
Abstract

A ray projection in the inverse-polar space is proposed
for recovering a projective transformation between two
segmented images. The images are converted from their
original Cartesian space to the inverse-polar space. Then,
the two ray projections—one shift-invariant and the other
shift-sensitive—of the inverse-polar images are computed
to create two sets of data. Based on the obtained
projection data, a two-step strategy is employed to recover
the projective transformation. In the first step, the shift-
invariant data are used to recover the four affine
parameters. In the second step, the shift-sensitive data are
used to recover the two projective parameters. The
remaining two translation-related parameters are
recovered in, e.g., an exhaustive search combined with the
two-step recovery strategy. The proposed approach has
been tested successfully to recover a variety of projective
transformations between real images.

1. Introduction
The recovery of projective transformations from

images taken from different viewpoints is an essential task
in computer vision. Methods such as the stratified
reconstruction rely on assumptions of the scene and
features extracted from the images. An alternative
approach is to extract the projective transformation
parameters from the contour of imaged regions (or
objects). Based on the concept of integral geometry [9],
the trace transform [4], a generalization of the Radon
transform [2, p. 505], has been proposed. It was
successfully applied to recovering similarity or affine
transformations between segmented images [4, 5].
Practical techniques for evaluating shift-invariant or shift-
sensitive one-dimensional (1-D) functions have also been
developed [4, 5, 10]. We extend these techniques in the
present work for recovering projective transformations.

In this paper, a ray projection in the inverse-polar
space, termed inverse-polar ray projection, is proposed to
solve the problem of recovering a projective trans-

formation between two segmented images. The proposed
recovering process makes use of information about the
shape and appearance of an imaged object. In particular,
three key contributions are made. First, the inverse-polar
transform, which was recently introduced for recovering
the two projective parameters [11], is extended as a
mathematical tool for recovering a complete projective
transformation. Secondly, a ray projection, a
generalization of the fan-beam projection [6, p. 92], is
proposed as a workhorse to produce data that are used to
determine the transformation. Finally, a feasible two-step
strategy for the recovering is established.

The proposed inverse-polar ray projection has its
unique features. This can be clarified by a comparison
between the recently introduced 1-D mappings [11] and
the present approach. First, in the previous case, the
projection parameters are derived directly from image line
matching. Thus, the recovery of the four affine parameters
suffers from the perturbation by the presence of the
projective ones. However, in the present case, the recovery
of the affine distortion can be completely isolated from the
projective one. Thus, the projective distortion has no
effect, at least geometrically, on the accuracy of the
recovered affine parameters. Secondly, the 1-D mappings
depend mainly on intensity values in a region, whereas the
contour of the region is used in the present approach.

A further clarification can be made by a comparison
between the trace transform [5] and the present approach.
First, the trace transform can be used to recover an affine
transformation. In contrast, the present approach can be
used to recover a general projective transformation.
Secondly, the trace transform applies a parallel-beam
projection, while the present approach employs a ray
projection. Finally, the ideas for evaluating the 1-D
functions are similar in both approaches. However,
mathematically, the present approach, where only one pair
of 1-D functions is employed, is much simpler than the
trace transform, where multiple triplets of functions are
used.
The rest of this paper is structured as follows. In Section

2, the inverse-polar ray projection for recovering
projective transformations between segmented images is
presented. Based on the inverse-polar ray projection, a
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two-step strategy is developed in Section 3 for recovering
the eight projective parameters. The experimental results
are presented in Section 4. Finally, the conclusions are
presented in Section 5, together with some related issues
and the future work.

2. Inverse-polar ray projection

2.1. Inverse-polar transform
A two-dimensional (2-D) projective transformation

from a point, � �� �Tyx,�x , in a source image to its

counterpart, � �� �Tyx ���� ,x , in a target image is:
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The projective transformation has eight independent
parameters, which are four affine ones, a, b, c, and d, two
projective ones, e and f, and two translation-related ones, g
and h, defined as the shift of the target projection center
relative to its source counterpart. Much work in motion
estimation has focused on finding the translation
parameters. Our focus in this work is on recovering the
affine and projective parameters.

An image patch can be thought of as a collection of
radial line segments from a pole in the patch so that each
image point is a point along a 1-D radial line (or ray). A
source point on a ray with radial angle � and radial
distance r can be represented as � �Trr �� sin,cos�x .
Similarly, the transformed point can be represented by

� �Trr �� ������ sin,cosx . Substituting these polar
expressions for x and x� into Eq. (1), and assuming the
two patches have no relative translation, the projective
transformation in the inverse-polar space becomes:
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where � � � ����� 1�I , � � � � � ������� � , rrI 1� ,
rrI ��� 1 , and two auxiliary parameters, affinely related

� ��� and projectively related � ��� , are defined as:
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From the second expression in Eq. (2), we see that after
converting a source image and its target counterpart from
the Cartesian space, I and I � , into the inverse-polar space,
IPI and IPI� , the projective transformation of a radial line
becomes linear. Simple relationships in terms of � ���I

and � ��� can be established between IPI and IPI� with
the help of the ray projection described in the next section.

