al. Development of an Endoscopic 

Navigating System Based on Digital Image Processing. 
Journal of Computer Aided Surgery. 3(3):134-143, 1998. 

[3] D. Burschka, et al. Scale-Invariant Registration of 
Monocular Endoscopic   Images to   CT-Scans  for  Sinus  

       Surgery Medical Image Analysis. 9(5):413-439, 2005. 
[4] J.P. Helferty and W.E. Higgins. Technique for Registering 

3D Virtual CT Images to Endoscopic Video. ICIP, 893-896, 
2001. 

[5] K. Mori, et al. A Method for Tracking the Camera Motion 
of Real Endoscope by Epipolar Geometry Analysis and 
Virtual Endoscopy System. MICCAI, 1-8, 2001. 

[6] P.J. Rousseeuw and A. Leroy. Robust Regression and 
outlier detection. John Wiley & Sons,  New York. 1987. 

[7] M.A. Fischler and R.C. Rolles. Random Sample Consensus: 
A Paradigm for Model Fitting with Applications to Image 
Analysis and Automated Cartography. Comm. ACM. 
24(6):381-395, 1981. 

[8] P.J. Huber. Robust Statistics. New York, Wiley. 1981. 
[9] H. Chen and P. Meer. Robust Regression with Projection 

Based M-estimators. ICCV, 878-885, 2003. 
[10] R. Subbarao and P. Meer. Heteroscedastic projection based 

M-estimators. Workshop on EEMCV, 2005. 
[11] S. Rozenfeld and I. Shimshoni. The Modified pbM-

estimator Method and a Runtime Analysis Technique for 
the RANSAC Family. CVPR, 1113-1120, 2005. 

[12] P. Torr and D. Murray. The Development and Comparison 
of Robust Methods for Estimating the Fundamental Matrix. 
IJCV. 24(3):271-300, 1997. 

[13] J.V. Miller and C.V. Stewart. MUSE: Robust Surface 
Fitting Using Unbiased Scale Estimates. CVPR, 300-306, 
1996. 

[14] C.V. Stewart. MINPRAN: A New Robust Estimator for 
Computer Vision. PAMI. 17(10):925-938, 1995. 

[15] K.-M. Lee, P. Meer and R.-H. Park. Robust Adaptive 
Segmentation of Range Images. PAMI. 20(2):200-205, 
1998. 

[16] X. Yu, T.D. Bui and A. Krzyzak. Robust Estimation for 
Range Image Segmentation and Reconstruction. PAMI. 
16(5):530-538, 1994. 

[17] H. Wang and D. Suter. Robust Adaptive-Scale Parametric 
Model Estimation for Computer Vision. PAMI. 
26(11):1459-1474, 2004. 

[18] B.W. Silverman. Density Estimation for Statistics and Data 
Analysis. 1986. Chapman and Hall. London. 

[19] D. Comaniciu and P. Meer. Mean Shift: A Robust 
Approach towards Feature Space A Analysis. PAMI. 
24(5):603-619, 2002. 

[20] M.P. Wand and M. Jones. Kernel Smoothing. Chapman & 
Hall. 1995. 

[21] B. Tordoff and D.W. Murray. Guided Sampling and 
Consensus for Motion Estimation. ECCV. 82-96, 2002. 

[22] R. Hartley and A. Zisserman. Multiple View Geometry in 
Computer Vision. 2004. Cambridge University Press. 

[23] D. Nistér. An Efficient Solution to the Five-point Relative 
Pose Problem. PAMI. 26(6):756-770, 2004. 

[24] D.G. Lowe. Distinctive Image Features from Scale-
Invariant Keypoints. IJCV. 60(2):91-110, 2004. 

[25] E. Delponte, et al. SVD-matching using SIFT Features. 
Graphical Models. 68(5-6):415-431, 2006. 

[26] Z. Zhang. A Flexible New Technique for Camera 
Calibration. PAMI. 22(11):1330-1334, 2000. 

[27] J.-Y. Bouget. The matlab camera calibration toolkit. 
http://www.vision.caltech.edu/bouguetj/calib_doc/.  

[28] T. Tian, C. Tomasi and D. Heeger. Comparison of 
Approaches to Egomotion Computation. CVPR, 315-320, 
1996. 

[29] M. Pollefeys, et al. Visual Modeling with a Hand-held 
Camera. IJCV. 59(3):207-232, 2004. 


