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Abstract

The paper addresses the problem of factorization-based
3D reconstruction from uncalibrated image sequences. We
propose a quasi-perspective projection model and apply
the model to structure and motion recovery of rigid and
nonrigid objects based on factorization of tracking matrix.
The novelty and contribution of the paper lies in three as-
pects. First, under the assumption that the camera is far
away from the object with small rotations, we propose and
prove that the imaging process can be modeled by quasi-
perspective projection. The model is more accurate than
affine since the projective depths are implicitly embedded.
Second, we apply the model to the factorization algorithm
and establish the framework of rigid and nonrigid factor-
ization under quasi-perspective assumption. Third, we pro-
pose a new and robust method to recover the transforma-
tion matrix that upgrades the factorization to the Euclidean
space. The proposed method is validated and evaluated on
synthetic and real image sequences and good improvements
over existing solutions are observed.

1. Introduction

The problem of structure and motion recovery from im-
age sequences is an important theme in computer vision.
Great progresses have been made for different applica-
tions during the last two decades [10]. The factorization
method was first proposed by Tomasi and Kanade [17] in
the early 90’s. The main idea of this algorithm is to fac-
torize the tracking matrix into motion and structure matri-
ces simultaneously by singular value decomposition (SVD)
with low-rank approximation. The algorithm assumes an
orthographic projection model. It was extended to weak
perspective and paraperspective projection by Poelman and
Kanade [13]. In case of uncalibrated cameras, Quan [15]
proposed a self-calibration algorithm for affine cameras.

More generally, Christy and Horaud [5] extended the
above methods to perspective camera model by incremen-
tally performing the factorization under affine assumption.
The method is an affine approximation to general perspec-
tive projection. Triggs and Sturm [16, 20] proposed a full
projective reconstruction method via rank-4 factorization of
a scaled tracking matrix with projective depths recovered
from pairwise epipolar geometry. The method was further
studied in [9, 11, 12], where subspace constraints are em-
bedded to recover the projective depths iteratively.

The above methods work only for rigid objects and static
scenes. In order to deal with the scenarios of nonrigid or dy-
namic, many extensions stemming from the factorization al-
gorithm were proposed to relax the rigidity constraint [1, 6].
In the pioneer work by Bregler et al. [4], it is demonstrated
that the 3D shape of the nonrigid object may be expressed as
a weighted linear combination of a set of shape bases. Then
the shape bases, weighting coefficients and camera motions
were factorized simultaneously under the rank constraint of
the tracking matrix. Following this idea, the method was
further investigated and developed by many researchers,
such as Brand [2, 3], Del Bue et al. [7, 8], Torresani et
al. [18, 19], Wang et al. [24] and Xiao et al. [25, 26].

Most nonrigid factorization methods are based on affine
camera model due to its simplicity. It was extended to per-
spective projection in [22, 26] by iteratively recovering the
projective depths. The perspective factorization is more
complicated and there is no guarantee that it will converge
to the correct depths, especially for nonrigid scenarios [10].

In this paper, we try to solve the problem under a novel
framework. We assume that the camera is far away from
the object with small rotations which is similar to affine as-
sumptions and is easily satisfied in practice. We propose
a quasi-perspective projection model under this assump-
tion. The model is more accurate than affine camera model
since the projective depths are implicitly embedded in the
shape matrix. However, it is computationally as cheap as
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affine. We apply the model to the factorization algorithm
and present details on recovering the structure of rigid and
nonrigid objects under this framework.

