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Abstract

Stereo correspondence research often involves the com-
parison of techniques to determine which are better under
different circumstances. The methods of comparison em-
ployed often take the form of applying the techniques to a
few stereo image pairs with the technique with the lowest
error rate declared superior. However, the majority of these
comparisons do not contain any discussion of statistical sig-
nificance; making the declared superiority of a technique
statistically unreliable. In this paper we present a new eval-
uation method called cluster ranking that yields a statisti-
cally significant comparison of the stereo techniques being
compared. Cluster ranking leverages statistical inference
techniques to first rank the performance of stereo techniques
on a single stereo image pair and then combine the rankings
from multiple stereo pairs into an over-all ranking; in both
of these rankings, only stereo techniques that are statisti-
cally different are given different ranks. We demonstrate our
framework with a comparison of constructable match cost
measures (those that can be assembled from a base set of
components) on a data set consisting of 30 synthetic stereo
pairs, with varying amounts of noise, and 18 scenes from
the 2005 and 2006 Middlebury data sets. Our analysis re-
veals match cost measures, and measure components, that
are statistically superior to all other measures depending
on amount of noise, illumination, or exposure time.

1. Introduction
Throughout the history of stereo correspondence re-

search there has been one prevailing method for evaluating
stereo techniques. Specifically, the techniques to be com-
pared are employed to generate disparity maps on an, often
small, set of stereo pairs; with usually only one disparity
map generated per stereo pair. These disparity maps are
then compared against ground truth disparity maps to arrive

at an error rate for each technique on each stereo image;
error rates are compared, and the technique with lower er-
ror rates is declared superior. However, there is rarely, if
ever, any attempt to gauge the statistical significance of the
comparison; resulting in techniques that may not generate
statistically different results being declared different, and,
even worse, techniques are declared superior when there is
no statistical justification for such declaration.

The most popular, and arguably the de facto standard,
method for evaluating stereo correspondence algorithms is
to use the Middlebury online evaluation [10] supplied by
Scharstein and Szeliski. To use this tool, a researcher sub-
mits a single disparity map calculated for each of four dif-
ferent stereo pairs. For each stereo pair the tool will then
calculate the percentage of pixels, in the submitted dispar-
ity map, that differ from the ground truth by more than a
threshold in three different evaluation regions. An over-all
ranking is obtained from the average of all 12 ranks for each
algorithm. Since its introduction as a standardized test set,
the Middlebury online evaluation has helped foster stereo
correspondence research by greatly simplifying the process
of comparing a new technique to existing techniques.

A problem with this online ranking method, that is ad-
dressed by our proposed cluster ranking method, is that us-
ing only one disparity map per stereo pair does not allow
one to determine whether there are two or more algorithms
that produce statistically similar results on the stereo pair.
Furthermore, the over-all ranking provided by the Middle-
bury online evaluation does not identify which, if any, algo-
rithms have statistically similar performance over-all.

Our proposed cluster ranking evaluation method uses
statistical significance tests combined with a greedy cluster-
ing algorithm to rank stereo algorithms such that only those
that produce statistically dissimilar results, according to the
statistical test employed, are assigned different ranks. When
ranking algorithms by their results from a single stereo im-
age pair, we use the error rates from both images combined
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with an analysis of variance test (ANOVA) [11] to iden-
tify the algorithms that produce statistically similar results.
When combining the rankings of algorithms from many dif-
ferent stereo pairs into a single over-all ranking, the Fried-
man test [11] is used instead of ANOVA.

