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Abstract

We address the problem of deformable shape and motion
recovery from point correspondences in multiple perspec-
tive images. We use the low-rank shape model, i.e. the 3D
shape is represented as a linear combination of unknown
shape bases.

We propose a new way of looking at the low-rank shape
model. Instead of considering it as a whole, we assume
a coarse-to-fine ordering of the deformation modes, which
can be seen as a model prior. This has several advantages.
First, the high level of ambiguity of the original low-rank
shape model is drastically reduced since the shape bases
can not anymore be arbitrarily re-combined. Second, this
allows us to propose a coarse-to-fine reconstruction algo-
rithm which starts by computing the mean shape and itera-
tively adds deformation modes. It directly gives the sought
after metric model, thereby avoiding the difficult upgrad-
ing step required by most of the other methods. Third, this
makes it possible to automatically select the number of de-
formation modes as the reconstruction algorithm proceeds.
We propose to incorporate two other priors, accounting for
temporal and spatial smoothness, which are shown to im-
prove the quality of the recovered model parameters.

The proposed model and reconstruction algorithm are
successfully demonstrated on several videos and are shown
to outperform the previously proposed algorithms.

1. Introduction
Recovering 3D shape and camera parameters from im-

ages is a major research topic in computer vision. The clas-

sical Structure-from-Motion paradigm assumes that the ob-

served shape is rigid. It often uses image point tracks ob-

tained by some means. The rigid shape assumption means

that the viewing rays corresponding to the same physical

point seen in different cameras intersect in space.

For the case of a deforming 3D shape, the assump-

tion that the viewing rays intersect does not hold true.

Model-free non-rigid Structure-from-Motion is tackled in

e.g. [5, 4, 11, 13]. An approach that recently proved suc-

cessful is the one using the low-rank shape model, which

represents the 3D deforming shape by a linear combina-

tion of shape bases we call deformation modes or simply

modes. The modes are point-dependent while the linear

combination coefficients, called configuration weights, are

view-dependent. The representative power of this model

lies in its ability to capture, as Principal Component Analy-

sis does, the structure underlying the actual deformations of

the 3D shape. The main assumption on the 3D shape is that

it consists of a single moving and deforming object, so that

the deformation at each point has some sort of consistency

with the other points, as is formally defined in [15]. The

low-rank terminology stems from the fact that the number

of modes is assumed much lower than the number of images

and points.

The major difference of the proposed method with the

previous ones lies in the coarse-to-fine definition of the low-

rank shape model we use. Most of the previous methods

treat modes equally, resulting in ambiguities as any mode

can be replaced by a linear combination of the other ones.

In contrast, we use the rule that a deformation mode encap-

sulates as much of the data variance left unexplained by the

preceding modes as possible. This has important practical

impacts, as the level of ambiguity is drastically reduced and

makes a coarse-to-fine reconstruction algorithm possible.

The idea is that the modes capture decreasingly important

details in the deformation. Our model is based on compos-

ing this coarse-to-fine low-rank shape model with euclidean

transformations accounting for the global displacement of

the object of interest. The number of modes is automati-

cally chosen based on Cross-Validation.

To summarize, this paper brings a novel low-rank

Structure-from-Motion method which handles missing data,

automatically selects the number of deformation modes and

makes use of several different priors. We report experimen-

tal results on challenging datasets showing that the method

gives sensible 3D shapes, allowing us to convincingly aug-

ment the video by adding a virtual 3D object on a deforming

surface.

2. Previous Work and Contributions
Previous low-rank Structure-from-Motion methods dif-

fer by the optimization method and the priors they use,

978-1-4244-2243-2/08/$25.00 ©2008 IEEE



and if they order the modes or not. Early methods such

as [5] use no prior. They are based on computing an ‘im-

plicit model’ for which the configuration weights and cam-

era parameters are mixed up together through a mixing ma-

trix. The implicit model is upgraded to the ‘explicit model’

(the model described so far). An efficient implicit model

reconstruction method is described in [9]. Recent papers

focus on how to compute the implicit to explicit upgrade

[4, 13]. While most papers use an affine camera model,

some recent papers consider the case of a perspective cam-

era, e.g. [6, 12].

