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Abstract

Analytic manifolds were recently used for motion aver-
aging, segmentation and robust estimation. Here we con-
sider the epipolar constraint for calibrated cameras, which
is the most general motion model for calibrated cameras
and is encoded by the essential matrix. The set of all es-
sential matrices forms the essential manifold. We provide a
theoretical characterization of the geometry of the essential
manifold and develop a parametrization which associates
each essential matrix with a unique point on the manifold.
Our work provides a more complete theoretical analysis of
the essential manifold than previous work in this direction.
We show the results of using this parametrization with real
data sets, while previous work concentrated on theoretical
analysis with synthetic data.

1. Introduction

Analytic manifolds have been used for various applica-
tions such as motion averaging [1, 7], motion segmentation
[21, 22] and robust estimation [20]. The idea behind these
algorithms is to consider a particular model, such as affine
or rigid body motions, and the motion parameters corre-
spond to single points on a manifold. Averaging or clus-
tering these points over this manifold leads to motion aver-
aging, motion segmentation etc..

These techniques have been applied to motion models
for which the manifold of parameters has been well stud-
ied. However, computer vision problems have geometric
constraints such as the epipolar constraint [12], which are
not common in other fields. The epipolar constraint en-
codes a relation between correspondences across two im-
ages of the same scene. In a calibrated setting, the epipolar
constraint is parameterized by the essential matrix, a 3 × 3
matrix with certain algebraic properties [8, Sec.8.6.1]. The
essential matrix represents the relative motion between two
cameras [19], but due to the loss of depth information only
the direction of translation can be recovered. It is possible
to recover the relative camera geometry from the essential
matrix, but there exists a four-fold ambiguity in this process

and four different relative camera geometries correspond to
each essential matrix [8, Sec.8.6.3].

Previous parametrizations of the essential manifold [11,
19] associate essential matrices with the rigid motions they
encode. This was used for visual motion control [18, 19]
and geometric optimization [14]. However, due to the four-
fold ambiguity mentioned previously, each essential matrix
corresponds to four different motions. The only way to
choose among these motions is to enforce the positive depth
constraint [18, 19], also known as chierality [8, Ch.20]. In
the presence of mismatches and outliers, the use of image
correspondence information can be a problem. For exam-
ple, in a robust estimation problem where we are given a
set of point correspondences between two images, some of
the correspondences are mismatches. However, we have no
knowledge of the true matches and mismatches. Using an
incorrect match to enforce the positive depth constraint can
lead to erroneous camera geometries.

We consider the problem of a robust, unique parame-
trization of the essential manifold. Rather than draw a par-
allel with rigid body motion, we use the algebraic properties
of the essential matrix to parameterize the manifold. Each
essential matrix will be associated with a unique point on
the manifold, and there is no need to use any (possibly out-
lier) correspondence information to ensure a consistent lo-
cal parametrization. This allows us to interpolate and aver-
age essential matrices directly without considering the rela-
tive camera geometries they encode.

In [9] a geometric optimization method over essential
matrices was proposed using a similar idea. In [6], har-
monic analysis was used for function optimization over the
essential manifold using the same parametrization. How-
ever, the theoretical properties of the parametrization are
not fully explored. Firstly, the essential manifold is not
only a manifold but a Riemannian manifold. As we dis-
cuss later, this means that we can define a formal notion
of distance between points. The previous work does not
address or take advantage of this property. Secondly, we
show that along with the Riemannian structure, the essen-
tial manifold belongs to a class of manifolds known as ho-
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Figure 1. An illustration of a two-dimensional manifold and the
tangent space, TX, at the point X.

mogeneous spaces. This property makes the analysis con-
siderably easier. For example, [5] proposes a methods to
compute certain differential operators over homogeneous
spaces. Finally, we exhibit results on real data. Both [6]
and [9] treat the parametrization only as a theoretical tool.
Although our main contributions are theoretical in nature,
we show results on real data where we use the Riemannian
structure of the essential manifold.