We apply our cluster ranking method to the problem
of comparing constructable match cost measures for stereo
correspondence. A constructable match cost measure is one
that can be assembled from a base set of components: a
channel function (CF), channel norm function (CNF), chan-
nel aggregate (CA) in the case of measures for colour im-
ages, and an optional spatial aggregate. In this paper, 360
different measures from this class are compared. Their per-
formance is evaluated using a stereo test set consisting of:
30 noise-free synthetic scenes, generated by a global illu-
mination ray tracing method, with two differing amounts
of noise added (resulting in 90 synthetic scenes in total);
and 18 scenes from the Middlebury data set [6] (six from
the 2005 data set, and 12 from the 2006 data set) that are
captured with three different amounts of illumination, and
with three different exposure times. Using our new cluster
ranking evaluation method on the results allows us to iden-
tify which match cost measures, and match cost measure
components, outperform others over-all and under differing
levels of noise, illumination, and exposure time.

2. Significance Testing
Given k ≥ 2 items the goal of a statistical significance

test is to determine the probability, p, that the k items are the
same. Furthermore, given a confidence level, C ∈ (0, 1],
we can say that the k items are similar with confidence C
if p ≥ C; conversely, if we are interested in whether the
items are different, we can say that the items differ with
confidence C if p ≤ (1− C).

We use two different significance tests in our proposed
cluster ranking algorithm: one-way ANOVA, and the Fried-
man test. Which one we use depends on what data we are
using to perform the ranking.

ANOVA [11] is the main method employed by the med-
ical community in their clinical trials to determine whether
or not a given treatment has any effect. Given k ≥ 2 groups
of normally distributed sample data, a one-way ANOVA
gives the probability that the true values of the k group
means are equal; that is, it gives the probability that the
methods that produced the k groups of data are similar.

In the case of comparing stereo correspondence tech-
niques, we expect that the error rates in an evaluation re-
gion, for a single technique, between the left and right im-
ages of a stereo pair will be very similar, and, thus, will
follow a normal distribution sufficiently to use ANOVA to
compare them. It is important to note that, in general, we
cannot combine the error rates from different stereo image
pairs, or from different evaluation regions, as this would vi-

olate the requirement that the sample data be normally dis-
tributed; as evidenced in the Middlebury [10] evaluation, er-
ror rates from different stereo scenes and evaluation regions
can differ by extremely large margins.

When comparing stereo algorithms using rankings ob-
tained from many different stereo pairs we cannot use an
ANOVA test to determine whether or not the algorithms
are similar; ranking information does not generally follow
a normal distribution. In this case, we use the Friedman
test [11]. Given k “tests”, the result of which can be quan-
tified with an ordinal value, and N “subjects” who each
perform all k tests, the Friedman test gives the probability
that all k tests represent populations with the same median
value. For our purposes, a “test” is a stereo algorithm being
compared and a “subject” is one of the stereo image pairs
being used for comparison.

3. Cluster Ranking

The central component of our proposed evaluation
method is a novel ranking technique that we call cluster
ranking. This ranking algorithm gives us a ranking of stereo
algorithms such that statistically similar techniques are eas-
ily identified by being assigned the same rank.

Given k stereo algorithms to rank, our cluster ranking
algorithm is as follows:

1: C ← desired confidence level (e.g. 95%)
2: L← list of techniques sorted by some criteria
3: Assign each technique a rank equal to its position in L
4: Perform a greedy partitioning of L such that all tech-

niques in the same partition are not statistically dissim-
ilar at confidence C

5: Reassign each technique a rank equal to the average of
the ranks in its partition

The sorting criteria on line 2 and the significance test
on line 4 that are used depends on what information we are
calculating a ranking from; the precise contents of these two
lines are discussed in sections 3.1 and 3.2.

The greedy partitioning algorithm that we have imple-
mented creates the first partition starting at the first element
of L. We then add consecutive elements of L to this par-
tition as long as there is no statistical difference, at con-
fidence level C, between the techniques in the partition.
When adding a technique would break this requirement, we
start a new partition starting at the technique.

On line 5, rather than assigning a rank to all techniques
in a partition that is equal to the rank-order of that partition
in L, we assign a rank to all techniques in the partition that
is the average of the ranks assigned to the techniques on
line 3. This method of assigning ranks is used extensively
in non-parametric tests of significance in the presence of
ties [11]; we use it so that rankings obtained by our method
can be used in later non-parametric significance tests.