2. Background on Factorization

2.1. Problem definition

Under perspective projection, a 3D point in space Xj =
[xj , yj , zj, 1]T is projected onto image xij = [uij , vij , 1]T

in the i-th frame according to the equation

λijxij = PiXj = Ki[Ri,Ti]Xj (1)

where λij is a non-zero scale factor, commonly called pro-
jective depth; Pi is the projection matrix; Ki, Ri and Ti are
the corresponding calibration matrix, rotation matrix and
translation vector of the camera. When the distance of the
object to the camera is much greater than the depth variation
of the object, we may assume affine camera model. Then
the imaging process can be simplified to x̄ij = AiX̄j + ti

by removing the scale factor, where x̄ij and X̄j are the non-
homogeneous form of xij and Xj ; Ai is a 2 × 3 matrix; ti

is the image of world origin. It is easy to verify that the
centroid of a set of space points is projected to the centroid
of their images. Thus ti will vanish if we register all image
points to the corresponding centroid, and the projection is
further simplified to

x̄ij = AiX̄j (2)

The problem of structure from motion is defined as:
Given n tracked feature points of an object across a se-
quence of m frames {xij |i = 1, ..., m, j = 1, ..., n}. We
want to recover the structure S = {Xj |j = 1, ..., n} and
motion {Ri,Ti} of the object. The factorization based al-
gorithm is proved to be an effective method to deal with this
problem. According to the camera assumption and object
property, the algorithm can be formulated as: (i) rigid ob-
ject under affine assumption; (ii) rigid object under perspec-
tive projection; (iii) nonrigid object under affine assump-
tion; (iv) nonrigid object under perspective projection.

2.2. Rigid factorization

Under affine assumption (2), the projection from space
to the sequence is expressed as[

x̄11 ··· x̄1n

...
. . .

...
x̄m1 ··· x̄mn

]
=

[
A1

...
Am

]
[ X̄1, ··· , X̄n ] (3)

The equation can be written concisely as W2m×n =
M2m×3S̄3×n, where W is called the tracking matrix; M
and S̄ are called the motion matrix and shape matrix re-
spectively. It is evident that the rank of the tracking matrix
is at most 3, and the rank constraint can be easily imposed

by performing SVD on W and truncating it to rank 3. How-
ever, the decomposition is not unique since it is only defined
up to a nonsingular linear transformation matrix H3×3 as
W = (MH)(H−1S̄). Actually, the decomposition is just
one of the affine reconstructions of the object. By inserting
H into the factorization, we can upgrade the reconstruction
to the Euclidean space. Many researchers utilize the metric
constraints of the motion matrix to recover the transforma-
tion [13, 15], which is indeed a self-calibration process with
simplified camera parameters.

Under perspective projection (1), the factorization equa-
tion can be formulated as[

λ11x11 ··· λ1nx1n

...
. . .

...
λm1xm1 ··· λmnxmn

]
=

[
P1

...
Pm

] [
X̄1, ··· , X̄n

1, ··· , 1

]
(4)

or concisely as Ẇ3m×n = M3m×4S4×n, where Ẇ is
called the scaled tracking matrix, and its rank is at most 4 if
a consistent set of projective depths are present. Obviously,
any such factorization corresponds to a valid projective re-
construction which is defined up to a projective transforma-
tion matrix H4×4. We can still use the metric constraint to
recover the matrix.

The most difficult part for perspective factorization is to
recover the projective depths that are consistent with (1).
One method is to estimate the depths pairwisely from the
fundamental matrix and then string them together [20]. The
disadvantage of the method is the computational cost and
possible error accumulation. The other method is to start
with initial depths λij = 1, and iteratively refine the depths
by reprojections [9, 10]. However, there is no guarantee that
the procedure will converge to a global minimum.

2.3. Nonrigid factorization

When the object is nonrigid, many studies assume that
the nonrigid structure is approximated by a linear combina-
tion of k rigid shape bases as S̄i =

∑k
l=1 ωilBl [4], where

Bl ∈ R
3×n is the shape base that embodies the princi-

pal mode of the deformation, ωil ∈ R is the deformation
weight. Under this assumption and affine camera model,
the nonrigid factorization is modeled as[

x̄11 ··· x̄1n

...
. . .

...
x̄m1 ··· x̄mn

]
=

[
ω11A1 ··· ω1kA1

...
. . .