In Section 2 we briefly introduce the idea of analytic
manifolds and the special orthogonal group. The essential
manifold and its parametrization are discussed in Section 3.
Section 4 discusses the nonlinear mean shift algorithm and
how to use it for robust parameter estimation. The results
are presented in Section 5.

2. Analytic Manifolds

A manifold, M, is a surface which locally appears like
Euclidean space. Formally, each point on M is associated
with an open neighbourhood and a homeomorphism from
the neighbourhood to an open set in Euclidean space. There
is a smooth transition between the homeomorphisms in re-
gions where the neighbourhoods overlap. The open sets
in the above definition require the existence of a topology
on M. Analytic manifolds satisfy further conditions of
smoothness [2, Sec.III.1]. We restrict ourselves to analytic
manifolds and assume these conditions are satisfied.

The tangent space TX at X can be thought of as the
set of allowed instantaneous velocities for a point con-
strained to move on the manifold. The tangent space of
a d-dimensional manifold is a d-dimensional vector space
[2, Sec.IV.1]. We can define an inner product gX on TX.
This induces a norm for tangents ∆ ∈ TX as ‖∆‖2X =
gX(∆, ∆). The subscripts indicate the dependence of the
inner product and norm on the point.

For a curve connecting two points, the derivative at each
point lies in the tangent space at that point. The length of
the curve is obtained by integrating the norm of the tangents

along the curve [2, Sec.V.3]. The shortest curve joining two
points on M is known as the geodesic and the length of the
geodesic is the intrinsic distance between the points.

Tangents and geodesics are closely related. For each
∆ ∈ TX there exists a unique geodesic starting at X with
initial velocity ∆. This is captured by the exponential map,
expX, which maps ∆ to the point on the manifold reached
by this geodesic. In other words, the geodesic starting at X
and ending at expX(∆) has initial velocity ∆. The inverse
of the exponential map is the logarithm map, logX = exp−1

X

[2, Sec. VII.6]. These ideas are illustrated in Figure 1. The
exponential maps tangents at X to points on the manifold
and the logarithm maps points on the manifold to tangents
at X. Both exponential and logarithm operators vary as the
point X moves. The specific forms of these operators de-
pend on the manifold. The exponential is usually onto but
not one-to-one. If many tangents satisfy expX(∆) = Y,
logX(Y) is the tangent with the smallest norm.

The gradient of a real function f defined on the mani-
fold, is the unique tangent vector, ∇f ∈ TX, satisfying

gX(∇f,∆) = ∂∆f (1)

for any ∆ ∈ TX, where ∂∆ is the directional derivative
along ∆. This is also known as the differential [2, Sec.V.1].

2.1. Special Orthogonal Group

A frequently occurring manifold is the set of 3D rota-
tions, also known as the special orthogonal group, SO(3).
This manifold consists of 3 × 3 orthogonal matrices with
determinant one.

SO(3) = {X ∈ R3×3|XXT = I, det(X) = 1} (2)

where, I is the 3×3 identity matrix. In fact, SO(3) belongs
to the set of manifolds known as Lie groups [17] which have
more algebraic structure than general manifolds. The group
operation of SO(3) is matrix multiplication.

The Lie algebra so(3) is the tangent space at the identity
and consists of 3× 3 skew-symmetric matrices of the form

[ω]× =

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 (3)

where the vector ω = [ωx ωy ωz] is the axis of rotation and
‖ω‖ is the magnitude of the rotation. The exponential oper-
ator is the matrix exponential and the logarithm operator is
the matrix logarithm [17, 21, 22]. The structure of SO(3)
allows us to compute the exponential using the Rodriguez
formula [10, p.204]

exp([ω]×) = I +
sin‖ω‖
‖ω‖

[ω]× +
1− cos‖ω‖
‖ω‖2

[ω]2× . (4)



The logarithm is computed by inverting this relation. The
intrinsic distance between X,Y ∈ SO(3) is

d(X,Y) = ‖log(X−1Y)‖F = ‖log(XT Y)‖F (5)

since, for orthogonal matrices, X−1 = XT and ‖ · ‖F is the
Frobenius norm.