Aanaes and Kahl [1] take a different approach: they view

the low-rank shape model as a mean shape, that they com-

pute using rigid Structure-from-Motion, and modes that are

found through Principal Component Analysis of the direc-

tional variance. The overall model parameters are refined

together through bundle adjustment. In contrast, we com-

pute the mean shape and iteratively add modes by mini-

mizing the reprojection error. This has the advantage to re-

sult in a coarse-to-fine model, expressed in a metric frame-

work, thus avoiding the difficult implicit-to-explicit upgrad-
ing step. The coarse-to-fine scheme ensures that the leading

modes encapsulate coarsest deformations. We show that the

deformation mode estimation problem can be splitted into

several much smaller problems. The resulting algorithm is

efficient and copes with missing data resulting from occlu-

sions.

Finally, there are few papers on the crucial problem of

selecting the number of modes. Existing approaches are

based either on inspecting the eigenvalues of the data ma-

trix [14] or on model selection criteria such as BIC [1] or

GRIC [3]. We provide a solution based on Cross-Validation

which, contrarily to previous approaches, does not assume a

gaussian iid distribution with known variance on the residu-

als. We show that it gives very sensible results with respect

to ground truth.

3. Background

3.1. Notation and Camera Model

Everything is in homogeneous coordinates. A 3D point

Q projects to a 2D point q̂ def∼ PQ through camera P, where

P is a (3 × 4) perspective projection matrix. The repro-
jection error for this image point is the euclidean distance

d(q, q̂) between the model-predicted point q̂ and the cor-

responding data point q. The corresponding algebraic re-
projection error is given by using the following algebraic

distance:

µ2(q, q̂) def= ‖S(q × q̂)‖2
with S

def= ( 1 0 0
0 1 0 ) , (1)

where ‖ · ‖ is the two-norm for vectors and Frobenius norm

for matrices. The point-to-line orthogonal distance between

q and l is written d⊥(q, l). The following is an algebraic

approximation:

µ2
⊥(q, l) def=

(
qTl

)2
. (2)

We use ‘normalized’ image coordinates which are known to

improve the performance of algebraic approximations [7].

The data points lying on the deforming object in the image

are written qi,j where i = 1, . . . , n is the image index and

j = 1, . . . ,m the point index. The binary entries vi,j of the

(n × m) visibility matrix V indicate missing data.

We write SE(3) the group of euclidean transformations

in 3-space; E ∈ SE(3) is a (4 × 4) matrix. We define

R(E) def= R and T (E) def= t as the (3×3) rotation matrix and

(3 × 1) translation vector in E respectively.

3.2. The Low-Rank Non-Rigid Shape Model

The deforming 3D points Si,j are modeled by combin-

ing l modes and a mean shape MT
j = (M̄T

j 1). Mode k
is defined point-wise by bk,jCk,j with ‖Ck,j‖ = 1 with

CT
k,j = (C̄T

k,j 0) a direction vector and bk,j a deformation

magnitude. Camera-wise configuration weights are written

ai,k. The l-mode shape is:

Sl
i,j

def∼ Di

(
Mj +

l∑
k=1

ai,kbk,jCk,j

)
, (3)

where the Di ∈ SE(3) are aligning transformations, so that
the mean shape and its deformations are expressed in an
object-centred coordinate frame. Each mode allows a 3D
point to move in some direction by a point-dependent and
a view-dependent magnitude. The aligning transformations
Di are important since we want the deformation modes to
express intrinsic object deformations as opposed to object
displacements. The prediction of an image point, i.e. the
reprojection of a 3D point under this model, writes:

sl
i,j

def∼ PiS
l
i,j ∼ PiDiMj + P̄iR(Di)

lX
k=1

ai,kbk,jC̄k,j , (4)

with Pi = Ki(I 0)Ei. We define the n-vector al
def=

(a1,l · · · an,l), the m-vector bl
def= (bl,1 · · · bl,m), the

3m-vector C̄T
l

def= (C̄T
l,1 · · · C̄T

l,m) and B̄l similarly.

This model has ambiguities caused by internal ‘gauge

freedoms’. There is obviously an undetermined euclidean

transformation between the mean shape and modes, and the

aligning transformations. For globally estimated modes, as

in standard approaches, there is an l2 representational am-

biguity since any mode can also be replaced by any linear

combination of all modes. In our method, each mode is

estimated conditioned on the coarser ones, yielding only a

single degree of ambiguity for each mode. Indeed, equa-

tion (4) shows that mode l contributes through the exterior

product albT
l which factors can be rescaled since ∀ν ∈ R

�,

albT
l = (νal)

(
1
ν bT

l

)
.



