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Abstract

The Middlebury Multi-View Stereo evaluation [18]
clearly shows that the quality and speed of most multi-view
stereo algorithms depends significantly on the number and
selection of input images. In general, not all input images
contribute equally to the quality of the output model, since
several images may often contain similar and hence overly
redundant visual information. This leads to unnecessarily
increased processing times. On the other hand, a certain
degree of redundancy can help to improve the reconstruc-
tion in more “difficult” regions of a model.

In this paper we propose an image selection scheme
Jor multi-view stereo which results in improved reconstruc-
tion quality compared to uniformly distributed views. Our
method is tuned towards the typical requirements of cur-
rent multi-view stereo algorithms, and is based on the idea
of incrementally selecting images so that the overall cov-
erage of a simultaneously generated proxy is guaranteed
without adding too much redundant information. Critical
regions such as cavities are detected by an estimate of the
local photo-consistency and are improved by adding ad-
ditional views. Our method is highly efficient, since most
computations can be out-sourced to the GPU. We evaluate
our method with four different methods participating in the
Middlebury benchmark and show that in each case recon-
structions based on our selected images yield an improved
output quality while at the same time reducing the process-
ing time considerably.

1. Introduction

Recent evaluations by Seitz et al. [18, 25] of several
methods for multi-view stereo (MVS) reconstruction have
shown that this field is developing into a promising alterna-
tive to other methods for object digitization such as range
imaging. However, for all types of image-based methods,
the performance in terms of quality and efficiency generally
depends significantly on the input data. On the one hand one
needs enough measurements for a faithful reconstruction of
the 3D object. On the other hand, however, it is as well
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desirable to minimize the amount of data, since processing
overly redundant input increases the overall computing time
without improving (or even decreasing) the reconstruction
quality. Moreover, special care has to be taken to resolve
difficulties inherent to image-based reconstruction methods
such as occlusions, or complex surface materials.

These requirements pose a difficult challenge in the 3D
reconstruction pipeline, often making a manual intervention
by a human operator inevitable. Hence, especially in the
field of active range imaging, there has been a lot of ef-
fort to automate this process, generally known by the term
“Next Best View Planning” (NBV). But although there have
been many advances in this field, a lot of practically relevant
problems are still considered unsolved (Scott et al. [23]).

For MVS the dependency of the reconstruction on the
input data is probably even more critical, and many of the
involved problems are inherently different to previous work
on NBV. For instance, we cannot assume that one measure-
ment, i.e., one input image, already generates a sufficiently
good partial reconstruction. Instead, a fundamental require-
ment is that we need at least two input images already for
one single reconstruction step. In order to improve the ro-
bustness of the reconstruction process with respect to prob-
lems such as calibration errors, illumination changes, or
image noise and blur, it is often necessary to increase the
number of images. Finally, a particular challenge is to suffi-
ciently capture details and features like deep concavities or
fine, topologically relevant structures such as holes.

In practice there are two common ways for acquiring in-
put images for MVS reconstruction. The first possibility is
to manually control the image acquisition by a human ex-
pert, who can identify problematic regions of the object and
hence choose the camera positions accordingly. Current au-
tomatic acquisition setups are generally using a turn-table or
a robot based system, and simply acquire several images of
an object on regularly spaced camera positions. Neither of
these approaches can guarantee that all relevant parts of the
object’s surface are captured in a sufficient quality. Hence
one often captures an unnecessarily redundant set of input
images (up to several hundred). However, while the acqui-
sition of large amounts of images is easy, many recent al-



gorithms cannot process such a high number of images ef-
ficiently. At the time of writing of this paper, only 9 out
of 25 methods participating in the Middlebury Multi-view
Stereo Evaluation [18] provide results for the dense image
data sets. Most of them need several hours to compute, or
even show a decreasing reconstruction quality. The impact
of a proper view selection in terms of quality and speed for
MYVS from large community photo collections has been re-
cently shown by Goesele et al. [5]. This indicates that the
question of image selection is a so far mostly untapped re-
source for optimization of MVS.