Let Sz be the subgroup of rotations in SO(3) which
leave the direction of the z-axis unchanged. It contains ma-
trices of the form

X =
[

A 0
0 det(A)

]
(6)

where, A is a 2 × 2 orthogonal matrix and det(A) = ±1.
The third diagonal element should be det(A) to ensure
Sz ⊂ SO(3). Under the topology of SO(3), Sz is a closed
subgroup of SO(3) [17, Sec.2.7].

3. The Essential Manifold

An essential matrix encodes the epipolar geometry for a
set of calibrated cameras. Let p and q be the normalized
coordinates of corresponding points and Q be the essential
matrix. The essential constraint is

pT Qq = 0. (7)

Let E denote the essential space, the set of all essential ma-
trices. The essential space is an algebraic variety [15, 19]
and a manifold of dimension six. Essential matrices have
some further algebraic properties. If Q = UΣVT is the
singular value decomposition of a 3 × 3 matrix Q, then [8,
Sec.8.6.1]

Q ∈ E ⇔ Σ = diag{λ, λ, 0}, λ ∈ R+ (8)

i.e., an essential matrix has two equal, positive singular val-
ues and a zero singular value. The essential matrix is a ho-
mogeneous quantity and scaling does not change the geom-
etry. We scale Q to ensure λ = 1 and define the normalized
essential space, E1 as the set of 3×3 matrices with two unit
singular values and one zero singular value

Q ∈ E1 ⇔ Σ = Σ1 (9)

where, Σ1 = diag{1, 1, 0}.
Since the epipolar geometry depends on the relative pose

of the cameras, it can be recovered from the essential ma-
trix except for two ambiguities. Firstly, there is no scale
information and the baseline between the cameras can only
be recovered upto a scale. Secondly, four different relative
camera geometries give rise to the same essential matrix [8,
p.241] as shown in Figure 2. Usually, further image infor-
mation is required to disambiguate the four geometries and

Figure 2. Four different camera geometries which give the same
essential matrix. In each row the geometries differ by the sign of
the direction of translation. Each column is a twisted pair. The
image was taken from [8, p.241].

choose the true geometry based on the positive depth con-
straint.

A common parametrization of the essential manifold is
based on the fact that each relative camera geometry corre-
sponds to a tangent of SO(3) with unit norm. The set of
all tangents of a manifold forms a manifold known as the
tangent bundle. Therefore, the essential manifold can be
identified with the unit tangent bundle of SO(3) [14, 19].
Since each essential matrix corresponds to four different
camera geometries, and each camera geometry corresponds
to a different tangent of SO(3), this parametrization gives
a four-fold covering of the essential manifold.

When comparing essential matrices by mapping them to
tangents of SO(3) it is necessary to choose consistently
from among the four possibilities. Otherwise, it is possi-
ble that dissimilar essential matrices are mapped to nearby
points on the manifold. The only way to ensure a consis-
tent parametrization is to use image point correspondences
and enforce the positive depth constraint [18, 19]. How-
ever, while performing robust estimation we do not know if
point matches are correct or not. Using a mismatch to dis-
ambiguate the motions could lead to erroneous results. We
will use the algebraic properties of the normalized essential
space to develop a unique local parametrization which is not
dependent on image correspondence information.

3.1. Parametrizing the Essential Manifold

An alternate parametrization was proposed in [6]. This
was based on a singular value decomposition of the essen-
tial matrix. We further develop this idea here and show
that this parametrization gives a one-to-one correspondence
between the points on the manifold and essential matrices.
Furthermore, this parametrization makes the essential man-
ifold a homogeneous space under the action of the group
SO(3) × SO(3) and later we will use this to obtain geo-



metrically meaningful Riemannian metrics for the essential
manifold.

Consider Q ∈ E1 with singular value decompo-
sition UΣ1VT , where U and V are orthogonal and
det(U), det(V) = ±1. As the third singular value is zero,
we can change the sign of the third columns of U and V to
ensure det(U), det(V) = 1 without changing the SVD.