3.3. More Priors

The low-rank shape model is very sensitive to the num-

ber of modes. Since this is a empirical model, there might

not be an ideal such number. Bad results are reported in

[11] when the basic low-rank shape model is used to find

the 3D shape. Priors are needed in order to better constrain

the model. We review some generic priors, where generic

means not specific to some object or object-class.

A simple prior is the one of assuming a part of the scene

to be rigid [6]. [1] uses as prior the fact that the shape should

be close in neighbouring frames. [11] uses a gaussian dis-

tribution prior on the configuration weights. This allows to

marginalize the configuration weights out of the estimation,

which can then be performed very efficiently. They also

propose to model temporal camera smoothness through a

Linear Dynamics model. The transition matrix is estimated

along with the other unknown parameters.

[9] uses a temporal smoothness prior penalizing varia-

tions in the implicit camera matrices, embedding both the

camera parameters and configuration weights:

l∑
k=1

‖∆ak‖2 =
∥∥∆

(
a1 · · · al

)∥∥2
(5)

where ∆ is some finite difference operator. They also pro-

pose a surface-shape prior. It is based on the fact that points

close in the images are close in space, provided they lie on

a continuous surface.
We use those two priors. We measure the closeness of

points on the mean shape: ϕj,g
def= ρ(d2(Mj ,Mg)), with

ρ some localized kernel (we use a truncated gaussian) and
write the surface-shape penalty as:

lX
k=1

mX
j=1

mX
g=1

ϕ2
j,g‖B̄k,j − B̄k,g‖2 =

lX
k=1

‚‚ΩB̄k

‚‚2
, (6)

where Ω is a highly sparse matrix depending on the ϕj,g

with three times as many rows as non-zero ϕj,g and 3m
columns.

We consider another class of priors that has not been

used so far in the literature, on the ordering of the deforma-

tion modes. We require mode l + 1 to express as much of

the variance remaining unexplained by the l-mode shape as

possible. This naturally leads early modes to explain coarse

deformations. This kind of priors is difficult to express in

the classical framework where all modes are estimated at

once. It however fits very well into the framework of itera-

tively adding modes of variations, as shown below.

4. Coarse-to-Fine Low-Rank Shape
4.1. Overview

The algorithm we propose is based on recovering the

mean shape points Mj , giving a coarse approximation to

the true shape, in accordance with the mean shape defini-

tion in [15]. Modes are added until some criterion is met.

Most of the other methods estimate all the modes and

configuration weights at once. In contrast, our solution tries

to embed as much of the variance of the data as possible

in the current mode to be estimated, which naturally com-

plies with the mode ordering prior described in the previous

section. More precisely, the l + 1 mode is selected so that

the shape minimizes the cost. We thus end up with a series

of nested minimization problems. This way of solving the

problem has several computational advantages, as is shown

later in the paper.

Our algorithm is based on the following relationships

steming from the shape model (3):

S0
i,j = DiMj (7)

Sl+1
i,j = Sl

i,j + ai,l+1bl+1,jDiCl+1,j . (8)

We proceed as follow. First, we compute the mean shape

points Mj and the aligning displacements Di through the

0-mode shape (7). Second, we iteratively triangulate the

modes1, i.e. the shapes bases bk,jCk,j and configuration

weights ai,k from (8). A cost function using the reprojec-

tion error as data term and the above-mentioned priors is

minimized at each step. We stop adding modes when some

model complexity selection criterion is met, see §4.4.

4.2. Mean Shape and Aligning Displacements

In order to find the displacements Di that globally align

the deforming object to the world coordinate frame and the

mean shape points Mj , we minimize the reprojection error2

for the 0-mode shape:

min
M1,...,Mm,D1,...,Dn

n∑
i=1

m∑
j=1

vi,j d2(qij ,PiDiMj),

which is a calibrated camera instance of the Structure-from-

Motion problem, that we solve using standard techniques

including bundle adjustment, see e.g. [7]. The cameras Pi

can either be estimated based on some rigid part in the scene

such as the background or be set to some canonical position.