The contribution of our work is an analysis of the typical
requirements of MVS algorithms and the efficient, GPU-
based implementation of a corresponding image selection
scheme for improved reconstruction quality and speed. Our
particular aims are a guaranteed visibility or coverage of
each surface region and an adaptive focus on problematic
surface regions. We present an algorithm based on an it-
erative process which evaluates certain quality criteria on
the surface of an incrementally updated object proxy. New
views are selected such that each image maximizes the qual-
ity gain with respect to attributes like surface visibility or
standard photo-consistency measures. We employ a stereo-
based proxy generation which does not require segmented
input images and which ensures a reliable convergence to a
faithful geometric approximation of the true object already
from a small number of images, since the proxy generation
and image selection are tightly coupled into a single opti-
mization process. This leads to a qualitatively superior and
more efficient proxy generation than, e.g., computing the
visual hull from a larger set of segmented images. The pro-
posed method supports a stand-alone implementation as an
image pre-selection procedure prior to the actual MVS re-
construction as well as an online next best view estimation
integrated into the MVS reconstruction pipeline. Our quan-
titative results show that our image selection scheme con-
sistently improves the reconstruction quality and processing
time for different classes of MVS techniques based on fea-
ture matching and patch expansion [4], surface growing [6],
deformable models [7], and volumetric graph-cuts [10].

Related Work Related to our work are methods for next
best view planning for active range imaging. In this field,
many early methods, e.g., Maver and Bajcsy [17], primar-
ily focus on identifying occluded surface regions. Pito [19]
describes a method for automatically reconstructing an un-
known object. Banta er al. [2] incorporate a-priori model
knowledge. Klein and Sequeira [12] present ideas for range
image quality evaluation on the GPU. For an in-depth sur-
vey please refer to Scott et al. [23]. However, as argued
above, the requirements for NBV in range imaging differ
significantly from our problem setting. Furthermore, an un-
solved problem emphasized by Scott et al. is the lacking ef-

ficiency of many methods, which significantly reduces their
applicability in practice.

In the context of passive image based reconstruction and
MYVS, most techniques follow relatively simple image se-
lection heuristics, e.g., using k-nearest images. However,
a number of authors have developed dedicated selection
schemes. Farid er al. [3] presented a first set of view
selection strategies for multi-view stereo. Kutulakos and
Dyer [14] describe a scheme for view point selection based
on contours. Marchand and Chaumette [16] present per-
ceptual strategies for scene reconstruction based on struc-
ture from motion. A recent example for optimal view point
selection based on Kalman filtering has been presented by
Wenhardt et al. [28]. View planning for a combination of
shape from silhouette and shape from structured light has
been presented by Sablatnig er al. [22]. Rusinkiewicz et
al. [21] circumvent the necessity for computing views by
transferring this task to the user. Vazquez et al. [26] con-
sider the problem of automatic view selection for image
based rendering. Lensch et al. [15] present a GPU accel-
erated approach for sampling spatially varying BRDFs.

Recently, Goesele et al. [5] showed that view selec-
tion schemes are almost inevitable when dealing with large
image databases. Their method efficiently selects subsets
of compatible views by evaluating shared image features.
They also point out that view selection combined with
widely applied standard metrics is a very effective tool for
dealing with a variety of input modalities.

All these above methods solve important problems oc-
curring in image based reconstruction. However, the diverse
foci of each of these methods reflect also the inherent prob-
lem of selecting optimal input data with respect to the re-
quirements of a specific technique. Our work is motivated
by the recent evaluations of numerous MVS methods, such
as [4, 5, 6, 7, 20, 27] just to mention a few. Please refer to
[18] for a more complete list. To our knowledge, this is the
first work on automatic and efficient input optimization ad-
dressing the specific requirements of such MVS techniques.

2. Conceptual Overview

In the following we describe the motivation and main
concepts behind our approach. Given a (possibly very large)
set of calibrated input images of an object, we aim at select-
ing a subset of images, which sufficiently capture all rele-
vant features without adding too much redundancy.