3.1. Ranking From Error Rates

When we are given at least two error rates of the results
on a stereo image pair from each stereo technique, we can
use one-way ANOVA to determine whether or not the re-
sults are statistically similar; note that the error rates must
also be from the same evaluation region. Thus, in this case,
the test performed on line 4 of the cluster ranking algorithm
is the one-way ANOVA test.

Furthermore, since the one-way ANOVA test determines
similarity by comparing group means, the sort on line 2 of
the cluster ranking algorithm sorts the stereo techniques by
increasing order of their mean error rate on the stereo pair.

3.2. Ranking From Rankings

To create partitions the stereo techniques are sorted, on
line 2 of the cluster ranking algorithm, in increasing order of
their median rank over all the stereo pairs with ties broken
in increasing order of their mean rank; this is done because
even though two stereo techniques may have the same me-
dian rank, they may not be statistically similar at the desired
confidence level – so, the mean rank is used as an indicator
of which stereo technique is better in these cases.

When combining the ranking results from many stereo
image pairs into a single over-all ranking we cannot assume
that the rankings for a stereo technique are normally dis-
tributed. Thus, we cannot use a one-way ANOVA to de-
termine whether or not techniques are statistically similar.
We can, however, use the Friedman test in this case. So,
when calculating an over-all ranking from many rankings
the similarity test on line 4 of the cluster ranking algorithm
is performed using the Friedman test.

4. Constructable Match Cost Measures

Many of the match cost measures in use today can be
constructed from a set of up to four basic components: a
channel function (CF), channel norm function (CNF), chan-
nel aggregate (CA) in the case of colour images, and an op-
tional spatial aggregate. This construction method is easy
to implement and allows us to determine the relative perfor-
mance of individual components.

The CF and CNF together define a gray scale match cost
measure that can be applied to each colour channel of colour
images and then combined into a colour match cost measure
using a CA. These first components can be used to gener-
ate a disparity space image (DSI) for each image in a stereo
pair. Once the DSI for each stereo image has been calcu-
lated, a spatial aggregate can be applied to each DSI to ob-
tain a match cost for each pixel that takes a spatial neigh-
bourhood of the pixel into account.

4.1. Channel Function

The CF is a function that is applied to a single colour
channel of a pair of pixels to yield a non-negative measure
of the difference between them. For our study, we have
identified two CFs in common use; these functions can be
found in table 1.

Function Name Abbr. Function
Difference D g(c1, c2) = |c1 − c2|

Birchfield & Tomasi B See [1]

Table 1: Channel functions.

Strictly speaking, the Birchfield & Tomasi measure [1]
is presented as a gray scale match cost measure that should
be re-derived for use on colour images. However, it is com-
mon practice [9] in the stereo correspondence community
to use the gray scale derivation of this measure on each
colour channel and then aggregate the three results into a
single match cost measure. Since this is the common prac-
tice, we use the gray scale derivation of the Birchfield &
Tomasi measure as a CF in our study.

4.2. Channel Norm Function

The CNF is applied to the results of the CF to alter the
response of the match measure to differences in gray scale
intensity. For this study, we have identified four different
CNFs that have been used by the stereo correspondence re-
search community (see table 2). We also use the truncated
versions of the CNFs listed in this table in our study.

Function Name Abbr. Function
L1 Norm A f(x) = |x|
L2 Norm S f(x) = x2

Generalized Gσ,s fσ,s(x) = |x/σ|sGaussian
Lorentzian Lσ fσ(x) = ln(1 + 1

2 ( x
σ )2)

Table 2: Channel norm functions.