Since SO(3) is a Lie group, the manifold SO(3) ×
SO(3) is also a Lie group with the topology and group op-
eration inherited from SO(3) [17, Sec.4.3]. We define the
mapping

Φ : SO(3)× SO(3) → E1 (10)

which maps (U,V) ∈ SO(3) × SO(3) to UΣ1VT ∈ E1.
The inverse mapping from E1 to SO(3)×SO(3) is not well
defined as there is one degree of freedom (dof) in choosing
the basis of the space spanned by the first two columns of
U and V. A rotation of the first two columns of U can be
offset by a rotation of the first two columns of V, such that
UΣ1VT does not change. Consider X,Y ∈ Sz such that

X =
[

A 0
0 det(A)

]
Y =

[
±A 0
0 det(A)

]
.

and AAT = ±I. Then, substitution gives

UXΣ1YT VT = U
[
±AAT 0

0 0

]
VT = ±UΣ1VT (11)

which leaves the essential matrix unchanged and Φ maps
(UX,VY) ∈ SO(3)× SO(3) to the same point in E1.

Let HΦ be the symmetry group which leaves Φ invari-
ant. It consists of elements which leave the third columns
of U and V unchanged, and rotate the first two columns by
angles which differ by kπ, k ∈ Z.

HΦ = {(R1,R2)|R1,R2 ∈ Sz,RT
1 R2 = Rz(kπ)} (12)

where, Rz(kπ) denotes a rotation by kπ around the z-axis.
Since Sz is a closed subgroup of SO(3), it can be shown
that HΦ is a closed subgroup of SO(3)× SO(3).

The manifold E1 is identified with the manifold SO(3)×
SO(3)/HΦ. This notation means that elements of SO(3)×
SO(3) which differ by group multiplication by an ele-
ment in HΦ are considered to be the same on SO(3) ×
SO(3)/HΦ. Two elements differing only by multiplication
by an element in HΦ are said to be in the same equiva-
lence class, and (11) shows that such elements represent
the same essential matrix. Multiplication of (U,V) by el-
ements of HΦ generates the equivalence class of (U,V).
Since HΦ is a closed subgroup of SO(3)× SO(3), we can
use the closed subgroup theorem [17, Sec.2.7] to show that
SO(3) × SO(3)/HΦ inherits topology and local coordi-
nates from SO(3)× SO(3) [17, Sec.4.2]. Each element of
E1 corresponds to a unique element in SO(3)×SO(3)/HΦ

or a single equivalence class in SO(3)× SO(3).

3.2. Vertical and Horizontal Spaces

The manifold SO(3)× SO(3) consists of two copies of
SO(3) and the tangent space of SO(3)×SO(3) will consist
of two copies of the tangent space of SO(3). Since SO(3)
has three-dimensional tangent spaces, SO(3)×SO(3) will
have six-dimensional tangent spaces. Consider (U,V) ∈
SO(3)× SO(3) and a tangent represented as a six vector

∆ =
[
uT vT

]T
(13)

where, u = [ux uy uz]
T and v = [vx vy vz]

T . The expo-
nential for SO(3)× SO(3) is computed by performing the
exponential of SO(3) twice, once each for U and V

exp(U,V)(∆) = ( Uexp([u]×),Vexp([v]×) ) (14)

where, the exp on the right represents the matrix exponen-
tial computed by the Rodriguez formula (4) and [·]× is de-
fined by (3). The first three elements of the tangent vector
correspond to U and the last three to V. This ordering is
equivalent to choosing a basis for the tangent space.

The tangent space of SO(3) × SO(3) can be divided
into two complementary subspaces. The horizontal space
contains tangents of the form

[ux uy uz vx vy − uz], ‖uz‖ < π/2. (15)

The vertical space consists of tangents of the form

[0 0 uz 0 0 kπ + uz] (16)

which lie in the Lie algebra of HΦ [4]. When k = 0,
the vertical and horizontal spaces form complementary sub-
spaces around the origin of the tangent space. Moving
along geodesics defined by tangents in the vertical space
is equivalent to multiplying by elements of HΦ and leaves
the equivalence class unchanged. Tangents in the horizontal
space are tangent to the equivalence class and all tangents
of SO(3)× SO(3)/HΦ must lie in the horizontal space of
SO(3) × SO(3). Given a tangent in the horizontal space,
its exponential can be computed by (14) to get an element in
another equivalence class, representing a different essential
matrix.