Finding an optimal image subset is a complex combina-
torial optimization problem. Hence, a common approach in
the field of NBV planning for range imaging is to use iter-
ative greedy procedures, which are generally based on the
following generic work cycle. First the algorithm takes one
or more initial measurements (scans), and generates a cor-
responding geometric proxy. This proxy is then iteratively
refined by the optimization procedure. At the beginning



of each iteration, different quality measures are computed
over the current surface approximation. These measures de-
scribe, for example, the current coverage or measurement
certainty. Based on this information the algorithm selects
new views for which one expects a maximal quality gain,
and updates the surface proxy with this new information.
These steps are repeated until a termination criterion with
respect to the quality measures is met.

Since we aim at an algorithm supporting MVS, we have
to identify the corresponding specific requirements. For re-
cent algorithms we find that the reconstruction accuracy and
efficiency depends largely on the following three criteria:

Initial Surface Proxy: Most algorithms either require
or iteratively generate an initial proxy of the object as an
initialization, e.g., for a proper topology and visibility esti-
mation. Furthermore, a faithful proxy minimizes the com-
putation time, since methods based on deformable models
evolve the initial proxy to the actual object surface [7]. Vol-
umetric approaches on the other hand perform better, the
more voxels are carved away, which are not part of the
true surface [10]. With a few exceptions [8], this geomet-
ric prior is generally based on segmented input images, i.e.,
the visual hull, since efficiently computing a more accurate
stereo-based proxy, in particular from a large set of input
images, is a non-trivial problem in practice. Hence, the first
important goal of our method is the selection of a small sub-
set of input images, which allow for an efficient generation
of a stereo-based proxy that is a good approximation of the
unknown object surface, and which is sufficiently covered
by the selected images.

Surface Visibility: For MVS reconstruction, every sur-
face point has to be visible in at least two images. In gen-
eral, however, the reconstruction quality is strongly affected
by texture, image noise and blur, calibration errors, as well
as illumination effects which are not handled by the em-
ployed photo-consistency metric. These problems can be al-
leviated by capturing redundant data. On the other hand, un-
necessary redundancy increases the processing time. Hence
an algorithm for image selection should ensure that each
surface point is visible for a certain number of cameras with
a guaranteed minimum viewing angle, without including
unnecessary images. Although this criterion seems similar
to the above, the essential difference is that a visibility op-
timization without a proper initial proxy would potentially
lead to a suboptimal selection of images, which focus on
incorrectly approximated or even nonexistent surface parts.

Adaptivity: While the above steps guarantee a mini-
mum viewing quality for every surface point on the proxy,
they do not ensure a good reconstruction performance in
particularly difficult surface regions, where the proxy is
only a suboptimal approximation to the real object surface.
Typically, this can happen for deep concavities or thin holes
through the object, which are difficult to detect and cap-

ture properly. As a consequence, methods requiring an ini-
tially correct topology of the proxy fail. However, because
of the distance of these proxy regions to the true object sur-
face, they can often be characterized by having bad photo-
consistency values in the input images. Hence, our algo-
rithm should adapt to the surface reliability by selecting ad-
ditional images focusing on photo-inconsistent regions.

These criteria exhibit a natural successive order, since
each of them relies on the respective previous criterion. So
instead of simultaneously optimizing all criteria, these de-
pendencies allow for an efficient iterative optimization pro-
cedure consisting of three corresponding phases.

3. Image Selection and Proxy Generation

According to the above criteria, the three main phases of
our algorithm are the following: Phase 1 aims at choosing
views that support a fast convergence towards an initial ge-
ometric proxy. Phase 2 then ensures a sufficient coverage
of each point on the proxy surface in at least 2 images, and
phase 3 adds additional images focusing on proxy regions
with locally bad photo-consistency values.

In each phase, a corresponding quality criterion has to be
evaluated on every point of the current surface approxima-
tion. Based on this evaluation, the algorithm selects a new
image, which is expected to maximally improve this quality
criterion. To simplify the problem setting, we use a voxel
grid V' as a discrete volumetric geometry representation for
the proxy. A voxel v € V can be either full or empty. Ini-
tially, we start with all voxels full. In phase 1, we classify all
voxels as empty, which can be identified as not being part of
the object. The remaining full voxels S; C --- C Sy =V
represent the iteratively improved object proxy. Full voxels
with empty neighbors lie on the current proxy surface and
are denoted by 0.5;. For these voxels we evaluate the quality
criteria corresponding to each phase.

