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Abstract

This paper describes a new passive approach to cap-
ture time-varying scene geometry in large acquisition vol-
umes from multi-view video. It can be applied to recon-
struct complete moving models of human actors that fea-
ture even slightest dynamic geometry detail, such as wrin-
kles and folds in clothing, and that can be viewed from
360◦. Starting from multi-view video streams recorded un-
der calibrated lighting, we first perform marker-less human
motion capture based on a smooth template with no high-
frequency surface detail. Subsequently, surface reflectance
and time-varying normal fields are estimated based on the
coarse template shape. The main contribution of this paper
is a new statistical approach to solve the non-trivial prob-
lem of transforming the captured normal field that is de-
fined over the smooth non-planar 3D template into true 3D
displacements. Our spatio-temporal reconstruction method
outputs displaced geometry that is accurate at each time
step of video and temporally smooth, even if the input data
are affected by noise.

1. Introduction

For creating high quality animations of real world scenes
in a computer, it is essential that accurate models of shape
and appearance are at hand. Hand-crafting detailed mov-
ing scene geometry is a cumbersome process, as it requires
tedious manual work or computationally expensive numer-
ical simulations (e.g. for clothing). The development of
scanning devices that deliver fine-grained shape models of
at least static scenes has therefore greatly facilitated ani-
mation production. Unfortunately, capturing high-quality
time-varying shape of dynamic scenes at the same level of
fidelity is still a big challenge. First approaches to reach this
goal were based on active video-based measurement, such
as structured light, or employed a combination of visual hull
and stereo. While the former approaches are merely usable
for small-scale scenes (e.g. faces) and interference makes
multi-view recording difficult, stereo approaches often fall

short in delivering the high level of accuracy that computer
animation requires (Sect. 2).

In contrast, we propose a new method to passively cap-
ture highly-detailed dynamic surface geometry of humans
from multiple video recordings under calibrated lighting.
Our algorithm capitalizes on and extends the ideas origi-
nally proposed in the work by Theobalt et al. [19]. In their
original work they first perform marker-less motion cap-
ture on the input data in order to make a coarse kinematic
template (shown in Fig. 1b) follow the motion of the actor.
Subsequently, they reconstruct a reflectance model for each
point on the surface, and exploit this knowledge to mea-
sure a dynamic surface normal field parametrized over the
smooth template. While this representation was sufficient
for their relightable 3D video rendering application, they
did not approach the difficult problem of converting a poten-
tially noise-contaminated normal field parametrized over an
arbitrarily shaped smooth surface into highly-detailed time-
varying scene geometry.

Our paper allows us to do exactly the latter. Our first con-
tribution is an improvement over Theobalt et al.’s original
surface reflectance and normal estimation approach which
now employs robust statistics to handle sensor noise more
faithfully, Sect. 3.2. Our second and most important contri-
bution is a new spatio-temporal deformation framework that
enables us to transform the moving template geometry and
the time-varying normal field into true spatio-temporally
varying scene geometry that reproduces geometric surface
detail at millimeter-scale accuracy. Standard normal field
integration schemes are not feasible in this setting as they
often perform poorly in the presence of noise and as they
do not easily generalize to the case of arbitrarily oriented
base surfaces in 3D. In contrast, we formulate the problem
as a spatio-temporal Markov Random field such that we can
reconstruct fine-grained geometry that is spatially accurate,
as well as temporally smooth, even if the input was affected
by noise.

We demonstrate and validate the accuracy of our method
based on several sequences that were kindly provided to us
by the authors of [19], Sect. 5.
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Figure 1. Input video frame (a), smooth 3D template model in
same pose (b), our detailed 3D surface model with true geomet-
ric detail such as wrinkles on the shirt (c).

2. Related Work

Nowadays, most systems that can capture dynamic scene
geometry at millimeter scale accuracy are restricted to con-
fined spatial volumes, e.g. structured light systems for facial
performance capture [22]. Mainly due to interference and
spatial resolution issues, it is hard to apply these methods
for capturing humans from multiple views. While a com-
bination of shape-from-silhouette and stereo is one way to
approach the latter scenario, the inherent difficulty and lack
of robustness in stereo make it hard to achieve very high
accuracy and resolution [6, 18].