4.3. Channel Aggregate

When using colour images (for example, BGR images)
the results of the CNF for each channel must be combined
into a single value representing the quality of a match; this
is done via a CA. For this study we have experimented with
the five CAs found in table 3, as well as truncated versions
of the sum, weighted sum, and sum minus max aggregates;
truncated versions of the median and max aggregates are re-
dundant given that we apply truncation to the channel norm
functions. Truncation of a CA is considered [12] to make a
match cost measure robust to noise and outliers.



Aggregate Name Abbreviation Aggregate
Sum S cS(p, q) =

∑
c∈{b,g,r} f(xc)

Weighted Sum Swwb,wg,wr cSw(p, q) =
∑

c∈{b,g,r} wcf(xc)
Median Me cMe(p, q) = median{f(xc) : c ∈ {b, g, r}}

Max Mx cMx(p, q) = max{f(xc) : c ∈ {b, g, r}}
Sum Minus Max Sx cSx(p, q) = cS(p, q)− cMx(p, q)

Table 3: Channel aggregates between pixels p and q. f() denotes a channel norm function, and xc result of a channel function.

We have observed the sum, weighted sum, and max CAs
utilized by researchers in various match cost measures. At
the start of our study we thought that the median and sum
minus max CAs may be more robust to noise than either
the sum or max aggregates, by virtue of them excluding the
channel with the largest match penalty from the calculation
of the aggregate, and thus included them in our study; our
results show this thinking to be false in practice.

4.4. Spatial Aggregate

Once the DSIs for a stereo image pair have been calcu-
lated, a spatial aggregate can be applied to the DSIs to ob-
tain a match cost for each pixel that takes the spatial neigh-
bourhood of the pixel into account. Options for a spatial ag-
gregate range from applying a simple (2n + 1)× (2m + 1)
mean, median, or summation filter centered on each pixel,
to the similarity-based adaptive neighbourhood presented
by Patricio et al. [7], or Yoon and Kweon’s [13] adaptive-
weights aggregate.

Spatial aggregates are not a part of this study, due to the
processing requirements of including them, but, their inclu-
sion is a goal for our future work.

4.5. Putting it all Together

To make describing each constructable match cost mea-
sure less cumbersome we have defined an abbreviation for
each value of each component, and derive an abbreviation
for a measure by listing the abbreviations for its compo-
nents in the order: spatial aggregate (when present), CA,
CNF, then CF. If a component’s results are being truncated
we postfix the abbreviation for the component with the trun-
cation value. For example, the abbreviation for the measure
that uses a sum minus max CA, L2 norm CNF, and Birch-
field & Tomasi CF is SxSB. The same measure with its CNF
truncated by τ is SxS(τ)B.

5. Stereo Image Test Set
For our study of constructable match cost measures we

have assembled a stereo image test suite consisting of 252
stereo image pairs from 48 different scenes; 90 synthetic
stereo image pairs that we created, and 162 non-synthetic
stereo image pairs from the Middlebury data set.

We created a set of 30 noise-free stereo image pairs using
the PBRT [8] ray tracer so that we had a clean data set that
could be used to test the effects of noise. Disparity maps
were generated for each of these ray traced images from
the output of an in-house developed plugin that generates
a floating point depth map for each ray traced image. All
images were generated with a path tracing algorithm con-
figured to virtually eliminate noise.

The 30 synthetic scenes were rendered from three geo-
metric configurations with ten random texture assignments
on each configuration; an example of each of the geometric
configurations used can be seen in figure 1. Our synthetic
scenes were created in this manner so there would be high
variability of what colours appear on either side of depth
discontinuities in each geometric configuration.

For each of these 30 scenes we rendered a single stereo
image pair with camera positions set so that the resulting
images would be perfectly rectified at a baseline separation
of 30 pixels. For each geometry, the camera positions used
to render images from the ten scenes using the geometry
were identical.