...
ωm1Am ··· ωmkAm

][
B1

...
Bk

]
(5)

It can be expressed in matrix form as W2m×n =
M2m×3kB3k×n, where M and B are called the nonrigid
motion and shape matrices. It is easy to see from (5) that
the rank of W is at most 3k. The decomposition can be
achieved by SVD with the rank constraint, which is defined
up to a nonsingular transformation matrix H3k×3k. If the
transformation is known, Ai, ωil and S̄i can be recovered
accordingly from M and B. The computation of H is more



complicated than that in the rigid case. Many researchers
[2, 8, 19] adopt the metric constraints of the motion matrix.
However, the constraints may be insufficient when the ob-
ject deforms at varying speed. Xiao et al. [25] propose a
basis constraint to solve the ambiguity.

Similarly, the factorization under perspective projection
can be formulated as [26]

Ẇ3m×n =


 ω11P

(1:3)
1 ··· ω1kP

(1:3)
1 P

(4)
1

...
. . .

...
...

ωm1P
(1:3)
m ··· ωmkP(1:3)

m P(4)
m





 B1

...
Bk
1


 (6)

where P(1:3)
i and P(4)

i denote the first three and the fourth
columns of Pi respectively. We denote (6) as Ẇ3m×n =
M3m×(3k+1)S(3k+1)×n. The rank of the correctly scaled
tracking matrix is at most 3k + 1. The decomposition is de-
fined up to a transformation H(3k+1)×(3k+1), which can be
determined in a similar while more complicated way. Just
as in rigid case, the most difficult part is to determine the
projective depths. Since there is no pairwise fundamental
matrix for deformable features, we can only use the iter-
ative method to recover the depth, but it is more likely to
converge to a local minimum in nonrigid situation.

3. Quasi-Perspective Projection

We will propose a quasi-perspective projection model to
approximate the imaging process more accurately.

Proposition 1 Suppose the camera undergoes small rota-
tions with respect to the scenario, then the variation of the
projective depth λij is mainly proportional to the depth of
the space point, and the projective depth of a point at any
view has the same trend of variation.

Proof: Without loss of generality, let us set the world coor-
dinate system on the object with the camera located in the Z
direction of the world frame. Suppose the camera parame-

ters corresponding to the i-th frame are Ki =
[ fi ςi u0i

0 κifi v0i

0 0 1

]
,

Ri = [r1i, r2i, r3i]T and Ti = [txi, tyi, tzi]T , respectively.
Then the projection matrix can be written as

Pi = Ki[Ri,Ti]

=

[
fir

T
1i+ςir

T
2i+u0ir

T
3i fitxi+ςityi+u0itzi

κifir
T
2i+v0ir

T
3i κifityi+v0itzi

rT
3i tzi

]
(7)

Let us decompose the rotation matrix into the rotations
around three axes R(γi)R(βi)R(αi), where αi, βi, γi de-
note the rotation angles around the X, Y and Z axes, re-
spectively. Then we have

Ri=R(γi)R(βi)R(αi)

=
[ Cγi −Sγi 0
Sγi Cγi 0
0 0 1

] [ Cβi 0 Sβi

0 1 0
−Sβi 0 Cβi

] [ 1 0 0
0 Cαi −Sαi

0 Sαi Cαi

]
(8)

=
[ CγiCβi CγiSβiSαi−SγiCαi CγiSβiCαi+SγiSαi

SγiCβi SγiSβiSαi+CγiCαi SγiSβiCαi−CγiSαi

−Sβi CβiSαi CβiCαi

]

where ′S′ stands for sine function, and ′C′ stands for cosine
function. By inserting (7) and (8) into (1), we have

λij = [rT
3i, tzi]Xj (9)

= −(Sβi)xj + (CβiSαi)yj + (CβiCαi)zj + tzi

When the rotation angles are small, we have Sβi �
CβiCαi and CβiSαi � CβiCαi. Thus (9) can be approxi-
mated by

λij ≈ (CβiCαi)zj + tzi (10)

All the features {xij |j = 1, ..., n} in the i-th frame cor-
respond to the same rotation αi, βi, γi and translation tzi.
It is evident from (10) that the projective depths of a point
in all frames have the same trend of variation, which are in
proportion to the value of zj of the space point. �

Corollary 2 Under Proposition 1, if we further assume that
the distance of the camera to the object is greatly larger
than the depth of the object, i.e. tzi >> zj , then the ratio
of {λij |i = 1, ..., m} corresponding to any two different
frames can be approximated by a constant.