In our experiments we found that a medium grid resolu-
tion of 1282 provides the best tradeoff in terms of accuracy
and efficiency. Furthermore, we do not store the complete
voxel grid, but we rather build an adaptive octree which
allows us to prune large empty or full regions. Surface
voxels are always enforced to be from the finest resolution
level. For these voxels we can then easily compute an es-
timated normal vector by fitting a regression plane to the
local neighborhood of surface voxels.

Depending on the image acquisition setup, the available
images can be distributed in the whole embedding space
or in some arbitrary sub-region, e.g., with viewpoints con-
strained to lie on a sphere around the object. Our method
is not limited to any specific configuration, but can handle
arbitrary viewpoints and -directions. The set of camera po-
sitions corresponding to the set of images is denoted as C'.
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Figure 1. Illustration of phase 1. (1) For each image a) the algorithm computes a depth map b) using a small-baseline stereo method, and
carves away all voxels lying in front of the depth map c). For the remaining voxels it then estimates a quality value depending, e.g., on
their visibility in the images selected so far d). The color coding visualizes the current state of the proxy (shown from a different viewpoint
in e) for illustration purposes). Visible voxels are marked blue, while voxels currently not visible in any image are marked red. (2) With
each iteration, the algorithm selects a new image, which maximizes the number of visible voxels, and then iterates steps b)-d).

3.1. Selection Procedure

In the ith step of our algorithm, we have constructed a
proxy 0.S5;_1 from the views I, ..., I;_1 seen from view-
points c¢1,...,c;—1 € C. Our goal is to pick a new view-
point ¢; such that adding the corresponding view I; leads to
a maximally improved proxy 0.5; with respect to the quality
criterion of the current phase.

The major problem with this approach is that we cannot
predict 95; without actually knowing the new view I; and
integrating it into the current reconstruction. However, for
a large number of views, such a tentative integration and
evaluation of all possible images I; is computationally in-
feasible. Hence, the best we can do is to rate the improve-
ment that the new view would have on the old proxy 95;_1.
With this approach, all quality criteria can be formulated
in terms of the viewpoints ¢; only. This allows us to es-
timate the quality gain for a given image I; efficiently by
rendering the current proxy 0.S;_1 as seen from the respec-
tive viewpoint ¢;, without having to recompute and evaluate
the proxy for every image. The next best view is the image
which maximizes the number of visible low quality voxels.

Each phase continues as long as the quality gain per iter-
ation stays above a certain threshold. Otherwise we switch
to the next phase by changing the quality criterion. The fol-
lowing describes the phases and criteria in detail. Sect. 4
then shows how these criteria can be evaluated efficiently.

Phase 1: Initial Surface Proxy This initial phase aims
at guaranteeing that every voxel v € 0.5;_; of the current
proxy is visible in at least one image I; from an acute view-
ing angle < ¢ (Fig. 1) in order to reliably classify it as being
inside or outside of the object’s photo-hull. The viewing an-
gle is the angle between the surface normal n of a voxel v
and the vector d; = (c; — v)/||c; — v|| pointing from v to
a camera center c;. This requirement can be formalized as

Yo € 9S;—1 3j € [1,4] : Py(v, cj) with
Py(v,cj) : visible(v,¢;) Adj -n > cos¢ . (1)

The sets of low quality voxels 55‘1;1, 5:5‘;_1 C 9S;-1,
which violate this condition before and after the integration
of view c¢; are defined as

98,1 ={vedSi1:Vje[l,i—1]:-Ps(v,¢;)} and (2)
5:9;_1 ={vedSi_1:Vj€[l,i]: ~Py(v,c5)} . 3)

The quality gain g; in the ith iteration can then be defined
as the relative improvement of low quality voxels, i.e.,

gi(ci) = (#0S;-1 — #0S,_1) /#0581 @)