An alternative to normal stereo in a static case which has
the potential to capture fine-grained surface detail is pho-
tometric stereo, a variant of shape-from-shading. In pho-
tometric stereo one makes assumptions about surface re-
flectance properties to recover normal orientation from im-
ages taken under varying lighting [20, 23]. It has also been
tried to simultaneously estimate reflectance (e.g. BRDF in-
formation) and normal data from a variety of 2D images
which were taken under calibrated lighting [9, 10]. In this
single 2D view case, normal field integration schemes can
be applied to transform orientation data into true highly-
detailed height values [7, 3]. Chang et. al [5] used level set
methods to integrate multi-view normal fields.

While it is feasible to estimate BRDF and normal ori-
entation also for more general static 3D objects that were
photographed under a variety of viewpoints and light di-
rections [16], the deformation of geometry based on nor-
mals parametrized over a general 3D shape is non-trivial.
Standard integration schemes (assuming orthographic pro-
jection and height fields that are parametrized over a plane)
are not applicable anymore since absolute 3D position has
to be recovered and coherence of the displacements over
non-planar geometry needs to be assured.

One way to attack this problem is to measure 3D position
approximately, e.g. by stereo or structured light scanning,
and use normal information obtained via shape from shad-
ing to improve the initial position estimates and the degree
of surface detail [11]. While early work in this direction
produced comparably coarse 3D geometry [8, 15], the work
by Nehab et al. [17] produces detailed models of static
objects by refining scanned 3D point positions until photo-
metrically measured normals are well approximated. Jones
et al. [13] applied the latter technique to improve captured
dynamic face geometry, but they did not formulate it as a
spatio-temporal problem nor does their setup scale easily to
larger scenes.

We capitalize on this idea as well but develop a more
advanced reconstruction approach suitable for large-scale
dynamic scenes. In contrast to previous work, our approach
generates geometry that is accurate and detailed at each time
step, and that is coherently deforming over time. We also
incorporate characteristics of measurement noise into the
reconstruction process by posing our problem as a spatio-
temporal Markov Random Field (MRF).

Our starting point is the work and data by Theobalt et
al. [19] who capture shape, motion, reflectance and time-
varying normals of human actors from only a handful of
synchronized video recordings under calibrated lighting.
Their method parametrizes shape motion and reflectance
based on a smooth template body model that lacks any ge-
ometric detail. In this paper, we improve their reflectance
and normal field estimation approach by using robust statis-
tics. We then propose a new spatio-temporal MRF frame-
work which transforms smooth geometry and normals into
highly detailed dynamic scene geometry even in the pres-
ence of notable measurement noise. As we can process nor-
mal fields over arbitrarily shaped time-varying base surfaces
in 3D we can capture time-varying geometry at detail levels
unparalleled by any related approach, such as purely stereo-
based reconstruction methods mentioned earlier.

3. Problem Statement

Our goal is to passively reconstruct accurate and highly
detailed dynamic surface geometry of humans from only
a handful of synchronized video recordings, Sec. 3.1 and
Fig. 2. To this end, the motion of the actor in input video
recordings is tracked by means of the marker-less mo-
tion estimation approach presented in [19]. This method
parametrizes dynamic scene geometry in the form of an
adaptable kinematic body template with smooth surface ge-
ometry (the tracked geometry for all our test data was kindly
provided to us by the authors of the original work). If the
original video sequences were recorded under calibrated
lighting, surface reflectance properties, i.e. per-surface-
point BRDfs, as well as dynamic normal maps can be es-
timated as shown in [19]. We pick up and extend the ideas



Figure 2. Overview: The tracked smooth template model (left),
along with per-texel refined normal field (top) and per-texel BRDF
parameters (bottom) are used to estimate detailed time-varying
surface geometry (right).

presented in their original paper such that we can use the
same acquisition setup to acquire dynamic geometry at an
unprecedented detail level. We demonstrate our method on
sequences that were kindly provided to us by the authors of
the original work.

To achieve our goal, we first modify the original BRDF
estimation pipeline by including robust statistics into the
reconstruction framework, Sect. 3.2. Thereafter, we esti-
mate dynamic normal (bump maps) from the input video
sequences that are defined over the smooth template ge-
ometry, Sect. 3.3. Finally, we develop a spatio-temporal
Markov-Random-Field-based surface refinement procedure
which is one of the first to enable integration of normal
fields on arbitrarily shaped time-varying template geome-
try. Our new spatio-temporal framework captures at the
same time spatially accurate and temporally smooth geom-
etry and handles sensor noise robustly, Sect. 4.