Proof: Let us take the first frame as a reference. Since
CβiCαi ≤ 1 and tzi >> zj , then from

µi =
λ1j

λij
≈ (Cβ1Cα1)zj + tz1

(CβiCαi)zj + tzi
(11)

=
Cβ1Cα1(zj/tzi) + tz1/tzi

CβiCαi(zj/tzi) + 1
≈ tz1

tzi

we have λij = 1
µi

λ1j with µ1 = 1. �

According to Corollary 2, the projection (1) can be writ-
ten as 1

µi
λ1jxij = PiXj . Let �j = 1

λ1j
, and replace Pi

with µiPi, and Xj with �jXj , we have

xij = (µiPi)(�jXj) (12)

We call (12) the quasi-perspective projection. Compared
with perspective projection, the quasi-perspective assumes
that the projective depths between different frames are de-
fined up to a constant µi. This is more general than affine
model which assumes all projective depths equal to 1.

4. Quasi-Perspective Rigid Factorization

Under quasi-perspective projection (12), the factoriza-
tion equation of the tracking matrix can be expressed as[

x11 ··· x1n

...
. . .

...
xm1 ··· xmn

]
=

[
µ1P1

...
µmPm

]
[�1X1, · · · , �nXn] (13)

or written in short as W3m×n = M3m×4S4×n, which
is similar to perspective factorization (4). However, the



projective depths in (13) are embedded in the motion and
shape matrices, thus we do not need to estimate them ex-
plicitly. By performing SVD on the tracking matrix and
imposing the rank-4 constraint, W may be factorized as
M̂3m×4Ŝ4×n. However, the decomposition is not unique
since it is defined up to a nonsingular linear transformation
H4×4 as M = M̂H and S = H−1Ŝ.

We adopt the metric constraint [9] to compute the trans-
formation matrix. Let us denote H4×4 = [Hl|Hr], where
Hl and Hr are the first three and the last columns of H,
respectively. Suppose M̂i is the i-th triple rows of M̂, then
from M̂iH = [M̂iHl|M̂iHr], we know that

M̂iHl = µiP
(1:3)
i = µiKiRi (14)

M̂iHr = µiP
(4)
i = µiKiTi (15)

Let us denote Ci = M̂iQM̂T
i , where Q = HlHT

l is a
4×4 symmetric matrix. Suppose we adopt a simplified cam-
era model with only one parameter as Ki = diag(fi, fi, 1).
This is a safe assumption for most digital cameras, and it
was suggested that the principal points and aspect ratios are
insignificant for reconstruction [14, 26]. Then from

Ci = M̂iQM̂T
i = (µiKiRi)(µiKiRi)T

= µ2
i KiKT

i = µ2
i

[
f2

i 0 0

0 f2
i 0

0 0 1

]
(16)

we can obtain the following constraints.

Ci(1, 1) = Ci(2, 2) (17)

Ci(1, 2) = Ci(1, 3) = Ci(2, 3) = 0 (18)

Since the factorization (13) can be defined up to a global
scalar as W = MS = (εM)(S/ε), we may set µ1 = 1 to
avoid the trivial solution of Q = 0. Thus we have 4m + 1
linear constraints in total on the 10 unknowns of Q, which
can be solved via least squares. Ideally, Q is a positive
semidefinite symmetric matrix, then the matrix Hl can be
recovered from the following proposition [23].