We stress that it does not change the result of our algorithm,

i.e. the estimated deforming surface will be the same what-

ever the Pi thanks to the Di.

4.3. Mode Triangulation
The mode triangulation problem is stated as:

min
al+1,B̄l+1

X
i,j

vi,j d2(qi,j , s
l+1
i,j ) + λ‖∆al+1‖2 + κ‖ΩB̄l+1‖2.

(9)

1Since the global motion of the object is known at this step, we call

‘mode triangulation’ the estimation of a mode.
2Using a temporal or spatial prior at this stage is not very important

since rigid Structure-from-Motion is usually well-posed.



This is a nonlinear least squares optimization problem since

(i) there is a product between the configuration weights and

(ii) the modes, and the euclidean distance is used to com-

pare the image points. As in the rigid triangulation case,

the euclidean distance can be dealt with an algebraic ap-

proximation. The problem however remains nonlinear and

difficult to handle in this form since the different views and

points are all linked.

First, we drop the priors and compute an initial solution.

Second, we refine the complete cost function (9) through

nonlinear minimization.

We show that the optimal, i.e. reprojection error min-

imizing, directions in C̄l+1 of the modes can be com-

puted independently from each other and from the other

unknowns. We thus split the computation into two main

steps. First, we compute the optimal directions in C̄l+1.

Second, we compute the optimal configuration weights in

al+1 and magnitudes of the modes in bl+1. Each step finds

a suboptimal initial solution using linear least squares ap-

proximations and refines it by minimizing the reprojection

error in a nonlinear manner.

4.3.1 Initializing the Mode Directions in C̄l+1

Splitting the problem. We show how problem (9) can be

reformulated on a point-wise basis by estimating indepen-

dently the direction Cl+1,j of each mode. This is based on

casting the reprojection error as a sum of squared point-to-

line distances. Substituting equation (3) into (4):

sl+1
i,j ∼ PiDiSl

i,j︸ ︷︷ ︸
∼sl

i,j

+ai,l+1bl+1,jP̄iR(Di)C̄l+1,j . (10)

This represents an image point parameterized by its posi-
tion ai,l+1bl+1,j on an image line parameterized by its base

point sl
i,j and direction P̄iR(Di)C̄l+1,j . By replacing the

reprojected points sl+1
i,j from (10) into each reprojection er-

ror term in (9), we get:

min
al+1,Bl+1

X
i,j

vi,j d2(qi,j , s
l
i,j + ai,l+1bl+1,jP̄iR(Di)C̄l+1,j).

Each term is the squared euclidean distance between an

image point qi,j and the above described point on line. In

order to get rid of the offset which depends on the unknown

configuration weight ai,l+1 and mode magnitude bl+1,j , we

replace the point-to-point distance d by the point-to-line dis-

tance d⊥. This is done by introducing the line coordinates

sl
i,j × (P̄iR(Di)C̄l+1,j), giving:

min
C̄l+1

n∑
i=1

m∑
j=1

vi,j d2
⊥(qi,j , sl

i,j × (P̄iR(Di)C̄l+1,j)).

In this reformulated minimization problem, each mode di-

rection C̄l+1,j in C̄l+1 is independent. It can thus be split

as m independent smaller problems:

min
C̄l+1,j

n∑
i=1

vi,j d2
⊥(qi,j , sl

i,j × (P̄iR(Di)C̄l+1,j)). (11)

Linear estimation. The first step to compute each mode
direction C̄l+1,j is to make a linear least squares approxi-
mation to the above stated optimization problem. We ap-
proximate the euclidean point-to-line distance by the alge-
braic one in (2):

d2
⊥(qi,j , s

l
i,j×(P̄iR(Di)C̄l+1,j)) ≈

“
qT

i,j [s
l
i,j ]×P̄iR(Di)C̄l+1,j

”2

.

The sum over i is minimized to get the initial estimate of

C̄l+1,j with ‖C̄l+1,j‖ = 1 as required, by the right singular

vector corresponding to the smallest singular value of:

A =




v1,j qT
1,j [s

l
1,j ]×P̄1R(D1)

...

vn,j qT
n,j [s

l
n,j ]×P̄nR(Dn)


 ,

where the rows vanishing due to a missing image point (i.e.
for which vi,j = 0) are obviously dropped. The minimum

number of image points is n ≥ 2.