The free parameter to maximize ¢;(c;) (i.e., to minimize
#55”;,1) is the next view ¢; among all the candidates ¢ € C.
Maximizing this expression directly would correspond
to counting the number of improved voxels, without tak-
ing the actual degree of improvement for each voxel into
account. Hence we use the weighted improvement of
the viewing direction with respect to all previous views
(d; - n — max;<;—1(d; - n)) in order to increase the robust-
ness and sensitivity of the algorithm. This allows the image
selection to focus on proxy regions with the lowest qual-
ity first. Furthermore, by taking the minimum of d; - n
and cos ¢, this weighted approach does not reward improve-
ments beyond the angle threshold ¢, which implicitly pro-
motes a sufficient parallax between the input images. The
complete functional g;(c;) for the quality gain then is

gi(ei) = Z gi(v,c;), with 5)
vEDS; 1

/ min(d; - n, cos ¢) — max (d; -n) if Py(v,¢;)

gz‘(U>Ci) = j<i—1 .

0 else

6

If the viewpoint maximizing g/ (c;) actually leads to an ef-
fective improvement g¢;(c;), which is above a prescribed
threshold ¢, the algorithm adds I; to the set of images.

We then have to update the proxy S;_; — 5; by identi-
fying all voxels, which are outside of the photo-hull as seen
from this new view. We achieve this by computing a depth
map for image I; with a variant of the method by Yang and



Pollefeys [29] for real-time, small baseline stereo. As com-
parison images, our algorithm simply selects 2 images from
the whole set of available images, which are closest to [;
and which have the most similar viewing direction. The
proxy is then updated by carving away all voxels lying in
front of the depth map. Instead of simple carving one could
of course apply more sophisticated voting schemes, but in
our experiments this approach worked sufficiently well. Sil-
houettes can optionally be exploited.

Phase 1 terminates if either the percentage of low quality
voxels drops under a threshold #95;_1/#0S; 1< €, or if
the improvement of low quality voxels measured by g;(c¢;)
is less than §. Otherwise, the algorithm continues with iter-
ation ¢ 4+ 1. In all our experiments the parameters ¢ and ¢
were fixed to € = 0.05 and § = 0.02 for all 3 phases.

Please note that there might be low quality surface vox-
els left in 95 ; at the end of phase 1 which have never been
visible in any of the images, e.g., the bottom of the Mid-
dlebury Dino model. These voxels are excluded from fur-
ther processing. The result of this phase is a sequence of
images, which supports a fast convergence towards a suffi-
ciently covered, faithful approximation of the unknown ob-
ject. The resulting proxy can optionally serve as an input
for subsequent MVS based on, e.g., deformable models.

Phase 2: Surface Visibility After the initial proxy gener-
ation in phase 1 is accomplished, we change our quality cri-
terion and add additional images such that each voxel now
becomes visible in a user specified number x > 2 of images
with a guaranteed maximal viewing angle < ¢. The pos-
sibility of enforcing visibility of each voxel in more than
2 images generally helps to increase the robustness of the
subsequent MVS reconstruction process. The correspond-
ing requirement can be expressed similar to Eq. (1) as

Vv € 8Si—1 : Q(v), with
Qv) : #{j € [1,1] : Ps(v,cj)} >, (1)

with the low quality voxels as i—1 analogously defined as
951 = {vedSi_1:Q)} . (8)

The computation of the quality gain g;(¢;) and the termi-
nation criterion is identical to phase 1. To promote a more
uniform distribution of viewpoints, we start phase 2 with a
variable k’ = 2. Each time the termination criterion is met,
k' is increased by one until &’ = k.

For the selection of the next view c;, we again adopt a
weighted approach similar to phase 1, which takes the visi-
bility improvement for each surface voxel into account, i.e.,
a voxel which is visible in only one other view Iy, ..., 1;_1
counts more than a voxel which is already visible in sev-
eral other views. The corresponding functional is defined
analogous to Eq. (5), with a different quality gain g;(v, ¢;)

1— 20 it pyo, ¢
gz’-(v,cz-)—{ " o) ©

0 else

where m(v) = #{j € [1,i — 1] : Py(v,c;)} is the number of
views among I, ..., I;_1 in which v is sufficiently visible.

Phase 3: Adaptivity The final phase supports the recon-
struction of problematic or topologically important surface
regions such as concavities or holes. These regions can of-
ten be identified by their bad photo-consistency because of
a significant deviation from the true surface, or because of
deficiencies of the consistency metric. We found that the
reconstruction quality can be considerably improved by in-
tegrating additional images focusing on these regions.