Proposition 3 Suppose Q is a 4 × 4 positive semidefinite
symmetric matrix of rank 3. Then it can be decomposed as
Q = HlHT

l , where Hl is a 4 × 3 rank 3 matrix. Fur-
thermore, the decomposition can be uniquely written as

Q = HdHT
d with Hd =

[
h1 h2 h3
h4 h5 h6

h7 h8
h9

]
.

The proposition can be taken as an extension of Cholesky
Decomposition to the case of positive semidefinite symmet-
ric matrix. From the Proposition we know that Q is only
defined with 9 degrees of freedom. In case of noise data,
the recovered matrix Q may be negative definite, and fail
to decompose into HlHT

l or HdHT
d . In this case, we can

substitute Q in (16) with HdHT
d and solve the problem by

minimizing the following cost function

f(h) = min
m∑

i=1

(
C2

i (1, 2) + C2
i (1, 3) + C2

i (2, 3)

+(Ci(1, 1) − Ci(2, 2))2
)

(19)

where h is a 9-vector composed of the 9 elements in Hd.
The minimization scheme can be solved via any nonlinear
optimization techniques.

We now show how to compute Hr. From the quasi-
perspective equation (12), we have

xij = (µiP
(1:3)
i )(�jX̄j) + (µiP

(4)
i )�j (20)

For all the features in the i-th frame, their summation is

n∑
j=1

xij = µiP
(1:3)
i

n∑
j=1

(�jX̄j) + µiP
(4)
i

n∑
j=1

�j (21)

where µiP
(1:3)
i is recovered from M̂iHl, µiP

(4)
i = M̂iHr.

Since the world system can be chosen freely, we may set∑n
j=1(�jX̄j) = 0, which is equivalent to set the origin of

the world system at the gravity center of the scaled space
points. On the other hand, since the reconstruction is de-
fined up to a global scalar, we may simply set

∑n
j=1 �j = 1.

Thus (21) is simplified to

M̂iHr =
n∑

j=1

xij =
[ P

j uij
P

j vij

n

]
(22)

which provides 3 linear constraints on the four unknowns
of Hr. Therefore, we can obtain 3m equations from the
sequence and recover Hr via least squares. The solution
of Hr is not unique as it is dependant on the selections of∑n

j=1(�jX̄j) and
∑n

j=1 �j . Actually, Hr may be set freely
and we have the following proposition.

Proposition 4 Suppose Hl is already recovered. Let us set
the transformation matrix as H̃ = [Hl|H̃r], where H̃r is
any 4-vector that is independent with the three columns of
Hl. Then M̃ = M̂H̃ and S̃ = H̃−1Ŝ must correspond to a
valid motion and shape matrices.

The proof can be found in [23]. According to Proposition
4, the value of Hr can be set randomly as any 4-vector that
is independent to Hl. In practice, Hr may be set as follows.
Suppose the SVD decomposition of Hl is U4×4Σ4×3V3×3,
where U and V are two orthogonal matrices, Σ is a diag-
onal matrix of the three singular values. Let us choose σ
as any value between the biggest and the smallest singular
values, then we may set Hr = σU(4), where U(4) is the
last column of U. Such construction guarantees that H is



invertible and has the same condition number as Hl, such
that we can obtain a good precision in computing H−1. Af-
ter the correct motion and shape matrix are recovered, the
camera parameters and pose that correspond to each frame
can be recovered as follows.

µi = ‖M(1:3)
i(3) ‖ (23)

fi =
1
µi

‖M(1:3)
i(1) ‖ =

1
µi

‖M(1:3)
i(2) ‖ (24)

Ri =
1
µi

K−1
i M(1:3)

i , Ti =
1
µi

K−1
i M(4)

i (25)

where M(1:3)
i(t) denotes the t-th row of M(1:3)

i . The result
is obtained under quasi-perspective assumption, which is a
close approximation to the general perspective projection.
The solution may be further optimized to perspective pro-
jection by minimizing the image reprojection residuals.

f(Ki,Ri,Ti, µi,Xj) = min
m∑

i=1

n∑
j=1

|xij − x̂ij |2 (26)

where x̂ij denotes the reprojected image point computed
from perspective projection (1). The minimization process
is termed as bundle adjustment, which can be solved via
Levenberg-Marquardt iterations [10].