Let (U,V) and (Û, V̂) represent two elements of
SO(3) × SO(3)/HΦ. These can be any points in their
respective equivalence classes. The logarithm operator for
SO(3)× SO(3)/HΦ should give a tangent in the horizon-
tal space. To do this we first compute the logarithm on the
manifold SO(3)× SO(3). Define

δU = UT Û δV = VT V̂. (17)

Taking the matrix logarithms of δU and δV, and rearrang-
ing the elements into a six-vector, we get

[ux uy uz vx vy vz]T (18)



Figure 3. Synthetic data. A scene setup is shown on the left. The middle image compares the performance of RANSAC and mean shift when
the baseline is perpendicular to the viewing direction. The right image compares performance when the baseline and viewing direction are
parallel. The abscissa is the level of image noise in normalized coordinates, and a value of 0.01 is about 5 pixels in a 640× 480 image.

which lies in the tangent space of SO(3) × SO(3). Since
(U,V) and (Û, V̂) are arbitrary elements of their equiva-
lence classes, it is not necessary that this vector lie in the
horizontal space. We need to remove the component lying
in the vertical space. Using Givens rotations [8, App.3] δU
and δV are decomposed into rotations around the z-axis
and rotations around axes in the xy-plane. Now, (U,V)
is moved using z-rotations differing by kπ, according to
(14), so that on recomputing δU and δV, they have oppo-
site z-rotations less than π/2. This can be done in a single
step and ensures that for the new δU and δV, uz ≈ −vz

upto a few degrees. Due to the nonlinearity of the manifold
uz = −vz will not hold exactly. This can be improved by
moving (U,V) along tangents of the form

[0 0 (uz + vz)/2 0 0 (uz + vz)/2]T (19)

and recomputing δU and δV. The tangents of (19) lie in
the vertical space and do not change the equivalence class
of (U,V). After the initial step with Givens rotations, uz +
vz is very small. Three or four iterations generally give an
acceptable accuracy of the order of 10−4. At convergence
we obtain the log, which is a six-vector of the form

[ux uy uz vx vy − uz] (20)

pointing from one equivalence class to the other. The in-
trinsic distance between (U,V) and (Û, V̂) is given by the
norm of the five dimensional vector

d
(
(U,V), (Û, V̂)

)
= ‖[ux uy uz vx vy]‖. (21)

We repeat that an essential matrix, irrespective of the cam-
era geometry it represents, is a single point on the manifold
SO(3)× SO(3)/HΦ.

4. Nonlinear Mean Shift

Consider a manifold with a metric d. Given n points on
the manifold, Xi, i = 1, . . . , n, the kernel density estimate

with profile k and bandwidth h is

f̂k(X) =
ck,h

n

n∑
i=1

k

(
d2(X,Xi)

h2

)
. (22)

The bandwidth h can be included in the distance as a para-
meter. However, written in this form, the bandwidth gives
a parameter which can be used to tune performance. If
the manifold is Euclidean with a Euclidean distance met-
ric, (22) reduces to a Euclidean kernel density estimate [3].

Taking the gradient of f̂k at X,

∇f̂k(X) =
1
n

n∑
i=1

∇k

(
d2(X,Xi)

h2

)
(23)

= − 1
n

n∑
i=1

g

(
d2(X,Xi)

h2

)
∇d2(X,Xi)

h2

where, g(z) = −k′(z). The gradient of ∇d2(X,Xi) is
taken with respect to X. It was shown in [21] that for Lie
groups, ∇d2(X,Xi) = −logX(Xi). The nonlinear mean
shift vector is

mh(X) =

n∑
i=1

logX(Xi)g
(

d2(X,Xi)
h2

)
n∑

i=1

g

(
d2(X,Xi)

h2

) (24)

The operations in (24) are well defined. The gradient terms,
∇d2(X,Xi) lie in the tangent space TX, and the kernel
terms g(d2(X,Xi)/h2) are scalars. The mean shift vector
is a weighted average of tangent vectors, and lies in TX.
The iteration moves the point along the geodesic defined by
the mean shift vector. The nonlinear mean shift iteration is

X(j+1) = expX(j)

(
mh(X(j))

)
. (25)



The iteration (25), moves the current mode estimate X(j)

along the geodesic defined by the mean shift vector, to get
the next updated estimate, X(j+1). For the essential mani-
fold the exp and log operators and the distance can be com-
puted as discussed in Section 3.2.

