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Abstract

In this paper we present a novel 3D surface and image
reconstruction method based on the off-axis aperture cam-
era. The key idea is to change the size or the 3-D location
of the aperture of the camera lens so as to extract selected
portions of the light field of the scene. We show that this
results in an imaging device that blends defocus and stereo
information, and present an image formation model that si-
multaneously captures both phenomena. As this model in-
volves a non trivial deformation of the scene space, we also
introduce the concept of scene space rectification and how
this helps the reconstruction problem. Finally, we formulate
our shape and image reconstruction problem as an energy
minimization, and use a gradient flow algorithm to find the
solution. Results on both real and synthetic data are shown.

1. Introduction

Reconstructing the 3-D geometry of a scene is one of the
fundamental problems in Computer Vision and it has been
studied for the past two decades [2]. This problem has been
investigated mostly at scales that range between 1 and 100
meters [10]. At smaller scales, however, additional distor-
tions, including out-of-focus blur, become dominant. Thus,
conventional camera models, such as the pinhole model, are
no longer suitable to solve a 3-D reconstruction task. In
these scenarios, imaging models that take into account the
finite aperture of the lens have been developed, as well as
methods to recover both geometry and radiometry of the
scene, such as shape from focus and defocus [1, 3, 4]. It
is important to bear in mind that addressing 3-D recon-
struction at smaller scales is not just a mere scientific ex-
ercise, but a fundamental problem in several applications,
such as 3-D endoscopy and 3-D microscopy [11, 6]. More
importantly, in most of these applications camera motion is
constrained by the surrounding environment, such as in en-

doscopy, and, therefore, even if one wanted to apply stereo
reconstruction methods, it would simply be not possible to
employ a stereo camera or move the camera sideways.

An alternative to stereo that is applicable in constrained
environments is shape from defocus, but the method tends
to be more sensitive to the resolution of the image intensi-
ties. Our work is driven by the advantages of both methods.
We propose to employ the off-axis aperture (OAA) camera,
where several images are captured by moving an aperture
in front of the camera lens as illustrated in Figure 1. By
changing the aperture location we obtain images as if we
were using a camera with a small lens and displaced with
respect to the larger lens. This yields an effect similar to a
stereo system. At the same time, due to the scale at play, de-
focusing effects are also visible. Therefore, in this paper we
propose a novel image formation model that simultaneously
captures both of these effects in one go (see section 2).

In the next section, we will see that defocus not only
smoothes the image intensities, but also warps the projec-
tive geometry in a non-straightforward manner (see sec-
tion 2.1). To facilitate the convergence of our reconstruction
algorithms, we suggest to un-warp both the 3-D space and
the image coordinates (section 3). This allows us to recover
the geometry and the radiometry of the scene, by employing
an efficient gradient flow algorithm (section 4).

1.1. Related Work

Off-axis apertures are not a novelty. In several fields,
such as ophtalmology, astronomy, and microscopy, this
kind of technique has been used to design imaging de-
vices (e.g., the stereo fundus camera [7, 14]). In astron-
omy, for instance, multi hole off-axis apertures have been
widely used in testing optical elements for nearly one hun-
dred years. A mask with two off-axis apertures, also called
Hartmann Mask or Scheiner Disk, has been invented to cor-
rect of quantify defocus by the Jesuit astronomer Christoph
Scheiner (1572-1650). This technique is based on the prin-
ciple that, unless the scene is brought into focus, the two
apertures will generate an effect similar to double vision.
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Figure 1. Geometry of the off-axis aperture camera. The off-axis
aperture camera can be decomposed into three elements: An im-
age plane, a lens, and the moving aperture. Top: Imaging a point
P on a surface with the aperture positioned at the top. Bottom:
Imaging the same point P as above with the aperture positioned
at the bottom. Notice that when the point being imaged is not in
focus, the image is a blurred disc and its center changes with the
lens parameters as well as the aperture.