5. Quasi-Perspective Nonrigid Factorization

For nonrigid factorization, we still follow the assump-
tion to represent the nonrigid shape by weighted combi-
nation of k shape bases. Under quasi-perspective projec-
tion, the structure is expressed in homogeneous form with

nonzero scalars. Let Si =
[

S̄i

�T

]
=

[
�1X̄1, ··· , �nX̄n

�1, ··· , �n

]
be

the scale weighted structure associated with the i-th frame,
Bl = [�1X̄l

1, · · · , �nX̄l
n] be the l-th scale weighted shape

basis. Then we can easily have the following result.

Proposition 5 The scale weighted nonrigid structure can
be expressed as linear combination of k scale weighted

shape bases as Si =
[ Pk

l=1 ωilBl

�T

]
, where �T = [�1 · · · �n].

Under proposition 5, the quasi-perspective projection of
the i-th frame can be written as

Wi = (µiPi)Si = [µiP
(1:3)
i , µiP

(4)
i ]

[ Pk
l=1 ωilBl

�T

]
(27)

= [ωi1µiP
(1:3)
i , · · · , ωikµiP

(1:3)
i , µiP

(4)
i ]

[ B1···
Bk

�T

]

Thus the nonrigid factorization equation under quasi-
perspective projection can be expressed as

W3m×n =


 ω11µ1P

(1:3)
1 ··· ω1kµ1P

(1:3)
1 µ1P

(4)
1

...
. . .

...
...

ωm1µmP(1:3)
m ··· ωmkµmP(1:3)

m µmP(4)
m





 B1

...
Bk

�T




We can write the equation in matrix form as W3m×n =
M3m×(3k+1)B(3k+1)×n, which is similar to (6). However,
the difficult problem of estimating the projective depths is
avoided here. The rank of the tracking matrix is at most
3k + 1, and the factorization is again defined up to a trans-
formation matrix H3k+1. Let us denote H = [Hl,Hr],
where Hl and Hr are the first 3k and the last columns of
H. Then Hl can be recovered from the metric and the basis
constraints as that in [26]. The Proposition 4 is still applica-
ble to the nonrigid case except that Hr is a (3k + 1)-vector
here. Thus we can compute Hr in a similar way as that
in the rigid case. Finally, the projection matrices and de-
formation weights can be easily recovered from M by Pro-
crustes analysis [2, 19], and the structure corresponding to
each frame is thus recovered from Proposition 5.

6. Experimental Evaluations

6.1. Evaluation on quasi-perspective projection

We randomly generated 50 points within a cube of 20 ×
20 × 20 in space, the X, Y and Z values of the points are
shown in Fig.1(a). We simulated 10 images from these
points by perspective projection. The image size is set at
800 × 800. The camera parameters are set as follows. The
focal lengths are set randomly between 800 and 1200. The
three rotation angles are set randomly between ±5◦. The X
and Y positions of the cameras are set randomly between
±15, while the Z positions are set evenly from 200 to 220.
The true projective depths λij associated with these points
across the 10 views are shown in Fig.1(b1), where the val-
ues are given after normalization so that they have unit mean
value. We then estimate λ1j and µi from (10) and (11), and
construct the estimated projective depths from λ̂ij = λ1j

µi
.

The registered result is shown in Fig.1(b2). We can see from
the results that the recovered projective depths are similar to
the ground truths, and are generally proportional to the vari-
ation of the space points in Z direction. If we adopt affine
camera model, it is equivalent to setting all the projective
depths to 1. The error is obvious.