4.1. Robust Estimation and Segmentation

The robust estimation algorithm based on nonlinear
mean shift was proposed in [21, 22] and its properties are
discussed in [20]. A similar procedure can also be used for
motion segmentation.

The input consists of a set of point matches. The algo-
rithm proceeds in two stages. In the first stage, the matches
are randomly sampled to generate elemental subsets. An el-
emental subset consists of the minimum number of points
required to specify a hypotheses. For essential matrices, an
elemental subset consists of five point matches and the al-
gorithm of [16] is used to generate the hypotheses. Each
elemental subset generates multiple (up to 11) solutions for
the essential matrix. These solutions correspond to different
essential matrices and should not be confused with the four-
fold ambiguity of the camera geometries corresponding to
a single essential matrix. The hypothesis generation can be
improved by a validation step which reduces computation
in the second stage [22]. In the second stage, the parameter
estimates are clustered using nonlinear mean shift. In the
presence of multiple motions mean shift will find multiple
modes and the number of dominant modes should be the
number of motions [21]. The position of the mode is the es-
sential matrix being estimated. Given the essential matrix,
the inliers can be obtained as discussed in [21]. Briefly, the
residual errors are computed for all the points and the first
minima on either side of zero are found. Points with error
lying in this window are declared inliers and the rest of the
points are outliers.

5. Experimental Results

The behavior of the algorithm varies with the bandwidth.
For each experiment, we chose the value based on the scene
and the level of noise. All experiments were conducted on
a Pentium D (2.79 GHz). Running mean shift for for 1000
points typically takes about 10s.

5.1. Synthetic Data

We tested our procedure on synthetic data under the same
conditions as in [16]. In [16] the performance under noise
of the 5-point hypothesis generation method was compared
to other minimal case algorithms. The default synthetic data
consisted of a scene with depth of 0.5 at a distance of 1 unit
from the first camera. The baseline between the two cam-
eras was taken to be 0.1 units. This data set reflects chal-
lenging, realistic conditions. Image noise of increasing lev-

Figure 4. Corridor Images. The true essential matrix was the most
dominant mode. See text for further details.

els was added to the correspondences and the performance
of RANSAC was compared to mean shift. The estimated es-
sential matrices are used to get the rotation and translation.
Since the translation direction is much more sensitive than
the rotation estimates, the error is the deviation of the esti-
mated direction of translation from the true direction [16].

The basic scene setup for the synthetic experiments is
shown in Figure 3. We show results under varying direc-
tions and different levels of noise. The noise was added to
the normalized image coordinates. All normalized coordi-
nates lie between −0.5 and 0.5 and a noise level of 0.01
corresponds to a standard deviation of about 5 pixels in a
640 × 480 image. The middle figure compares RANSAC
and mean shift when the baseline is perpendicular to the
viewing direction. As the noise levels increase averaging
the hypothesis offers a clear advantage over choosing the
best hypothesis. The right figure compares the results when
the baseline is parallel to the viewing direction. In this case,
both errors do not increase beyond a certain level due to the
geometry, but mean shift clearly does better than RANSAC.

5.2. Robust Estimation: Corridor Images

We used the first and last images of the Corridor se-
quence from Oxford to test the robust estimation algorithm.