3.1. Data Acquisition and Template Motion Estima-
tion

The basics we can capitalize on, i.e. the acquisition pro-
cedure, the employed template model and the marker-less
motion estimation approach have been described in detail
in [19]. In this and the following subsections, we briefly re-
capitulate the original approach for ease of understanding,
and point out some important modifications we made.

Input sequences are recorded from eight static video
cameras running at 1004x1004 pixels resolution, 25 fps, and
12 bit color resolution. the cameras are arranged in an ap-
proximately circular setup around the center of the scene.
The whole scene background is draped in black molleton
and the only light sources in the scene are two calibrated
HMI lamps placed in opposite corners of the acquisition
space. For each person and each set of clothing, two types

of sequences are captured. In the so-called reflectance es-
timation sequence (RES), the person strikes a static body
pose and slowly rotates on spot. From this sequence, a
BRDF model for each surface point is estimated. The sec-
ond type of sequence, the dynamic scene sequence (DSS),
shows arbitrary motion of the person and is used for dy-
namic normal map and dynamic geometry reconstruction.

The shape and motion of the actor is parametrized by
means of a template model comprising of a kinematic skele-
ton, as well as a closed triangle mesh M that represent sur-
face geometry, Fig. 2. In a preprocessing step the model
is scaled and deformed to match the outline of the recorded
actor. A marker-less silhouette-based motion estimation ap-
proach is employed to capture the pose of the actor at each
RES and DSS frame, yielding a sequence of configurations
of M in T poses M(t), t = 1, . . . , T .

Prior to reconstruction, M is parametrized over a 2D
square by means of the conformal mapping technique de-
scribed in [21]. To this end, the closed mesh is manually cut
open during pre-processing to obtain a free boundary. In the
following, we refer to parametrized positions on the tem-
plate surface as ui,j , and to the corresponding positions in
3D space at time t as x(ui,j , t). Based on this parametriza-
tion, all input camera images are transformed into the tex-
ture domain. Prior to texture image generation, an image-
based texture warping approach is applied in order to cor-
rect misregistrations due to shifting apparel, as well as due
to mismatches between template and true geometry [19].

3.2. BRDF Estimation

After performing marker-less motion capture for each
frame of multi-view video, the position and orientation of
each ui,j with respect to the calibrated acquisition appara-
tus is known. In other words, due to the scene motion it
becomes possible to collect for each point on the surface
a variety of reflectance samples, each representing the ap-
pearance of the point from known outgoing viewing and in-
coming lighting directions. The method described in [19]
exploits this fact in order to estimate for each ui,j a static
parametric BRDF model from the RES.

In their original approach, an energy minimization
framework was used to compute parameters of an isotropic
Lafortune BRDF fr at each surface point such that the mea-
sured data are best approximated [14]. In our research, we
replace their original least-squares approach by a regression
framework based on robust Huber statistics [12] as this en-
ables us to obtain more faithful estimates in the presence of
non-Gaussian measurement noise. For each surface point
ui,j on the template, we minimize the following energy
functional to find an isotropic BRDF that reproduces the



data in the RES:

EBRDF(ρ(ui,j)) =
T∑
t

8∑
c

κc(ui,j , t)H
(

Sc(ui,j , t)−

[
2∑
e

λe(ui,j , t)(t)(fr(l(ui,j , t),vc(ui,j , t), ρ(ui,j))

· Ie(no(ui,j , t) · l(ui,j , t)))]
)2

. (1)

EBRDF is evaluated separately in the red, green and blue
color channel. Sc(ui,j , t) denotes the color of ui,j measured
from camera c, and Ie denotes the intensity of light source
e. The viewing directions vc(ui,j , t) and light source di-
rections le(ui,j , t) are expressed in ui,j’s local coordinate
frame based on the (template) surface normal no(ui,j , t).
κc(ui,j , t) and λe(ui,j , t) encode the visibility of point ui,j

with respect to cameras and light sources, respectively. As
opposed to the original least-squares minimization frame-
work of [19] which assumes Gaussian noise in reflectance
samples and thus may over-weight outliers, we employ ro-
bust Huber statistics H as penalizer, see Appendix. H pre-
serves the advantageous convergence properties of an L2

function for inliers, but resorts to an L1 norm for samples
that are likely to be outliers. By this means we implicitly
model our noise characteristics more faithfully as a heavy-
tail Gaussian. In order to find the clip threshold k for H
we analyze the variance in captured reflectance samples in
a series of consecutive video frames in which the person re-
mains in a static pose relative to the cameras. For each color
channel and each material we compute the average variance
and use the squared values as material- and color-specific
clip thresholds.