Influence of different imaging conditions to the quasi-
perspective assumption was also investigated. First, we fix
the camera position and vary the amplitude of the rotation
angles from ±2◦ to ±38◦ in steps of 4◦. At each step, we
check the relative error of the recovered projective depths,

which is defined as eij = |λij−λ̂ij |
λij

× 100(%). We car-
ried out 100 independent tests at each step so as to obtain
more statistically meaningful results. The mean and stan-
dard deviation of eij are shown in Fig.1(c1). We then fix
the rotation angles at ±5◦ and vary the relative distance of
the camera to the object (i.e. the ratio between the distance
of the camera to the object center and that of the object size)
from 2 to 20 in steps of 2. The mean and standard deviation
of eij at each step for 100 tests are shown in Fig.1(c2). The
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Figure 1. Evaluation on quasi-perspective projection. (a1)& (a2)
Coordinates of the synthetic space points; (b1)& (b2) the real and
the estimated projective depths; (c1)& (c2) the relative error of the
estimated depths vs. rotation angle and relative distance.

results show that the quasi-perspective projection is a good
approximation (eij < 0.5%) when the rotation angles are
less than ±20◦ and relative distance is larger than 8. Please
note that the results assume noise free data.

6.2. Evaluation on rigid factorization

We add Gaussian white noise to the initially generated
10 frames, and vary the noise level from 0 to 3 pixels with
a step of 0.5. At each noise level, we reconstructed the 3D
structure of the object which is defined up to a similarity
transformation with the ground truth. We register the re-
construction with the ground truth and calculate the mean
pointwise distances as the reconstruction error. The mean
and standard deviation of the error on 100 independent tests
are shown in Fig.2. The proposed algorithm (Quasi) is com-
pared with [13] under affine assumption (Affine) and [9]
under perspective projection (Persp). We then take these
solutions as initial values and perform the perspective opti-
mization by LM iterations. It is evident that the proposed
method performs much better than that of affine, the opti-
mized solution (Quasi+LM) is very close to that of perspec-
tive projection with optimization (Persp+LM).

We compared the computation time of different algo-
rithms. The program was implemented in Matlab 6.5 on an
Intel Pentium 4 PC with 3.6GHz CPU. In this test, we select
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Figure 2. Evaluation on rigid factorization. The mean (a) and stan-
dard deviation (b) of the reconstruction errors by different algo-
rithms vs. different noise levels.

Table 1. The average computation time of different algorithms.

Frame number 5 10 50 100 150 200
Quasi 0.015 0.016 0.047 0.156 0.297 0.531

Time (s) Affine 0.015 0.015 0.031 0.097 0.156 0.219
Persp 0.281 0.547 3.250 6.828 10.58 15.25

200 space points and vary the frame number from 5 to 200.
The real computation time (seconds) for different data set
are listed in Table 1, where the time for perspective projec-
tion is taken at the 10th iteration. Clearly, the computation
time of the proposed model is comparative to that of affine,
while the perspective factorization is computationally more
intensive than the other two models.

6.3. Evaluation on nonrigid factorization

We generated a synthetic cube with 7 evenly distributed
points on each visible edge. There are three sets of mov-
ing points on the adjacent surfaces of the cube that move on
the surfaces at constant speed as shown in Fig.3(a1). The
object can be taken as nonrigid with 2 shape bases. We gen-
erated 10 frames with the same camera parameters as in the
rigid case. We reconstructed the structure associated with
each frame by the proposed method as shown in Fig.3(a2)
and (a3). We can see that the structure after optimization
is visually the same as the ground truth, while the result
before optimization is a little bit deformed due to perspec-
tive effect. We compared the method with that under affine
assumption [25] and that under perspective projection [26].
The reconstruction errors at different noise levels are shown
in Fig.3(b), we have the same conclusion as in the rigid case
that the proposed method performs better than that of affine.

6.4. Evaluation on real image sequences

The method was tested on many real sequences. We will
report three results here. Please refer to the supplemental
videos for details of the test results.