To simulate the Gaussian noise characteristics [5] of a
real digital camera we used a Sony DCR-TRV230 NTSC
video camcorder to capture 1022 images of a static scene
under constant lighting. We then averaged all of these im-
ages to arrive at an estimate of the ground truth, and com-
pared all 1022 images to it to determine the mean and vari-
ance of the noise for each intensity in each channel.
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Figure 2: Gray scale intensity on each colour channel vs
noise variance for the Sony DCR-TRV230 NTSC video
camcorder.



(a) Geometry 1 (b) Geometry 2 (c) Geometry 3

Figure 1: Synthetic images from the three different geometries used in the synthetic portion of our test set.

The calculated variance curves (see figure 2) were then
used to introduce synthetic zero mean Gaussian noise to our
noise-free images in two levels. The first level (noise level
1) used the noise variance of the Sony camera, and the sec-
ond (noise level 2) used four times the variance of the Sony
camera. The result is 90 synthetic image pairs at three dif-
ferent noise levels.

To determine whether the amount of illumination or
exposure-time used has any effect on the accuracy of
the match cost measures in our study we used 18 of
the 1

3 -sized scenes from the Middlebury 2005 and 2006
data sets. Specifically we used: Aloe, Art, Baby2,
Baby3, Books, Bowling2, Dolls, Flowerpots, Lampshade2,
Laundry, Midd1, Moebius, Monopoly, Plastic, Reindeer,
Rocks1, and Wood1. For each scene in this data set there are
nine stereo pairs taken under a combination of three differ-
ent illumination levels and three different exposure levels;
resulting in nine stereo pairs per scene, or 252 stereo pairs
in total. Ground truth disparity maps are available for all of
these stereo image pairs.

From the ground truth disparity maps, we automatically
generated pixel masks for the evaluation regions: all (all
pixels except a small border on the left, for the left image,
or right, for the right image), occluded (all pixels that do not
adhere to the weak consistency constraint [4] in a left-right
consistency check), discontinuous (all occluded pixels plus
all pixels within 10 pixels of either an occluded pixel or a
disparity discontinuity greater than 1

2 a disparity level), and
non-occluded (all pixels in the all mask that are not in the
occluded mask).

6. Hierarchical Belief Propagation

During the course of this study, the stereo correspon-
dence algorithm we chose was run around 11.76 million
times. Thus, we required an algorithm that was both very

fast, in a CPU-only (non-GPU) implementation, and pro-
duces reasonably decent results. We decided to use a global
stereo algorithm for our testing because most of the top
performing algorithms use a global formulation. However,
we did not consider segmentation-based algorithms because
the choice of segmentation parameters adds another level
of complexity to our evaluation that we did not have the
computing resources to address. This restriction combined
with the speed requirement removed many of the top rated
algorithms from consideration. We chose a modification
of Felzenszwalb and Huttenlocher’s [3] hierarchical belief
propagation algorithm that maximizes the posterior proba-
bility:

ρ(f |I) ∝
∏
p∈P

ρp(f(p))
∏

{p,q}∈N

ρp,q(f(p), f(q)). (1)

where f is the calculated disparity map, I is the set of input
images, P is the set of pixels in the reference image, and N
denotes the set of 4-connected pixels in P. ρp(δ) is the data
cost:

ρp(δ) = e−c(p,δ) (2)

where c(p, δ) denotes the match cost of pixel p at disparity
level δ, and ρp,q(δ1, δ2) is the smoothing term, for which
we use the truncated linear model with parameters s and d:

ρp,q(δ1, δ2) = e−min{s|δ1−δ2|,d}. (3)

Note that the algorithm presented by Felzenszwalb and
Huttenlocher minimizes the negative log of this posterior
probability while we modified the algorithm to maximize
the posterior probability. Our implementation was also op-
timized using SIMD instructions where we could, and used
floating point throughout to remove errors introduced by
rounding to integer values; images are represented as float-
ing point with each intensity value in the range [0, 1].