In practice BRDF parameters are estimated in a multi-
step procedure. First, materials on the surface are clustered
based on average diffuse color and a specular BRDF com-
ponent is estimated for each material separately. There-
after, a per-texel diffuse model is fit to each surface point
after subtracting the previously estimated specular compo-
nent from each sample. Please note that we only use sam-
ples seen by exactly one light source for estimation, which,
due to the positioning of lamps in the studio, in reality is
true for over 90% of samples. For numerical minimization,
we employ the L-BFGS-B minimizer [4].

3.3. Dynamic Normals from Reflectance

Given the detailed BRDF data estimated from the RES, a
variant of shape from shading can be employed to compute
an accurate normal map for the whole template at each time
step of a DSS sequence. Despite being parametrized over
the smooth template this normal map contains information

on true time-varying geometric detail in the form of a direc-
tion field. To compute a new normal direction nm(ui,j , t) at
each time step, the following energy is minimized for each
surface location:

Enormal(nm(ui,j , t)) = ωEBRDF(ρ(ui,j))+
µ∆(nm(ui,j ,no(ui,j)))ε. (2)

Here, EBRDF is the original BRDF error term instantiated
with the previously computed BRDF parameters. Unfortu-
nately, the problem of solving for the normal direction by
only considering samples from a single video frame - i.e. a
single light source position - is ill-conditioned. Therefore,
we make the assumptions that the normal direction in a lo-
cal frame does not change in a small time interval, and solve
for a constant normal direction over a small time window of
subsequent frames (typically 5) in which ui,j has been seen
under different light directions. Finally, normal directions
are interpolated in the time domain.

To further regularize our solution, we add an additional
term ∆(nm(ui,j , t),no(ui,j , t))ε that penalizes deviations
∆ of the measured normals from the original normals of
the smooth template. The penalty exponent ε, as well as
the importance weights ω and µ that sum to 1, are found
through experiments.

4. Adding Spatio-temporally Coherent Geo-
metric Surface Detail

Dynamic normal fields encode information on high-
frequency surface detail without physically deforming the
smooth template surface over which they are parametrized.
This information is sufficient to render relightable 3D
videos of humans from many angles apart from [19] grazing
ones. However, true 3D time-varying geometric detail is es-
sential in many production quality animation settings where
full global illumination renderings are expected. Only true
deformed surface geometry will enable correct appearance
of the shape under the final lighting simulation.

In the following, we therefore present a new data fu-
sion framework that transforms the original setup for re-
lightable 3D video capture into a system for high-quality
capture of detailed dynamic surface geometry. Our method
is grounded on the assumption that our smooth template, es-
sentially capturing low frequency geometry, is already well-
aligned with the input.

Our algorithm estimates for each surface point ui,j on
the smooth template at each time step t a 3D displacement
vector d(ui,j , t) that yields the true 3D position of the point
u at t as xd(ui,j , t) = x(ui,j , t) + d(ui,j , t). Since the true
displacements are expected to be small, it is safe to assume
that the displacement direction is always along the direction
of template normals.



As our measurements are potentially contaminated by
noise, we employ a statistical framework to robustly find
the most likely field of surface displacements given the data.
To achieve this purpose we model the joint posterior distri-
bution of the field of displacements at each time step as a
Markov Random Field (MRF) which takes the form

p(d(ui,jt, ) |nm(ui,j , t),M(t)) =
1
Z

e−(αΦ(t)+βΨ(t)+γΩ(t)+δΞ(t)) , (3)

where Z is a normalization constant, Φ(t) models our mea-
surement process, and Ψ(t), Ω(t) and Ξ(t) are prior po-
tentials. α,β, γ and δ are weighting factors summing to 1.
Empirically we found that values of α = 0.6, β = 0.1,
γ = 0.2 and δ = 0.1 produce most decent results (see also
Sect. 5 for a discussion). The spatio-temporal neighborhood
structure of our MRF connects each surface location to the
four immediate spatially adjacent ones at the same time step
(easily found from our surface parametrization), as well as
to its instantiations at the two previous time steps.