Off-axis aperture imaging can also be seen as a case of
coded-aperture imaging [15]. In this research area an aper-
ture is designed to solve a certain task, such as allowing for
deblurring from one image or depth estimation [5, 12]. This
work falls also into the category of programmable imaging
methods, and therefore relates to work of Zomet et al. [8].
However, we make use of a lens in our system and there-
fore our image formation model is very different from that
of [8]. Simoncelli and Farid [9] use the aperture to obtain
range estimates from multiple images of the scene. Their
method however is based on several assumptions that we do
not make in this paper: first, the aperture is not constrained
to lie on the lens as in [9]; second, we are not restricted to
apertures (masks) that yield an estimate of the derivative of
the input images with respect to the viewing position; third,
we do not make the local fronto-parallel assumption.

2. Off-Axis Aperture Imaging

In this section we introduce the off-axis aperture camera
and how this device can be used to capture 3D information
about the scene. The main advantage of this camera is that
no lens or image plane movement is required, as well as no

relative motion between camera and object is needed. We
obtain images by changing the position and diameter of the
aperture. While this can be achieved by physically moving
a mask in front of the lens (as we do in our experiments),
one could also place an LCD transparent display and turn
its pixels on or off in space and in time so as to form the
desired attenuation mask, as it has been done in [16].

2.1. Image Formation Model

In Figure 1 we sketch the off-axis aperture camera as
a device composed of an image plane, a thin lens of fo-
cal length F ,1 and a moving aperture with center C =
[C1 C2 C3]T ∈ R3 and diameter A. The distance image
plane to lens is denoted by v. Let P = [P1 P2 P3]T ∈ R3

be a point in space lying on the object; then, the projection
π : R3 7→ R2 of P on the image plane is defined by

π[P] .= −v
P1,2

P3
+

(
1− v

v0

)
C1,2P3 − C3P1,2

P3 − C3
(1)

where v0 = FP3
P3−F . Notice that when the image plane is

at a distance v = v0 or when the aperture is centered with
respect to the lens, i.e., C = [0 0 0]T , then the projection π
coincides exactly with the perspective projection of P in a
pinhole camera. Otherwise, as we move the aperture center
C, the projection π[P] is a shifted perspective projection.
Furthermore, when v 6= v0, the point P generates a blur disc
of diameter B. By computing the projection of P through
the boundary of the off-axis aperture, we find that the blur
diameter B is

B
.= A

∣∣∣∣1− v

v0

∣∣∣∣ P3

P3 − C3
(2)

which is identical to the well-known formula used in shape
from defocus when C3 = 0, i.e., when the aperture lies on
the lens [1, 3]. To ease the reading of the paper we summa-
rize in Table 1 the symbols introduced so far.

Now, if we approximate the blur disc with a Gaussian
(but a Pillbox function would do as well), we can explicitly
write the intensity I measured on the surface of a square
pixel yk,l ∈ Z2 on the image plane, and denoted by �k,l,
as

I(yk,l) =
∫

�k,l

∫
R2

e
− ‖ȳ−γ−1π[P(x)]‖2

2σ2(x)

2πσ2(x)
r(x)dxdȳ (3)

where σ is related to the blur diameter B via σ
.= γ−1κB,

γ is the length of a side of a square pixel and κ is a calibra-
tion parameter.2 r(x) is the radiance emitted from a point

1The thin lens satisfies the following conjugation law 1
v0

+ 1
P3

= 1
F

where v0 is the distance image plane to lens such that the point at depth
P3 is in focus.

2In our experiments κ = 1/6.



Table 1. Symbols used in the camera model and their meaning.