Nonlinear refinement. The second step is to nonlinearly

refine the initial estimate of each C̄l+1,j . We minimize

the reprojection error using Levenberg-Marquardt. This

is very computationally efficient since each of the direc-

tions has only 3 parameters and is processed independently.

Among the 3 parameters, only 2 are independent, which

makes rank-deficient the Jacobian matrix J in the normal

equations. This can be dealt with by adding a penalty

(‖C̄l+1,j‖2 − 1)2 to the error function.

4.3.2 Initializing the Configuration Weights in al+1

and the Mode Magnitudes in bl+1

Principle. The optimal estimate depends on all the un-

known parameters since the image points sl+1
i,j for all views

and points depend on al+1bT
l+1. We exploit the 1D model

ambiguity: we normalize by each of the unknown param-

eters in al+1 on turn, making linear the product with the

other factor. The results are then combined together.

The constraints. Assume aζ,l+1 �= 0 for some ζ ∈
1, . . . , n, and define aζ

l+1
def= al+1

aζ,l+1
and bζ

l+1
def= aζ,l+1bl+1.

Keeping only the terms related to view ζ in the cost function

(9) gives:

min
bζ

l+1

m∑
j=1

vζ,j d2(qζ,j , sl
ζ,j + bζ

l+1,jP̄ζR(Dζ)C̄l+1,j).



This minimization problem can be split on a point-wise ba-

sis, and is equivalent to solving m 1D problems:

min
bζ

l+1,j

vζ,j d2(qζ,j , sl
ζ,j + bζ

l+1,jP̄ζR(Dζ)C̄l+1,j).

This is a single-view point-on-line triangulation problem,

solved by orthogonally projecting qζ,j onto the image line

ll+1
ζ,j ∼ sl

ζ,j × (P̄ζR(Dζ)C̄l+1,j) to give bζ
l+1,j . The prob-

lem can not be solved, however, if vζ,j = 0, i.e. if the

point j is not seen in view ζ, and also if the line ll+1
ζ,j is

not well-defined, i.e. if d(sl
ζ,j , P̄ζR(Dζ)C̄l+1,j) < ε, where

ε is some threshold that we typically choose as few pixels.

This problem happens if C̄l+1,j deforms the point along the

viewing ray with respect to camera i.
At this stage, we end up with several, scaled versions

bζ
l+1, ζ = 1, . . . , n of bl+1, with missing data, related by

bζ
l+1 = aζ,l+1bl+1.

Finding the factors. The bζ
l+1 vectors must be registered

together in order to get the overall sought-after vector bl+1

without holes. This is done by computing the other factor

al+1. The bζ
l+1 are defined in such a way that bζ

l+1aη,l+1−
bη

l+1aζ,l+1 = 0. We solve for al+1 through:

min
al+1

n∑
ζ=1

n∑
η=1

‖bζ
l+1aη,l+1 − bη

l+1aζ,l+1‖2,

which is a linear least squares problem, under the constraint

‖al+1‖ = 1. Thanks to al+1, the bζ
l+1 are rescaled and

averaged to get bl+1.

Another possible way to solve the problem is to consider

equation bζ
l+1 = aζ,l+1bl+1. This actually shows that we

can formulate the problem as rank-1 matrix factorization

with missing data,
(
b1

l+1 · · · bn
l+1

)
→ bl+1aT

l+1.

4.3.3 Nonlinear Refinement

We have to solve the minimization problem (9). Optimizing

over the B̄l+1,j = bl+1,jC̄l+1,j directly allows to get rid of

the constraints ‖C̄l+1,j‖ = 1. The issue is that 3m + n
unknowns must be tuned jointly. Carefully examining the

pattern of the Jacobian matrix is thus very important for ef-

ficient nonlinear least squares minimization. Indeed, it de-

fines the pattern of the Gauss-Newton approximation to the

Hessian matrix, the design matrix in the normal equations

to be solved at each iteration of the minimization. The Jaco-

bian has three parts, illustrated for a toy example on figure

1. The first part, related to the data term looks like the one

obtained in classical bundle adjustment with well-organized

blocks. The second part is related to the temporal prior.