As we are interested in the most likely solution given
the current data only and not in the full posterior, we find
the most likely surface as the maximum a posteriori (MAP)
hypothesis by minimizing the negative log-likelihood of (3)
as

d̂(ui,j , t) = argmin
d(ui,j ,t)

αΦ(t) + βΨ(t) + γΩ(t) + δΞ(t) .

(4)

In the following subsections, we first describe and motivate
how assumptions about noise characteristics are encoded in
measurement potentials, Sect. 4.1, and illustrate what prior
potentials are appropriate to properly condition our solution
space, Sect. 4.2. Finally, we describe how to practically
solve for a maximum a posteriori (MAP) surface even in
our large scenes with on average 350,000 surface points,
Sect. 4.3.

4.1. Measurement Potential

The information that captures the true shape of the
fine-grained surface details is encoded in our measured
surface normal field nm(u, t). Our measurement poten-
tial therefore aims at minimizing the angular difference
∆(nm(ui, t),nr(ui, t)) between the measured normals and
the normals of the displaced surface.

To properly constrain our problem, we don’t formulate
the error in normal field approximation based on individual
locations ui,j (i.e. individual texels in the texture domain),
but rather based on triangles obtained by regularly triangu-
lating all texels in the parametrization. Normals for the ob-
tained triangles are computed by simply averaging the nor-
mals at its three vertices (i.e. texels). Again, we capitalize

on the Huber function H to obtain more reliable estimates
in the presence of noise. Our measurement potential thus
takes the form

Φ(t) =
∑

D=(ua,ub,uc)∈D

H(∆(nm(D, t),nr(D, t))) , (5)

where D = (ua, ub, uc) is a triangle formed by adjacent
texels (surface points) ua, ub, and uc, and D is the set of
all such triangles. nr(D, t) is the normal field according to
the current deformed surface evaluated at D, and nm(D, t)
is the respective measured normal field. The clip threshold
k was chosen conservatively in such that deviations of new
and measured normals by more than 90◦ are considered out-
liers.

4.2. Prior Potentials

We make the general assumption that dynamic surfaces
in the real world are smooth in both space and time. In other
words, spatially adjacent surface locations should exhibit
similar displacements and the change in displacement for
the same surface location over time should be in reasonable
bounds as well. The spatial smoothness constraint penalizes
local deviation from an oriented plane in a 4-neighborhood
around each point and is encoded in the potential

Ψ(t) =
∑

i

∑
j

H(xd(ui−1,j , t) − 2xd(ui,j , t)+

xd(ui+1,j , t))+
H(xd(ui−1,j , t) − 2xd(ui,j , t)+
xd(ui+1,j , t)) ,

(6)

where xd(ui−1,j , t), xd(ui+1,j , t), xd(ui,j−1, t), and
xd(ui,j+1, t) are displaced 3D positions of surface locations
adjacent to ui,j . The clip threshold k of H in this case is
chosen such that differences in local surface normal orien-
tation of more than 30◦ are considered outliers.

Temporal smoothness is enforced by the potential

Ξ(t) =
∑

i

∑
j

(d(ui,j , t) − 2d(ui,j , t − 1)− (7)

d(ui,j , t − 2))2 .

This term favors a smooth rate of change of displacements
over time, or putting it differently, favors small ”accelera-
tion” in displacement change over time.

Lastly, we make the a priori assumption that displaced
surface locations should remain close to the original smooth
template shape. The latter constraint is essential as it pre-
vents our surface to drift arbitrarily far away from the orig-



Figure 3. Patch-based optimization. A single patch, its boundary
area, and its (blue) internal area (a). While the deformed surface is
computed, the overlapping patches are processed in a sequence as
shown in (b), (c) and (d) respectively. Only the interior patch area
is preserved after displacement computation for one patch.

inal template. Our second prior therefore takes the form

Ω(t) =
∑

i

∑
j

d(ui,j , t)2 (8)

4.3. Practical Implementation

The test sequences provided to us by Theobalt et al.
feature parametrizations of the smooth template of size
1024×1024 pixels. On average this corresponds to 350, 000
surface locations for which a displacement needs to be
found at each time step. Please note that we compute dis-
placements at a much higher level of granularity than the
vertex density of the original template which is typically
only 40,000. Parametrizations were obtained by manually
cutting the template open and unfolding it over a 2D square
by means of the conformal mapping technique described
in [21].