F focal length
C 3-D position of the aperture center
v distance image plane to lens
v0 distance image plane to lens when object is in focus
P 3-D position of a point in space lying on the object
π projection from the 3-D space to the image plane
h point spread function (PSF)
B blur diameter (referring to Pillbox PSF)
σ spread of the blur disc (generic PSF)
A aperture diameter
γ size of the side of a pixel in mm
κ calibration parameter
r object radiance
I measured image

P (x) on the surface. We parametrized the surface of the
object as P : R2 7→ R3. For now we will not make such
parametrization explicit as it will be thoroughly analyzed in
section 3. Rather, we make our representation of the radi-
ance explicit via the coefficients ri,j :

r(x) .=
∑
i,j

ri,jU(x− xi,j) (4)

where U : R2 7→ {0, 1} denotes the indicator function, i.e.,
U(x) is 1 if and only if−0.5 ≤ x1 < 0.5 and−0.5 ≤ x2 <
0.5. The coordinates xi,j belong to a regular lattice with
step 1 in Z2. By substituting eq. (4) in eq. (3), we obtain

I(yk,l) =
∑
i,j

ri,j

∫
�k,l

∫
�i,j

h(x, ȳ)dxdȳ

=
∑
i,j

ri,jHi,j(yk,l)
(5)

where h(x, ȳ) .= 1
2πσ2(x)e

− ‖ȳ−γ−1π[P(x)]‖2

2σ2(x) denotes the
point spread function of the camera, and Hi,j(yk,l) is im-
plicitly defined by the above equation.

3. Space Warping: How to Bend Geometry to
our Advantage

The image formation model in eq. (3) could be immedi-
ately used to reconstruct the 3-D shape of an object in the
scene and its radiance. For instance, one could displace the
center C of the aperture on a plane parallel to the image
plane and apply standard stereo methods. However, when
we only change C3 or the aperture diameter A, the esti-
mation problem becomes more difficult. The main issue
is that the relationship between the input images captured

with these modalities is highly non linear. To counteract
such nonlinearities we suggest to change the representation
of the unknowns so that their projection is as linear as pos-
sible. We call this method warping.

To illustrate the issues created by the original image for-
mation model, we need to make our parametrization of the
surface P(x) explicit. Suppose that P(x) = [xT u(x)]T

where u : R2 7→ [0,∞) is the depth map of the scene.
Then, a small variation δu of the depth map u causes the
projection π to vary of

δπ[P(x)] .= δu(x)π′[P(x)]

= δu(x)
(x− C1,2)(vF + C3F − vC3)

F (u(x)− C3)2
.

(6)
One can observe that the variation δπ[P(x)] in the above
equation depends on the coordinates x. In particular, as
‖x − C1,2‖ grows, also ‖δπ[P(x)]‖ grows. While in prin-
ciple this behavior is acceptable, in practice it is an issue
when using gradient-based techniques; part of the gradient
of the cost functional will depend on δπ[P(x)] and, as a
consequence, the convergence to the solution will be unsta-
ble away from the center of the aperture (see Figure 8).

We suggest a simple method to offset this behavior. The
key idea is to choose a parametrization of the surface of
the object P(x) such that the projection π[P(x)] = αx
for some scalar α 6= 0, and P(x) does not depend on
the varying camera parameters. If such a projection exists,
then the captured images can be easily warped into each
other so that the only difference between them is the rel-
ative amount of defocus. Once the (warped) depth map
u is recovered from the warped images, one has to undo
the warping by using the parametrization P(x) (unwarp-
ing). For instance, in shape from defocus C = [0 0 0]T

and v changes between the input images. Because one has
that δπ[P(x)] = δu(x) vx

u2(x) , which is still dependent on
x, we cannot use the parametrization P(x) = [xT u(x)]T .
Let us define P(x) .= [xT 1]T u(x). Then, the projection
π[P(x)] = −vx and δπ[P(x)] = 0; the input images can
be mapped into each other by warping their image domain
(i.e., scaling each image by its corresponding v and γ)

Î(zk,l, v) .= γ−2v2I(γ−1vzk,l)

= γ−2v2
∑
i,j

ri,j

∫
�k,l

∫
�i,j

e
− ‖γ−1vȳ−γ−1vx‖2

2σ2(x)

2πσ2(x)
dxdȳ

=
∑
i,j

ri,j

∫
�k,l

∫
�i,j

1
2πσ̂2(x)

e
− ‖ȳ−x‖2

2σ̂2(x) dxdȳ

(7)
Finally, once u(x) is reconstructed, one needs to apply the
parametrization [xT 1]u(x) to obtain the correct depth map.