7. Experimental Setup
In this study we compare the accuracy of disparity maps

generated by the hierarchical belief propagation algorithm
using 360 different constructable match cost measures, on
all 252 image pairs in our data set (504 disparity maps in
total). Our match cost measures are constructed using all of
the components listed in tables 1, 2, and 3. Since the Gen-
eralized Gaussian and Lorentzian CNFs are parametrized,
we conducted some preliminary testing to find some de-
cent parameters for these two CNFs to use in our study;
for the Generalized Gaussian we used values of (σ, s) ∈
{(0.5, 1.5), (1, 1.5), (1.5, 1.5)}, and for the Lorentzian we
used values of σ ∈ {0.5, 1, 1.5, 2}. Furthermore, we in-
cluded measures with and without truncation values on their
CNF and CA subject to the restrictions in section 4.3.

For each of these 360 match cost measures there are up to
two different truncation values, τ1 (for the CA) and τ2 (for
the CNF), that must be used. Ideally, we would optimize on
these values; however, given the size of this study and the
sizable computation resources such an optimization would
require this was not a route we could take. Instead, we de-
cided to use all combinations of the truncation values τ1 ∈
{ k

255 : k = 6, 8, 10} and τ2 ∈ { k
255 : k = 2, 4, 6, 8, 10} for

each match cost measure. For the measures that use trun-
cation values, we ran the measure with all of the truncation
values and chose the disparity map for a stereo image that
minimized the percentage of pixels that differed from the
ground truth by more than one disparity level in the non-
occluded evaluation region. The non-occluded evaluation
region was chosen because the disparity values for occluded
pixels will be highly influenced by the smoothing term due
to lack of a pixel correspondence. Counting different trun-
cation values, we have a total of 1944 different instances
of match cost measures that we use to calculate disparity
maps.

Furthermore, we observed early on in our study that no
single parameter setting for the parameters in the smoothing
term, ρp,q, work well for every match cost measure or even
every stereo image pair. In fact, it seems as though for every
match cost measure that a set of parameters works very well
for on a stereo image pair there is at least one other match
measure that they work very poorly for on the same stereo
image pair. Again, ideally we would optimize on these pa-
rameters. However, optimizing on each of 252 stereo image
pairs for each of the 1944 match cost measures is compu-
tationally intractable given our resources. So, instead we
chose 12 different parameter settings for these smoothing
parameters that preliminary testing indicated would be ac-
ceptable (see table 4). Of the 12 disparity maps calculated
for a match cost measure on a single stereo image, we chose
the disparity map in the same manner as when choosing
between disparity maps resulting from different truncation
values.

(s, d) (s, d) (s, d) (s, d)
( 3
255 , 20

255 ) ( 5
255 , 20

255 ) ( 7
255 , 20

255 ) ( 9
255 , 20

255 )
( 1
255 , 10

255 ) ( 2
255 , 10

255 ) ( 3
255 , 10

255 ) ( 4
255 , 10

255 )
( 1
255 , 5

255 ) ( 2
255 , 5

255 ) ( 1
255 , 3

255 ) ( 1
255 , 2

255 )

Table 4: Parameter settings used for the truncated linear
smoothing term.

In all, our study required calculating 1944× 12× 252×
2 = 11, 757, 312 disparity maps; taking approximately 4.8
compute-years on a single 3.0GHz Xeon processor. We
used a shared Beowulf cluster, containing 1680 3.0GHz
Xeon processors, to complete this computation in approx-
imately 10 weeks.

8. Discussion of Results

To analyze our results, we applied our cluster ranking
evaluation method with a confidence level of 95%. The
amount of analysis that we performed is too voluminous
to fully discuss in this short format, so we focus on some
of the over-all ranking results here. Since there is so much
data available from our study (disparity maps, tables and
graphs of measure rankings, etc) we designed an interactive
web site to make navigating this data easier; it is available
at http://www-user.cs.ualberta.ca/stereo.