As we are only interested in a MAP solution to the final
surface, we can conveniently resort to standard off-the-shelf
L-BFGS-B technique [4] to minimize(4).

To keep optimization tractable in the light of our very
dense surface sampling, we also subdivide the overall sur-
face reconstruction problem into a series of smaller ones. In
practice, we subsequently compute displacements for indi-
vidual surface patches and successively merge information
from different patches to create the final result.

Each patch on our model corresponds to a square region
of surface locations in our parametrization domain. Further-
more, each such square region is composed of an interior
region and an exterior boundary area, Fig. 3. If we would
simply deform individual adjacent patches we would with
very high likelihood obtain discontinuities at patch bound-
aries since the mutual MRF dependencies across the rim
are not properly considered. To prevent this source of er-
ror, we arrange subsequent patches in an interleaving, half-
overlapping pattern, see Fig. 3b,c,d for the temporal se-
quence in which the patches are processed. Furthermore,
after the displacements for one complete patch were esti-
mated, we only preserve the displacement at the center of
the patch. The boundary regions are thus only employed to
initialize the optimization of any subsequent patch whose

center region overlaps with the boundary. All patches are
considered equal, thus the choice of the starting patch for
our optimization is arbitrary. Overall, this interleaved op-
timization pattern produces a high quality surface estimate
that preserves detail while preventing erroneous discontinu-
ities along boundaries, see Sect. 5 for further discussion.

5. Results and Validation

To demonstrate the results of our method, we have used
two captured real-world motion sequences that the authors
of [19] provided us. The data for each sequence comprises
of the moving low-detail template, all input image data (also
in texture format already), full calibration data (cameras and
lights), parametrization and warp-corrected texture coordi-
nates. The latter is a set of data which encodes information
on cloth shifting over the body’s surface which was detected
by a method detailed in [19].

The first sequence shows a scene in which the actor
wears mostly diffuse clothing and walks back and forth in
front of the cameras, Fig 5a,b. The RES (used for BRDF
estimation) is 30 frames long and the DSS (used for geome-
try capture) comprises 184 frames. In the second sequence,
the test subject wears a diffuse t-shirt and slightly specular
trousers, and performs a basic taichi motion, Fig. 1 and 5c.
While the RES contains again 30 frames, the actual motion
in the DSS is 110 frames long.

As can be seen in Fig. 5 and Fig. 1, and also in the ac-
companying video [1], our reconstructed actor model faith-
fully captures even subtle detail, in particular wrinkles in
clothing and folds, as true geometry. Fig. 4 zooms in on
certain areas of the body model to illustrate that our MRF-
based fusion method allows for reconstruction of subtle
folds whose width is in the range of a few millimeters. This
is a major improvement in shape quality over the original
smooth template which was lacking any such detail, Fig. 1b
and Fig. 4a,e. We would also like to point out that our final
result is not only very detailed and almost free of artifacts at
individual time steps, but due to the spatio-temporal MRF
framework also faithful and smooth over time, see video [1].
The latter shows the unprecedented ability of our method to
generate spatio-temporally smooth and detailed results even
in the presence of measurement noise.

Although our visual results show qualitatively that
we can measure highly-accurate scene geometry at sub-
triangulation resolution, we also want to provide a more
elaborate validation. Unfortunately, there exists no other
scanning technology that would provide us with ground
truth dynamic geometry at the same level of detail.

We therefore resort to another data set kindly provided to
us by Theobalt et al. This data set contains an RES in which
the actor strikes a static pose on a rotating turntable. In ad-
dition to the recording of the RES, a laser scan of the person
was taken during preprocessing. Since we were also given



the pose of the template at each frame, we were able to re-
construct the BRDF and normal map based on our method,
and could use our MRF framework to generate detailed sur-
face shape. Since the scan and template possess different
triangulations direct vertex comparison is infeasible. How-
ever, visual comparison of our result Fig. Additional 1e
(see supplementary material [2]) and the scanned ground
truth Fig. Additional 1b shows that all detail present in the
original scan is also present in the deformed template, and
that the resolution at which geometry was recovered is even
higher in our result.