Hence, we compute for each voxel v € 0.5;_1 a consis-
tency value p(v) using a standard metric based on, e.g., nor-
malized cross-correlation or color variances. These metrics
are widely used among recent MVS methods and therefore
are a reasonable choice for addressing consistency prob-
lems [5]. In our implementation we employ the robust con-
sistency estimation based on voxel supersampling proposed
in [11]. Large values of p(v) correspond to a high color
variance and hence represent a bad photo-consistency. So
for each voxel having a value p(v) larger than a consistency
threshold v, the algorithm should guarantee 7 additional
views from a viewing angle 8 < ¢:

Vv € 8Si—1 : R(v), with
R():p(v) <y V#{je€l,i]: P(v,cj)} >71 . (10)

Please note that the number of additional views 7 and the
angle # have an equivalent meaning to x and ¢ in phase 2.
However, our experiments showed that 7 can be chosen
smaller than x since one generally needs only a few ex-
tra images to improve the reconstruction in problematic re-
gions. 1) obviously depends on the method for measur-
ing photo-consistency. In our implementation we found
these parameters to work quite stable for different data
sets, so that we could simply keep them constantly set to
T = 2,0 = 30, and ¢» = 0.7. Low quality voxels 05;_; are
defined as before

89S 1 = {veadSi—1:-R(v)} , (In

and the quality gain g;(c;) and termination criteria are again
analogous to phase 1. As in the previous phases, we com-
pute a weighted estimate, based on the photo-consistency
values, for selecting the image

g;(v,Ci) _ {p(U) ifPO(v7Ci) . (12)

0 else

4. GPU-based Implementation

Efficient GPU-based implementations for small baseline
stereo or photo-consistency estimation have already been
presented in previous work [29, 11]. The remaining, most
time consuming part of our algorithm is the evaluation of
the quality criteria in all 3 phases. Practically useful com-
putation times can only be achieved if we manage to evalu-
ate each input image in just a few milliseconds. Remember



that a quality estimate for each single image requires the
following steps: (1) check every surface voxel for visibility,
(2) estimate the quality gain per voxel (based on the viewing
angle or photo-consistency), and (3) accumulate the quality
gain over all voxels to estimate the total gain. In order to
achieve the required efficiency, we transfer the computation
of these steps to the GPU.

Our GPU implementation consists of two main passes.
First, we have to determine the visibility of all surface vox-
els for a given image I;. This is an operation which can be
performed most efficiently on a modern GPU by exploiting
the z-buffer. The idea is to simply render all surface voxels
as seen from the corresponding viewpoint. This can be eas-
ily achieved by setting the projection of the rendering sys-
tem according to the calibration data of ;. The GPU takes
care that only the nearest (and hence visible) ones will be
stored in the frame buffer. For maximum performance we
use a splat-based rendering approach [13] by replacing each
voxel with a screen-aligned quad located at the center of
the voxel. This is achieved by sending one point primitive
per voxel to the GPU. In order to render a closed surface,
the projected screen-size of each rendered primitive is com-
puted in a vertex shader [24], conforming to the size of its
corresponding voxel in the volumetric grid .

Next, we transfer the local quality gain estimation to
the GPU by evaluating the corresponding equations (e.g.,
Eqg. (6)) in a fragment shader [24], and encoding the result
of the computation in the rendered splat color. There are
efficient techniques well-known in the point-based render-
ing community that allow us to render more than 30 million
splats per second including visibility and additional calcu-
lations [13], and with the support of recent graphics proces-
sors for floating point output buffers we achieve the same
computational accuracy as in a CPU based implementation.

Unfortunately, summing up frame buffer pixels for ac-
cumulating color-encoded quality gain values and counting
the number of improved voxels is not an efficient operation
on today’s GPUs. We can, however, exploit the color blend-
ing functionality to perform the quality gain accumulation.
Instead of rendering each voxel to its projected 2D position
in the input image as above, we define a frame buffer of
size 1 x 1, and render the required values of each visible
voxel into this single pixel. By configuring the rendering
pipeline to perform additive blending of the output colors,
we achieve the desired accumulation over the proxy surface.