Remark 1 Most algorithms for shape from defocus use im-
plicitly this warping of the depth map. In fact, typically one



works with images that have been aligned (warped) and the
projection π[P(x)] is always approximated by x. However,
in most methods the last step (unwarping) is not applied
thus preventing the algorithms from reconstructing the cor-
rect object. It is interesting to note that in the case of tele-
centric optics [13] some further simplifications are possi-
ble. We have that C = [0 0 F ], and hence π[P] .= − Fx

u(x)−F

does not change between the images as it does not depend
on v. With telecentric optics a warping between the input
images is not required (as the projections do not change
with v). However, as the projection is still a function of
the depth map u and x, the parametrization still needs to
be changed (e.g., by setting P(x) .= [xT 1]T (u(x) − F ))
and the corresponding reconstruction still needs to be un-
warped.

In the case of varying A, the analysis is fairly straight-
forward as the projection π does not depend on A. Hence,
we can choose P .= [P1,2 P3]T where

P1,2(x) .=
F (u(x)− C3)x− (Fu(x)− vu(x) + vF )C1,2

C3v − C3F − vF
(8)

and P3
.= u(x). It is immediate to see that for such a

parametrization the projection π[P(x)] = x. As in the case
of telecentric optics, no warping of the input images is re-
quired.

The case of varying C3 is instead more difficult. We
approximate the distance of the aperture from the lens
C3 with an average value C̄3. Then, let P(x) =
[xT u(x)

u(x)−C̄3
]T (u(x)− C̄3) so that

π[P(x)] ' −vF + (F − v)C3

F
x+

(
1− v

v0(x)

)
u(x)C1,2

u(x)− C3
.

(9)
The variation δπ[P(x)] ' δu(x)C1,2

F (u(x)−C3)2
(C3(v − F ) − vF )

is then approximately independent of x (although it remains
dependent on u(x)) and the input images can be pseudo-
aligned simply by scaling the image domain by vF+(F−C3)

F .
After the pseudo-alignment, the resulting projection is then
a function

π[P(x)] ' −x +
1− u(x)

(
1
F −

1
v

)
1− C3

(
1
F −

1
v

) C1,2

u(x)− C3
. (10)

Remark 2 Notice that in general it is not straightforward
to find a parametrization P so that the projection does not
depend on the depth map u. In such case we can approxi-
mately offset some of the undesired behavior due to the vari-
ation of the projection with respect to variations of the depth
map.

4. A Gradient Flow Algorithm
To find the unknown depth map u and the radiance r, we

pose the following minimization problem

û, r̂ = arg min
u,r

N∑
n=1

∑
k,l

(In(yk,l)− Jn(yk,l))
2

+λ1

∫
‖∇u(x)‖2dx

+λ2

∫
‖r(x)− r∗(x)‖2dx

(11)
where r∗ is a reference radiance (e.g., one of the input im-
ages or an average of the input images), and λ1, λ2 are
positive scalars that control the amount of regularization.
While the first term on the left hand side of eq. (11) matches
the image model In to the measured images Jn for vary-
ing aperture centers Cn and diameters An, the second term
introduces a smoothness constraint on the recovered depth
map, and the third term prevents the estimated radiance
from growing unboundedly.