The first test is on a post sequence with 8 images cap-
tured by Canon Powershot G3 camera. The image resolu-
tion is 1024 × 768. The post is a rigid object and we estab-
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Figure 3. Evaluation on nonrigid factorization. (a1) Two synthetic
cubes in space; (a2) the quasi-perspective factorization result of
the two frames superimposed with the ground truth; (a3) the struc-
ture after optimization. (b1)&(b2) the mean and standard deviation
of the reconstruction errors vs. noise level.

lished the correspondences by the system [21]. Totally 3693
reliable features were tracked across the sequence. Fig.4
shows the tracked features and the reconstructed 3D model
from different viewpoints. The recovered structure is visu-
ally plausible and realistic.

The second test is on a grid sequence also captured by
Canon G3 camera. There are 12 images with a resolution
of 1024 × 768. The scenario is three objects moving lin-
early in three directions on an orthogonal background. We

(a) (b)
Figure 4. Reconstruction result of the post sequence. (a) Two
frames from the sequence overlaid with tracked features and the
relative disparities shown in white lines; (b) the reconstructed
VRML model and wireframe shown from different viewpoints.

established 206 tracked features interactively across the se-
quence [24], where 140 features belong to the static back-
ground and 66 features belong to the three moving objects.
Fig.5 shows the reconstructed VRML models and the cor-
responding triangulated wireframes of two frames by the
proposed method. The dynamic structure of the scene is
correctly recovered by the algorithm.

The background of this sequence is two orthogonal
sheets with square grids. We take this as a ground truth
and compute the angle (unit: degree) between the two re-
constructed surfaces of the background, the length ratio of
the two diagonals of each grid and the angle formed by the
two diagonals. The mean errors of these three values are
denoted by Eα1, Erat and Eα2 respectively. We also calcu-
lated the relative reprojection error Erep. The comparative
results obtained by the three algorithms are listed in Table
2. The proposed method performs better than that of affine,
and is very close to that of perspective projection.

Table 2. Performance comparison on grid sequence.

Method Eα1 Eα2 Erat Erep

Affine/Affine+LM 2.35/0.96 0.92/0.37 0.15/0.07 5.66/2.25
Quasi/Quasi+LM 1.62/0.58 0.75/0.26 0.12/0.04 4.37/1.53
Persp/Persp+LM 1.28/0.52 0.63/0.24 0.10/0.04 3.64/1.46

The third test was on Franck sequence, which was down-
loaded from the European working group on face and ges-
ture recognition (www-prima.inrialpes.fr/FGnet/). We se-
lect 60 frames with various facial expressions for the test.
The image resolution is 720× 576, and there are 68 tracked
feature across the sequence. Fig.6 shows the reconstructed
models of 2 frames by the propose method. Different facial
expressions are correctly recovered, though some points are
not very accurate due to tracking errors. The result could be
used for visualization and recognition.

(a) (b) (c)
Figure 5. Reconstruction result of the grid sequence. (a) Two
frames from the sequence with tracked features, please note the
three moving objects; (b)&(c) the reconstructed VRML models
and wireframes of the two frames.



(a) (b) (c)
Figure 6. Reconstruction of different facial expressions in Franck
sequence. (a) Two frames of the sequence overlaid with the
tracked features; (b)&(c) the front and the side views of the re-
constructed VRML models and the corresponding wireframes.

7. Conclusions

In this paper, under the assumption that the camera is
far away from the object with small rotations, we proposed
and proved a quasi-perspective projection model. We ap-
plied the model to rigid and nonrigid factorization and pre-
sented a new method to recover the transformation ma-
trix. The proposed method is more accurate than that of
affine, and it avoids the difficult problem of computing the
projective depths in perspective factorization. Experiments
demonstrated the advantages and improvements over previ-
ous methods. It should be noted that the assumption can
usually be satisfied in many real applications. For long se-
quence taken around the object, we can simply divide the
sequence into several subsequences with small movements,
then register and merge the result of each subsequence to
obtain the structure of the whole object.
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