Choosing for instance a first order derivative prior gives an

((n − 1) × n) Jacobian matrix ∆ with ones on the main

diagonal and minus ones on the first upper diagonal. The

third part depends on the amount of interaction between the

points, contained in the ϕj,g parameters. It typically is very

sparse since the localized kernel ρ allows a point to interact

with its nearest neightbours only.

points
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aTl+1 BTl+1
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image 1

data

data
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Jacobian matrix J

spatial

(0 )

( 0)

Figure 1. Structure of the Jacobian and Hessian matrices on a toy

example with n = 4 views and m = 5 points.

4.4. A Stopping Criterion

The algorithm we describe in the previous sections is

based on iteratively adding modes to the low-rank shape

model. A criterion for stopping adding new modes is thus

necessary. Each time a mode is added, the number of de-

grees of freedom of the model grows, making the cost de-

crease, as is shown in our experimental results. This makes

one naturally thinks of using a model selection approach as

a stopping criterion. However, the problem at hand does not

fulfill the usual model selection assumptions. The first rea-

son is that the number of modes is virtually unlimited: as

many modes as desired can be added to the shape model,

whereas classical model selection usually operates onto a

limited number of models. The second reason is that model

selection criteria such as AIC, BIC or GRIC are based on a

particular distribution of the residuals, namely a possibly ro-

bustified gaussian distribution, see [8, 10]. For the low-rank

shape model, the residuals should be interpreted differently.

Their dependency on the noise on image point position is

very weak. They are mostly due to the deviance of the em-

pirical low-rank shape model from the physics of the actual

images. It is difficult to assume any prior distribution for

this deviance.

We propose to use Cross-Validation as a criterion for se-

lecting the number of modes. The idea is to partition the



data in a training and a test set, and average the test er-

ror over several such partitions. This approach, which has

rarely been used for geometric model selection in computer

vision, does not require a specific known distribution of the

residuals, and directly reflects the ability of the model to ex-

trapolate to new data. More precisely, we use u-fold Cross-

Validation, which splits the data into u subsets or ‘folds’.

Typical values for u range from 3 to 10. We use u = 4 in

our experiments, and split the data image-point-wise: each

fold is a subset of image points, and must allow the algo-

rithm to reconstruct all views and points (for instance, we

do not remove all image points in a single view). The test

error is obtained by comparing the test dataset with its pre-

diction.

The typical behaviour of the Cross-Validation score is to

decrease until the optimal number of modes is reached, and

then to increase. It first decreases since the model with not

enough modes is too restrictive to explain well the data and

thus can not make good predictions. It then increases since

with more modes than enough, the model fits unwanted ef-

fects in the data, i.e. it is too flexible to predict new data.

This typical behaviour is however not what we observe

when the priors are used. In this case, the Cross-Validation

score decreases rapidly until the optimal number of modes

is reached, and then remains steady. This is explained by

the fact that the priors inhibitate the degrees of freedom of

the extra modes, as also reported in [11]. Our stopping cri-

terion has two parts: we stop adding modes when either the

Cross-Validation score increases or when its decrease is be-

low some threshold, that we choose as ε = 10−4 in our

experiments.

Computing the Cross-Validation score requires to fit the

new mode to each of the u training sets. For that purpose,

and for computational efficiency, we keep u + 1 models:

the u models which use the folds as training set, and the

one which uses all the data.

5. Experimental Results
We provide experimental results on simulated and real

data. For each dataset, we compare our algorithm with the

one by Torresani et al. which is shown in [11] to give the

best results compared to other methods in the literature. We

name it TORRESANI. Our algorithm is summarized in table

1. We use two variants: C2F - NO PRIOR which does not

use the two smoothness priors, and C2F - PRIORS which

uses them.

We did not encounter any local minimum in the Cross-

Validation score in our experiments.

5.1. Simulated Data

We have two data generation models. The first one is

the Candide face model [2]. The second one is the shark

OBJECTIVE

Given a set of corresponding image points qi,j on a deforming

object and cameras Pi ∼ Ki(I 0)Ei obtained by some means,

compute globally aligning displacements Di ∈ SE(3) for each

frame i and a set of frame-varying, low-rank 3D shapes Sl
i,j in a

coarse-to-fine manner, i.e. the cost for Sl+1
i,j is lower than for Sl

i,j .

The number of modes l is estimated using Cross-Validation (CV):

each computation is carried out over u randomly selected folds to

compute the CV score Gl.