Using SIFT [13] we obtain 130 matches of which 87 were
inliers. We sampled elemental subsets and generated 500
essential matrix hypotheses using [16]. Mean shift was run
with a bandwidth of 0.1. The dominant mode has a support
(kernel density at the point) of 0.36, which is two orders of
magnitude above the next mode with a support of 0.005. All
87 inliers were correctly identified and one outlier was mis-
classified as an inlier. This happened because the mismatch
satisfied the essential constraint. The results are shown in
Figure 4. The two frames are shown with the inliers marked
as stars. The misclassified outlier is shown as a circle and
the epipoles as diamonds. In the first image, the epipolar
line of the mismatch passes through the top right corner of
the letter ”F” on the floor. This point is matched with the top
right corner of the ”F” in the second frame and the epipo-
lar constraint is satisfied. Comparing the returned essential
matrix with the ground truth, we found the estimate to be
accurate. Comparing RANSAC to ground truth we find that
mean shift does much better.

5.3. Robust Estimation: Parking lot Images

Another example of robust estimation is shown in Fig-
ure 5. The camera was calibrated offline and points were
matched across the images and the essential matrix was es-
timated. Of the 126 point matches, 64 were inliers. There
was no ground truth available, so the essential matrix com-
puted using only the inliers was taken as ground truth. The
robust estimate returned by the mean shift with bandwidth
0.001, was very close to the true essential matrix. All the
inliers were correctly identified and 7 outliers were mis-
classified as inliers. Again, this is because the mismatches
were such that they satisfied the essential constraint. The
returned point matches are shown in Figure 5. The true in-
liers are shown as stars, the misclassified outliers are drawn
as circles and the epipoles as diamonds. Consider, the top
most circle in the top image. It is matched to the left most
point on the bottom image. We can see that the epipolar line
in the bottom image passes through the top right corner of
the building, which is where the correct match should be.
Therefore, though the points are mismatched, the essential
constraint is satisfied and the match is declared an inlier.
Like before, mean shift does better than RANSAC.

5.4. Motion Segmentation: Lab Images

The two images used for motion segmentation are shown
in Figure 6. The toy cars move together and have the same
essential matrix, while the book has a different essential ma-
trix. Using SIFT, and removing points in the background as
having zero displacement, we get 100 point matches with
39 on the book and 42 on the cars. A 1000 hypotheses
were generated and clustered with a bandwidth of 0.001.
The clustering returns two dominant modes. The inliers for

Figure 5. Parking lot Images. The scene contains 126 matches
with 64 inliers. All inliers were correctly detected and 7 outliers
were misclassified as inliers as they satisfy the essential constraint.

each were found like in the previous examples. If a point
was declared an inlier for both motions, it was assigned to
the motion which gave a lower absolute error. The points
are shown in Figure 6.

The results are tabulated below the figure. The first mode
is due to the cars and the second mode is due to the book.
The table on the left indicates the number of points which
converge to each mode and the kernel density at the mode.
The third mode has far fewer hypotheses converging to it,
when compared to the first two modes. The table on the
right shows the inlier-outlier classification. The first row
indicates that of the 39 inliers on the cars, 36 have been
correctly classified, one has been assigned to the book and
two have been declared outliers. Similarly, the second row
is about the book and the third row represents the outliers.

6. Conclusion

We propose a new parametrization of the essential man-
ifold based on the algebraic properties of normalized es-
sential matrices. We show that the essential manifold is a
Riemannian manifold and also a homogeneous space. This
allows us to define geometrically meaningful distances be-



mot.hyp. kde

M1 459 0.0215
M2 409 0.0051
M3 92 0.0026

M1 M2 Out

M1 36 1 2
M2 3 38 2
Out 0 3 15

Figure 6. Motion Segmentation. In the left figure all the points are plotted, and on the right figure only the returned inliers for the two
motions are shown. The table on the left contains the properties of the first three modes. Only the first two modes correspond to motions.
The table on the right compares the results with the ground truth.

tween essential matrices. Previous methods suffer from
the disadvantage that each essential matrix corresponds to
multiple points on the manifold. Choosing consistent local
neighborhoods requires image correspondence information
which is a problem in the presence of mismatches. For our
method, each essential matrix corresponds to a unique point
on the manifold and we can choose consistent local neigh-
borhoods without using image correspondence information.
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