5. Results

In this section we show that our technique for image se-
lection can significantly improve the quality and efficiency
for four different classes of MVS techniques.

Table 1 shows results for several experiments on syn-
thetic and real input data with the MVS approach described
in [10], into which we integrated our technique as an online

Model ¢ 1Images  Error UNI  Error SEL  Rel. Improv.
Mouse 45 27 0.35(4.46) 0.24(2.82)  30% (37%)
30 44 033458 024(272) 27% (41%)

CAD 60 23 099 (4.81) 044 3.77)  55% (22%)
Scarecrow 45 24 0.62(5.93) 0.35(3.84)  44% (35%)
Bahkauv 45 19 1.65(7.52) 0.75(5.89)  55% (22%)
30 26 0.92(6.33) 0.67(5.95) 27% (6%)

Temple 60 21 0.60(3.55) 0.52(3.20) 13% (10%)
45 50 0.50(4.28) 0.42(2.58)  16% (40%)

Dino 45 41 0.56 (4.37) 0473.73)  16% (15%)

30 50 0.53(4.52) 0453.28) 15% (27%)

Table 1. Evaluation with the reconstruction technique in [10] for
several data sets and parameter settings, showing the RMS &
(MAX) Hausdorff distance to the respective reference model.

Thresholds Matching [4] Growing [6] Deformable [7] Graph-Cuts [10]

80% (mm) 0.43/0.41 0.52/0.49 0.36/0.33 0.64/0.59
90% (mm) 0.60/0.56 0.90/0.66 0.50/0.45 1.00/0.88
99% (mm) 1.36/1.31 1.38/1.27 1.11/0.83 2.86/2.08
0.75mm (%) 92.1/932 81.5/85.2 95.5/97.4 79.57/82.9
1.25mm (%) 97.8/97.8 92.3/94.2 99.0/99.4 90.2/93.0
1.75 mm (%) 99.2/99.3 95.8/97.3 99.8/99.6 94.3/96.9

Table 2. Middlebury evaluation [18] for four different MVS ap-
proaches with 41 uniform / selected (¢ = 45) images of the Dino.

procedure for image selection and proxy generation. For
each data set we created a reference model from all avail-
able images, and then compared reconstructions with dif-
ferent parameter settings from images selected by our algo-
rithm (SEL) vs. uniformly distributed images (UNI).

In the synthetic experiments (Mouse, CAD) we investi-
gated the performance of the algorithm for different types
of features, such as concavities or thin holes. We generated
800 images uniformly distributed around a laser scanned 3D
mesh. Since the photo-consistency metric (Phase 3) is based
on color variances, we simulated a non-trivial consistency
estimation by rendering each model with a white, texture-
less surface illuminated by a few light sources (Fig. 2), and
set parameter x = 2 due to the perfect image calibration
and noiseless images.

Our experiments with real data were performed with the
Middlebury Temple and Dino [25] data set (>300 images
each), with 150 images of a Scarecrow model captured us-
ing a turntable, and with 290 images of the Bahkauv statue
captured with a hand-held camera. Again, the reference re-
constructions were generated using all available images. To
compensate for calibration errors and other problems like
image noise we set k = 3 for these experiments.

We then measured the RMS and maximal symmetric
Hausdorff distance of the SEL and UNI models to the re-
spective reference model using [1]. Table 1 shows that the
reconstruction error is consistently lower for the selected
images. Although the numerical improvement sometimes
seems relatively small, the visual improvement of the over-
all shape is often significant (Fig. 2). Especially in cases
with a relatively small number of images for complex sur-
faces, the results are significantly better, e.g., the Scarecrow,
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Figure 2. Visual comparison of reconstructed meshes from uniform (UNI) and selected (SEL) input. The color codings show the approx-
imation error to the reference model. In the Mouse experiment, only the selected image set consistently reproduces the deep concavities
in the cheese. For the CAD model, the uniform images as well as phases 1&2 (SEL a) fail to capture the thin holes. Phase 3 reveals
inconsistent voxels in these proxy regions and selects corresponding images with a significantly improved result (SEL b). Our experiments
with real data show consistent visual improvements as well. For instance, our algorithm selects mainly side views and only a small number
of top views for the Dino model, and hence captures the head region and the concavities between the legs much better. Also the quite
complex Scarecrow and the Bahkauv statue show significant improvements, in particular for difficult features like the Scarecrow’s hat.