ALGORITHM

Mean Shape and Aligning Displacement Computation

1. (§4.2) Run calibrated camera Structure-from-Motion with

the image points qi,j as inputs and intrinsic parameters Ki

giving new cameras Ki(I 0)Ai and mean shape points Mj

2. Set the aligning displacements Di ← E−1
i Ai

3. (§4.4) Compute the CV score G0, and set l ← 0

4. Initialize the shape estimate with the mean shape for every

frame: Si,j ← Mj

Iterative Mode Triangulation

1. (§4.3.1) Initialize the mode directions C̄l+1,j

2. (§4.3.2) Compute the configuration weights ai,l+1 and mode

magnitudes bi,l+1

3. (§4.3.3) Nonlinear refinement: minimize the reprojection er-

ror over the modes and configuration weights

4. (§4.4) Compute the CV score Gl+1

5. (§4.4) Stop if Gl+1 ≥ Gl or Gl − Gl+1 ≤ ε

6. Update the 3D shape: Sl+1
i,j ← Sl

i,j + ai,l+1bl+1,jCl+1,j

7. Set l ← l + 1 and loop to step 1

Table 1. Overview of our coarse-to-fine (C2F) low-rank Structure-

from-Motion algorithm. The priors are taken into account at step

3 of mode triangulation.

sequence available from the authors of [11]. We found that

the CMU mocap datasets were either close to rigid or not

‘homogeneous’ enough for the low-rank shape model. For

each dataset, we measure the reprojection error, the Cross-

Validation score and the 3D error as functions of the number

of modes, the amount of missing data and the number of

images. The graphs we show are for the Candide face model

– similar results as obtained for the shark sequence. The

default setup is n = 10 images and m = 113 points.

The first set of experiments is illustrated on figure 2 (left

and middle). It is meant to assess if Cross-Validation ef-

fectively gives a sensible way of selecting the number of

modes. We observe that our C2F - NO PRIOR is very sensi-

tive to an overestimated number of modes: with more than

2 modes, the 3D error grows rapidly, while both C2F - PRI-

ORS and TORRESANI remains stable. The Cross-Validation
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Figure 2. (left) The 3D error as a function of the number of modes. (middle) The reprojection error (RE) and Cross-Validation score (CV)

as functions of the number of modes. (right) The 3D error as a function of the percentage of missing data. The vertical bars show minima

of the CV score and 3D error curves.

score behaves similarly to the 3D error. In particular, it

allows us selecting the optimal number of modes with re-

spect to the 3D error for our C2F - NO PRIOR while for our

C2F - PRIORS, the number of modes is slightly overesti-

mated, which does not degrade the quality of the 3D shape,

as already observed for TORRESANI in [11]. As expected,

the reprojection error decreases as the number of modes in-

creases.

The second set of experiments, shown on figure 2 (right)

shows how the algorithms behave against the amount of

missing data. Our C2F - PRIORS recovers the 3D shape

with up to more than 92% missing data. Thanks to the good

behavior of the Cross-Validation score, which allows our

C2F - NO PRIOR selecting a sensible number of modes,

even with no prior, it handles up to 90% missing data. As

for TORRESANI it diverges in most cases.

The third set of experiments computes the success rate

of the selected number of modes for C2F - NO PRIOR with

the Cross-Validation score. The success rate is 94%, 89%

and 88% for respectively no missing data, 25% and 50%

missing data. This is very satisfying since in most failures,

the number of modes is mis-estimated by only 1.

The fourth set of experiments compares the behaviour

of the algorithms with respect to the number of points and

views. The graphs are not shown here due to lack of space.

As expected, the smaller the number of points or views, the

smaller the reprojection error, and the larger the 3D error

and Cross-Validation score.

5.2. Real Data

The paper dataset. This video has 203 images of size

720×576. We used a direct, i.e. intensity based, approach to

recover the parameters of a Free-Form Deformation (FFD)

that provided us with 140 point correspondences. Figure 3

shows the results we obtained. Our C2F - NO PRIOR and

C2F - PRIORS selected 0 mode and 3 modes and reached

7.10 and 0.84 pixels of reprojection error respectively. C2F

Figure 3. The paper dataset. (first row) Some of the images with

the FFD mesh we track. (second row) New view synthesis with the

reconstructed surface. (third row) The augmented images.