The detailed geometry we deliver is not only beneficial
in high-quality animation applications, but also during 3D
video rendering. Since our final geometry is much closer to
the ground truth, it can be seen in Fig. Additional 2b that
even simple projective texturing of our shapes produces bet-
ter surface appearance than on the original template shown
in Fig. Additional 2a.

Typically, we reconstruct as many as 350,000 displace-
ment values over the template surface. Even at this detail
level and when using a small patch size of 16 pixels, it takes
moderate 5 to 6 minutes per time step of video to find the
final detailed surface. Optimal values for the parameters
α, β, γ and δ were found experimentally. To this end, we
used a sequence of 3 of the reconstructed detailed meshes
of sequence 1 as a ground truth and used their normal fields
as measured normal fields. reconstruction errors could now
be measured for a reasonable sample of combinations of
the coefficients. Optimal results are obtained for α = 0.6,
β = 0.1, γ = 0.2 and δ = 0.1 which were used in all our
experiments.

Our method is subject to a couple of limitations. An im-
portant assumption enabling us to properly localize our final
geometric solution in space is the one that the template is
close to the true geometry. Unfortunately, this assumption
is not entirely true for the head of the template as there may
be quite some differences to true hair style and face geom-
etry. Simple free-form deformation as performed by [19]
cannot compensate for this. Therefore, we exclude the head
from our reconstructions and note that this is a problem at-
tributed to the provided input data.

Secondly, the current template employed by Theobalt et
al. limits the types of scenes that we can handle to people
wearing not too wide apparel. However, this is not a general
limitation of our own contribution as we can easily apply
our method to coarse geometry reconstructed with any other
approach as well, as long as the geometry (triangulation) is
coherent over time.

The original taichi input sequence also shows some jitter
in the pose of the smooth template (slightly noticeable in
the video result [1]), possibly due to tracking inaccuracies.
We did not take any measures to compensate for this.

Finally, in any frame where a surface point is in shadow

(a) (b) (c) (d)

(e) (f)

(g) (h)

Figure 4. Our method can capture even subtle folds and wrinkles
whose size is in the range of a few millimeters only. Zoom-in
on leg: (a) smooth template, (b) template with texture, (c) color-
coded normal field, (d) our final result rendered in OpenGL using
Gouraud shading. (e)-(h) show a similar zoom onto the torso of the
subject in the walking sequence. Also here, surface details were
faithfully recovered in geometry.

from the light source, no normal direction can be recon-
structed and the template normal is used instead. In the
video [1], this effect is sometimes noticeable when the arm
casts a shadow on the torso. However, our method han-
dles this situation gracefully and produces the best possible
result given this hard-to-prevent occasional lack of data in
general moving scenes.

Despite these limitations we have presented one of the
first approaches to reconstruct high-quality and high detail
geometry of large dynamic scenes in a purely passive way.

6. Conclusion

We presented one of the first passive methods to re-
construct geometry of large dynamic scenes showing mov-
ing actors at unprecedented detail and accuracy from video
only. To this end, in a first step we built on a previ-
ous method from the literature that allows for capturing of
coarse geometry, surface reflectance and dynamic normal
maps. We then applied a new MRF-based spatio-temporal



(a) (b) (c)

Figure 5. Each pair of images shows, side-by-side, one original input video frame and the full 3D surface model with all geometric detail
rendered in OpenGL from the same perspective. The direct comparison shows that our method captures even subtle dynamic geometric
details in the actor’s clothing very accurately.

surface deformation approach that converts the geometric
details encoded in the normals into true 3D displacements
over the smooth template. Our method faithfully handles
typical heavy-tail measurement noise, and is one of the first
to allow for spatially accurate and temporally consistent
height reconstruction over curved dynamic base geometry.

Appendix

The Huber function H is defined as

H(R) =

{
1
2R2 , if |R| ≤ k

k|R| − 1
2k2 , if |R| > k

(9)

where k is the clip threshold [12]. dH
dR is continuous and

often referred to in the literature as the clip function.
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