the Bahkauv, or the CAD model. Reconstructions using never took more than 1 to 4 minutes, which is negligible
selected images even perform better than the uniform data compared to the total runtime of most MVS reconstruction
with considerably more images, e.g., UNI Dino, 50 images: algorithms [18]. For instance, using our algorithm in com-
0.53 RMS/4.52 MAX vs. SEL Dino, 41 images: 0.47 RMS bination with [10], the UNI Temple with 50 images took 15
/3.73 MAX (see also Mouse, Temple, or Bahkauv). min. to compute, while the SEL result with 21 images took

Table 2 presents the Middlebury results for four MVS only 7 min. (including the image selection), with similar

reconstruction errors. All presented experiments and mea-
surements were performed on a P4 2.8 GHz with a GeForce
6800 Ultra GPU. Our results (e.g., Table 1) show that re-
constructions based on images selected by our algorithm
usually have an even higher quality than reconstructions
from non-optimized input with up to twice as many im-
ages. Considering the fact that the running-time of MVS
algorithms is generally dominated by the number of input
images, this property helps to considerably reduce process-
ing times, while achieving the same or better output quality.

approaches participating in this evaluation, each represent-
ing a fundamentally different class of techniques: feature
matching and patch expansion [4], surface growing [6], de-
formable models [7], and volumetric graph-cuts [10]. We
used the 41 selected (¢ = 45) and uniform images of the
Dino as input images for each method, since this model
is generally considered a difficult example because of the
missing texture. Please note that the parameter settings used
by the corresponding authors were not identical to the ones
used in their own Middlebury submission, so that the re-
construction quality might differ a bit [18]. However, the
parameter settings used for each technique were identical
for the selected and uniform images. The first three rows
of Table 2 show the quantitative results of uniform vs. se-
lected views (UNI/ SEL) for different accuracy thresholds.
The last three rows show the results in terms of complete-
ness. Please see [25] for an in-depth explanation of these
thresholds. Again, our selected images consistently produce
better results for all methods and thresholds.

6. Conclusions

We presented a new image selection technique for MVS
reconstruction. Our algorithm specifically addresses the re-
quirements of recent MVS methods, and consistently shows
improved performance for four different classes of MVS
techniques. The central idea of our method is the defini-
tion of three subsequent phases, each of which optimizes

The processing time of our algorithm depends on the specific aspects such as a fast convergence towards a full
number of input images and iterations, the proxy resolu- visual coverage of the unknown object for a fast generation
tion, and the number of low quality voxels. However, even of an initial proxy, guaranteed visibility of the surface with a
for relatively high numbers of images as in the experiments sufficient quality, and an adaptive focus on uncertain or oth-
with synthetic data (800), the algorithm needs only 1 to 15 erwise critical regions. Due to the integrated stereo based
seconds (4 seconds on average) for a single iteration. The proxy generation, our algorithm does not require any pre-
quality gain for a single input image is evaluated in about processing of the input images such as segmentation. More-

3 to 20 ms. For all experiments the overall processing time over, all computationally intensive steps can be executed ef-



ficiently on the GPU.

The numerical and visual evaluation shows that proper
image selection is an important, yet currently insufficiently
considered resource of optimization in MVS reconstruction.
Similar observations have been made in [5]. Our automatic
image selection is a step into this direction, and provides
ideas for increasing the flexibility and automation of MVS,
while at the same time improving the reconstruction quality
and performance.

In future work we would like to investigate extensions to
our method such as an explicit evaluation and handling of
calibration errors, additional entropy based image quality
measures, or view selection based on robust statistics [27].
Moreover, techniques based on photometric stereo [9] ob-
viously have requirements different from the standard MVS
setting. We believe that investigating image selection for
a wider range of techniques is an interesting direction for
future work as well.
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