- NO PRIOR thus performs very badly for this sequence, giv-

ing a very distorted 3D shape. This shows that using the pri-

ors can not be avoided, since C2F - PRIORS gives good re-

sults, with 1.18 pixels for the Cross-Validation score, show-

ing good predictivity.

We then simulated an occlusion by removing 24 points

on 120 images, i.e. slightly more than 10% of the data.

C2F - PRIORS selected 3 modes, and reached 1.44 pixels of

reprojection error and 1.82 pixels for the Cross-Validation

score, which, although slightly higher than in the full data

case, is reasonable.

The face dataset. We extracted a 100 image, 624 × 352,

video of Gabrielle Solis from the series “Desperate House-

wives”, and ran a 2D Active Appearance Model (AAM) to

track her face. We then reconstructed the camera and the 68

vertices of the AAM with our algorithm. Figure 4 shows the

result. Both C2F - PRIORS and C2F - NO PRIOR found that

4 modes are required. They respectively obtained 0.91 and

0.82 pixels for the reprojection error, and 1.15 and 1.22 pix-

els for the Cross-Validation score. These values show that

the reconstructed model has a good predictivity. We stress



Figure 4. The face dataset. (top) Two out of the 100 images over-

laid with the face AAM used for tracking. (middle) The recon-

structed AAM vertices. (bottom) The augmented images.

that the a priori knowledge that a face is in the images is

used only at the tracking step: our method reconstructs the

deforming structure in a generic manner.

6. Conclusion

We proposed a method that allows reconstructing a new

coarse-to-fine low-rank shape model of a deforming object

from a single video. Our method handles missing data,

uses the full perspective camera model and automatically

selects the optimal number of deformation modes by Cross-

Validating the model. Experimental results on simulated

data show that the automatically selected number of modes

corresponds to the minimal 3D error. We use two smooth-

ness priors which are shown to improve the quality of the

reconstruction. Our method outperforms previous ones in

terms of accuracy. The main statement we make is that

Cross-Validation is a sensible way of assessing the num-

ber of modes in the model in that it looks similar to the 3D

error.

An open research topic is the one of automatically se-

lecting the weighting parameters for the priors. Most of the

authors reports heuristic means or uses trial and error, as we

did in our experiments. A possible solution is to minimize

the Cross-Validation score over the weighting parameters.

It is not clear if it can be done in a reasonable amount of

time, though.
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[6] A. D. Bue, X. Lladó, and L. Agapito. Non-rigid metric shape

and motion recovery from uncalibrated images using priors.

In International Conference on Computer Vision and Pattern
Recognition, 2006. 2, 3

[7] R. I. Hartley and A. Zisserman. Multiple View Geometry in
Computer Vision. Cambridge University Press, 2003. Sec-

ond Edition. 2, 3

[8] K. Kanatani. Geometric information criterion for model

selection. International Journal of Computer Vision,

26(3):171–189, 1998. 5

[9] S. Olsen and A. Bartoli. Using priors for improving gener-

alization in non-rigid structure-from-motion. In British Ma-
chine Vision Conference, 2007. 2, 3

[10] P. H. S. Torr. Bayesian model estimation and selection for

epipolar geometry and generic manifold fitting. Interna-
tional Journal of Computer Vision, 50(1):27–45, 2002. 5

[11] L. Torresani, A. Hertzmann, and C. Bregler. Non-rigid

structure-from-motion: Estimating shape and motion with

hierarchical priors. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2007. To appear. 1, 3, 6, 7

[12] R. Vidal and D. Abretske. Nonrigid shape and motion from

multiple perspective views. In European Conference on
Computer Vision, 2006. 2

[13] J. Xiao and T. Kanade. A linear closed-form solution to non-

rigid shape and motion recovery. International Journal of
Computer Vision, 67(2):233–246, March 2006. 1, 2

[14] J. Yan and M. Pollefeys. A general framework for motion

segmentation: Independent, articulated, rigid, non-rigid, de-

generate and non-degenerate. In European Conference on
Computer Vision, 2006. 2

[15] A. J. Yezzi and S. Soatto. Deformotion: Deforming motion,

shape average and the joint registration and approximation

of structures in images. International Journal of Computer
Vision, 53(2):153–167, March 2003. 1, 3