8.1. Match Cost Measure Analysis

To analyze the relative performance of the 360 match
cost measures in our study we employed our new cluster
ranking evaluation method in two stages. First, we used
cluster ranking from error rates to calculate a ranking of the
360 measures for each of the 252 stereo pairs in our data
set. Then, using these rankings, we used cluster ranking
from ranks to calculate over-all rankings of the match cost
measures; over-all rankings were calculated for each noise
level (by only including the stereo pairs at the noise level),
each illumination level, each exposure level, over all syn-
thetic images, over all real (Middlebury) images, and over
the entire test set.

Measure Rank Median Mean
SG0.5,1.5(τ2)D 1.5 30.5 46.93

Sw0.33,0.33,0.33AD 1.5 31.5 39.10
MxG0.5,1.5D 4.5 33.5 41.71

MxAD 4.5 32.0 40.26
SG0.5,1.5D 4.5 32.5 42.74
SG1,1.5D 4.5 32.5 41.03

Table 5: Top six, of 360, match cost measures over the en-
tire test set. Shown: Over-all rank, median and mean rank
over all 252 stereo pairs.



Table 5 shows the top six match cost measures from the
ranking obtained by aggregating the rankings from the en-
tire test set using cluster ranking. There are a few interesting
things to note even from this small snapshot of the over-all
rank table.

First, none of the top six match cost measures use the
Birchfield & Tomasi CF; in fact, the best ranking match cost
measure that uses a Birchfield & Tomasi CF is the SA(τ2)B
measure at rank 51. Furthermore, although the MxAD
measure ranks 4.5 over-all its Birchfield & Tomasi equiv-
alent (MxAB) ranks 51st with a median rank of 57. As
our measure component analysis shows (see table 6), this
trend occurs more often than not. This suggests that using
the gray scale Birchfield & Tomasi measure as a component
for a colour match cost measure is typically inferior to using
the simpler difference CF.

Also of interest is that four of the top six (15 of the top
20, 22 of the top 30, and 30 of the top 42) match cost mea-
sures use the Generalized Gaussian CNF, with and with-
out truncation, with varying parameter choices; the remain-
der of the top 42 all use the L1 norm CNF. In fact, the
Lorentzian CNF, the only CNF not based on a Generalized
Gaussian, does not appear in a match cost measure until
SL0.5D at rank 51 with median rank 59.5.

8.2. Match Cost Measure Component Analysis

Channel Function Rank Median Mean
Difference 1 1 1.01

Birchfield & Tomasi 2 2 1.99

Table 6: Over-all ranking of channel functions.

We also leveraged the constructive nature of the match
cost measures in our study to analyze the typical perfor-
mance of each of the match cost measure components used
in our study. We performed this analysis using our cluster
ranking from ranks method. For each component type (CF,
CNF, or CA) cluster ranking was first applied to obtain a
ranking of the component’s functions on each of the 252
stereo pairs in our data set. We then used cluster ranking to
obtain over-all rankings in each of the same categories as in
our analysis of match cost measures.

Table 7 shows the top ten CNFs used in our study. There
are a few interesting items of note that jump out when look-
ing at this table. First, all of the CNFs are statistically dis-
similar at 95% confidence (all rank values are unique). Sec-
ond, eight of the top ten CNFs are based on the Generalized
Gaussian. This suggests that a stereo algorithm that uses a
Generalized Gaussian based match cost measure, and op-
timizes on the Generalized Gaussian parameters, would be
worth further investigation; this has been done with some
success by Cheng and Caelli [2]. Finally, with one excep-

Channel Norm Function Rank Median Mean
A 1 2.5 2.92

A(τ) 2 2.5 3.35
G0.5,1.5(τ) 3 3.0 3.29
G0.5,1.5 4 3.5 3.31

G1,1.5(τ) 5 5.5 5.12
G1,1.5 6 5.5 5.42

G1.5,1.5(τ) 7 7.5 7.16
G1.5,1.5 8 7.5 7.49
L0.5(τ) 9 9.5 8.84
L0.5 10 9.5 9.15

Table 7: Top 10, of 18, over-all channel norm functions.

tion, the truncated version of a CNF is always superior to
the non-truncated version of the same.