The minimization is carried out by the following gradient
flow algorithm3

∂u(x, t)
∂t

= −∇uE
∂r(x, t)

∂t
= −∇rE (12)

where the derivative with respect to iteration time is approx-
imated by a forward difference, and ∇uE and ∇rE denote
the gradient of the energy E with respect to the depth map u
and the radiance r. The final computations of the gradients
yields

∇uE(xi,j) = 2
N∑

n=1

∑
k,l

∆In(yk,l)I ′n(yk,l,xi,j)

−2λ14u(xi,j)

∇rE(xi,j) = 2
N∑

n=1

∑
k,l

∆In(yk,l)Hn
i,j(yk,l)

+2λ2(r(xi,j)− r∗(xi,j))

(13)

where ∆In(yk,l)
.= (In(yk,l)− Jn(yk,l)) and

I ′n(yk,l,xi,j)
.=

∫
�k,l

∫
�i,j

hn(x, ȳ)h′n(x, ȳ)r(x)dxdȳ

(14)
where

h′n(x, ȳ) .=
(ȳ − γ−1π[P(x)])

σ2(x)
γ−1π′[P(x)])

+
(
‖ȳ − γ−1π[P(x)]‖2

σ3(x)
− 1

σ(x)

)
σ′(x)

(15)
3The gradient flow can be easily modified into more efficient schemes,

without affecting the location of the minima, by premultiplying the gradi-
ent of the energy by any time-varying positive definite operator.



and

σ′(x) = γ−1κA sign
(

1− v

v0(x)

)
vC3 − vF − C3F

F (u(x)− C3)2
(16)

Remark 3 As can be seen in most formulas, this algo-
rithm can be implemented very efficiently. One can tabu-
late most computations from analytic solutions of the inte-
grals of Gaussians over finite domains (i.e., via the error
function) and by exploiting the separability of the Gaussian
function. Indeed our current implementation in C++ with a
Pentium 2GHz takes about 1 second to compute the above
gradients on an image of dimensions 200× 200 pixels.

5. Experiments
5.1. Synthetic Data

In this section, we test the proposed algorithm on four
synthetically-generated shapes: An equifocal plane, a scene
made of equifocal planes at different depths (Cube data set),
a slope (Slope data set), and a wave (Wave data set). For
each of these shapes we show the reconstruction results ob-
tained by either changing the diameter A of the aperture
(see Figures 2 and 3) or the distance C3 between the aper-
ture and the lens (see Figures 5 and 6). In the experiments
in Figures 2 and 3, we use 4 input images, which are ob-
tained by setting the aperture diameter A as 2mm, 4mm,
5mm, and 6mm and with other parameters fixed to focal
length F = 30mm, C = [0 0 20mm]T , and distance image
plane to lens v = 45mm. In Figure 2 we show only the
input images corresponding to A = 2mm and A = 6mm
(first and second from the left). In the same figure we show
the true radiance (third from the left) and the estimated radi-
ance (fourth from the left). In Figure 3 we show the ground
truth for the shapes of the Cube, Slope, and Wave data sets
on the left column and the corresponding estimated shapes
on the right column. In the experiments in Figures 5 and
6, 3 input images are obtained by setting the distance of
the aperture to the lens C3 as 3mm, 8mm, and 12mm and
with other parameters fixed to focal length F = 30mm,
A = 5mm, and distance image plane to lens v = 45mm.
As in the previous experiment, Figure 5 has 2 of the in-
put images on the first and second illustration from the left,
followed by the ground truth and estimated radiance. Sim-
ilarly, in Figure 6 we show the ground truth shapes and the
corresponding estimates on the data sets Cube, Slope, and
Wave. In all experiments (including the ones on real data)
the shape is initialized as a plane parallel to the image plane
and the radiance is initialized as one of the input images.
We find the algorithm somewhat insensitive to the initial-
ization. To test the robustness of the method, we use 6 lev-
els of additive Gaussian noise with, 0%, 1%, 2%, 5%, 15%
and 20% of the radiance intensity. In the case of changing

Figure 2. Image estimation with the change of the size of the aper-
ture. First and second from the left: two of the input images in
the case of the Cube dataset. Third and fourth from the left: the
corresponding true radiance and the estimated radiance.

aperture diameter, in Figure 4 we show the absolute error
(left), which we compute as the L2 norm of the difference
between the estimated shape and the true shape, and the
relative error (right), which we compute as the absolute er-
ror and then normalize by dividing by the L2 norm of the
true shape. In the case of changing lens to aperture distance
C3, in Figure 7 we show the absolute error (left), which
we compute as the L2 norm of the difference between the
estimated shape and the true shape, and the relative error
(right), which we compute as the absolute error and then
normalize by dividing by the L2 norm of the true shape.