Channel Aggregate Rank Median Mean
S 1 1.5 1.33

S(τ) 2 1.5 1.87
Mx 3 3.0 2.80

Sw0.4,0.59,0.11(τ) 4.5 5 5.17
Sw0.4,0.59,0.11 4.5 5.0 5.27

Sw0.33,0.33,0.33(τ) 7 7.0 6.75
Sw0.33,0.33,0.33 7 7.0 7.03

Sx 7 7.5 7.40
Sx(τ) 9 7.5 7.48
Me 10 10.0 9.90

Table 8: Channel aggregate rankings on images with noise
characteristics similar to the Sony DCR-TRV230 NTSC
video camcorder.

In table 8 we present the over-all rankings of channel
aggregates over the synthetic images with noise variance
equal to that of the Sony DCR-TRV230 NTSC video cam-
corder. These results show that the practice of truncating
a CA to yield a colour match cost measure that is thought
to be robust to noise typically produces a colour match cost
measure that is worse, or is not statistically significantly dif-
ferent, than its non-truncated counterpart on noisy images.
As an aside, note that simply using the mean rank of these
CAs as an indicator of performance would yield the erro-
neous conclusion that truncating sometimes yields a better
measure even though there is no statistically significant ev-
idence for such a conclusion.

One must be cautious when combining the results of the
over-all rankings from this study. From these results, one
might expect the commonly used SAD measure to be typi-
cally the best performer even though it is not; this measure
does rank highly, over-all, with a rank of 7.5 but is not the
top performer.



9. Conclusion and Future Work

In this paper we present a novel evaluation method for
comparing stereo correspondence techniques that allows
one to easily determine whether results are statistically sig-
nificant. We also present the class of constructable match
cost measures and use our evaluation method to compare
360 different match cost measures from this class. This
comparison is performed using a hierarchical belief propa-
gation algorithm and a test data set consisting of 252 stereo
image pairs. For our stereo data set, we develop 90 syn-
thetic stereo image pairs with varying amounts of noise that
closely approximates the noise characteristics of a real dig-
ital camera.

We present some of the results of this study in this paper
and have made the full analysis, with most of the raw data,
available on an interactive website. Through this website
we also make available our synthetic data set, and most of
the program code used in our study. Furthermore, for fur-
ther analysis, all data generated during our study are avail-
able upon request; that is, all 11+ million disparity maps
(at 1

2 scale), percent-error rates at five different threshold
values, and RMS error rates.

In the past, the choice of match cost measure used in a
stereo algorithm has been made with little, if any, justifica-
tion; instead, researchers typically choose “tried and true”
match cost measures (SSD, SAD, Birchfield & Tomasi,
etc) with little apparent justification about its impact, if any,
on their proposed algorithms. The results of this study show
that the choice of match cost measure used in an algorithm
can have a large impact on the accuracy of the disparity
maps generated by the algorithm.

In analyzing the results of our study we have observed
that the practice of creating a colour match cost measure
by aggregating the gray scale Birchfield & Tomasi measure
typically produces worse results than using a simple differ-
ence operator in its place. Furthermore, we have observed
that the common practice of truncating a match cost mea-
sure to produce one robust to noise does not typically per-
form better than its non-truncated counterpart in the pres-
ence of noise.

In the immediate future, we plan to apply our evaluation
method to reevaluate different stereo algorithms, from the
simplest winner-take-all to more sophisticated global op-
timization algorithms such as dynamic programming and
graph-cuts based algorithms. Additionally, we will investi-
gate the impact of many of the commonly used, but seldom
discussed, pre- and post-processing methods to the perfor-
mance of stereo algorithms. We also plan to extend our
analysis of match cost measures to include measures that
incorporate spatial aggregation.
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