Warping. In section 3 we have introduced the concept of
warping as a way to eliminate nonlinearities and therefore
facilitate the convergence of the gradient-flow algorithm.
To illustrate the advantage of warping the projection of the
OAA camera we compare the surface estimated by using the
original projection from the image formation model with
the surface estimated by using the warped (rectified) pro-
jection. We consider the simplest instance of the original
projections, i.e., the case of varying aperture A. In Fig-
ure 8 we show on the left the surface reconstructed when
the original projection model is employed and the corre-
sponding gradient flow is computed (see section 4); on the
right we show the surface reconstructed when the warped
projection model is employed in the gradient flow iteration.
The improvement in the reconstruction is mostly due to the
algebraic elimination of the projection nonlinearity which
could introduce spurious local minima in the energy being
minimized.

5.2. Real Data

To illustrate the algorithm above and validate it empiri-
cally, we test it on real images. Here we show an experi-
ment of a scene containing a miniature house. The distance
between the camera and the house model is about 400 mil-
limeters. The images are captured by a Nikon D80 Dig-
ital Camera equipped with a Nikon AF Nikkor lens with
F = 50mm, v = 57.57mm, and γ = 23.7pixels/mm, by
changing the aperture to 3mm and 22mm. After correct-
ing for the changes in intensity due to the difference in the
aperture, we plot two of the input images on the top row of



Figure 3. Shape reconstruction with the change of the size of the
aperture. Left column (from top to bottom): the ground truth shape
of the Cube, Slope and Wave date sets. Right column: The corre-
sponding reconstructed shapes.
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Figure 4. Error plots of the experiments with the change of the size
of the aperture. Absolute and relative errors between the ground
truths and the estimated depth maps of the four synthetic data sets
for six noise levels.

Figure 5. Image estimation by changing the distance of the aper-
ture from the lens. First and second from the left: two of the input
images in the case of the Cube dataset. Third and fourth from the
left: the corresponding true radiance and the estimated radiance.

Figure 9. On the bottom row we show the restored radiance
(left) and the recovered shape (right). The third row shows
several views of the reconstructed scene. As one can see the
qualitative shape has been successfully captured.

Figure 6. Shape reconstruction with the change of the distance
from the aperture to the lens. Left column (from top to bottom):
the ground truth shape of the Cube, Slope and Wave date sets.
Right column: The corresponding reconstructed shapes.
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Figure 7. Error plots of the experiments with the change of the
distance from the aperture to the lens. Absolute and relative errors
between the ground truths and the estimated depth maps of the
four synthetic data sets for six noise levels.

Figure 8. Comparison of the estimated shape when the original
image formation model is employed (left) and when the projection
is rectified via warping (right). The true shape is the same as the
one shown at the top left of Figure 3.

6. Conclusions
We presented a novel family of shape estimation and

image restoration algorithm based on the off-axis aperture



Figure 9. Experiments on real data. Top row: the two input images;
the image on the left has been captured with A = 3mm, while the
image on the right has been captured with A = 22mm. Second
row: radiance (left) and estimated depth map in gray scale (right).
Third row: several views of the reconstructed 3-D scene.

camera. The main property of this camera is that it does
neither need a relative motion with respect to the object nor
a change in the image plane and lens position. The only
moving part is the aperture. We change its location and
its diameter and show how this relates to the 3-D structure
of the scene via the image formation model. We propose
several parametrizations for the geometry of the object so
that the resulting minimization algorithm is simple, and its
convergence well-behaved. Results on several synthetic and
real datasets are shown and demonstrate the effectiveness of
the technique.
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