2.2. Ray projection
A ray projection of an imaged object computes a 1-D

functional along each ray crossing the object from a pole.
In general, any 1-D (or radial) function, shift-invariant or
shift-sensitive, can fit the purpose of the ray projection. In
addition, depending on the shape of the object and the
location of the pole, a ray projection can cover either a
partial angle range (<2�), forming a fan shape, or the full
angle range (=2�), forming a disc shape. In that sense, the
proposed ray projection can be considered as a
generalization of the fan-beam projection [6, p. 92] where
the radial function is a line integral and the angular span of
projection is less than 2�. In the experiments, we illustrate
ray projections where the angle range of projection is
either less than or equal to 2�.

In the present work, a shift-invariant function and a
shift-sensitive function are employed. The former is a line
integral as used in the Radon transform [2, p. 505], the
fan-beam projection [6, p. 92] and the trace transform [5],
while the latter is a ratio of two line integrals as used in the
trace transform [5]. For conciseness, the following analysis
only takes IPI� as an example. However, all the derived
results should be applicable to IPI . Thus, these two
functions can be expressed as follows:
Shift-invariant radial function:

P: � ��
� ����
0

, IIIP rdrI � , (4)

Shift-sensitive radial function:

Q: � � � ���
�� �������
00

,, IIIPIIIPI rdrIrdrIr �� . (5)

If we directly compute the above functions, we have
to first transform an image into the inverse-polar space.
Instead, we can evaluate them in the polar space as:

� ��
� �����
0

2, rdrrI � , (6)
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3 ,, rdrrIrdrrI �� . (7)

We can see that the integrands, � � 2rrI ��� and � � 3rrI ��� ,
become infinite at the pole when � �0I � is nonzero. This
means that the pole of the ray projection needs to be
placed somewhere outside the object.
By applying the ray projection with the above properties

to the inverse-polar images, we can solve for the
projection parameters.

2.3. Recovery of projective transformation
Based on the inverse-polar ray projection, a two-step

approach is developed to recover projective parameters. In



the first step, the affine parameters, a, b, c and d are
recovered, while in the second step the two projective
parameters, e and f, are recovered.

2.3.1 Recovery of four affine parameters
Before making use of the shift-invariant radial

functional properties, we first establish a relationship
between two inverse-polar images IPI and IPI � . From the
second equation in Eq. (2), this relation can be directly
written as:

� � � � � � � �� �������� �������� ,,, IIIPIIPIIP rIrIrI . (8)
Then, by applying �����������	
������
�����������������

� � � � � �� ��� ��� n
I , (9)

where � � � �� ��� ,� IIP rI� , � � � �� ��� ������ ,� IIP rI and
1��n .
In order to solve for a, b, c and d, we proceed in a

two-step normalization of the two angular functions, � �� 
and � �� �� . A similar procedure has been proposed in [5]
for handling the angular functions derived from the trace
transform. The first step normalization reduces the power
of � ��� I to one. As a byproduct, � �� and � �� �� are
normalized. Thus, by raising both sides of Eq. (9) to the
power of n1 and rearranging, we obtain:

� � � � � �� ��� nn ��� , (10)

where � � � �� � n
n

1� and � � � �� � n
n

1��� . This states
that � �� ��n is the � �� n scaled by the affine factor � ���
defined in Eq. (3). Besides, � � and � are affinely related
via the first equation in Eq. (2). These two observations
illustrate that there exists a 22! affine transformation, A,
with four elements, a, b, c and d, between two regions, R
and R� , delimited by � �� n and � �� ��n [5, 11].

One way to determineA is through a normalization of
R and R� . This second normalization simplifies the
relation between R and R� from an affinity to a similarity
[1, 7]. The related procedure is to construct
transformations, 21�M and 21��M , from the second
moment matrices, M of R and M� of R� , and then to
normalize R and R� with the derived transformations. It is
worth noting that the matrix power, 21�M and 21��M ,
can be computed by using an eigenvalue method [3, p.
556].

After the normalization, we obtain two normalized
regions delineated by the normalized angular functions,

� �MnM � and � �MnM � �� . As an example, � �MnM � can
be computed from � �� n via a backward transform
technique as follows:
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where Ma , Mb , Mc and Md are the elements of 21�M .
Similarly, � �MnM � �� can be computed from � �� ��n as

above with 21��M taking over the role of 21�M .
As mentioned above, there is a similarity

transformation, S, between � �MnM � and � �MnM � �� ,
which can be expressed as follows:

RAMMS s��� � 2121
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where s is an isotopic scaling (assuming 0#s without loss
of generality), and R is a rotation by angle 0M� . To
determine S, we need first to determine 0M� by 1-D
mapping � �MnM � and � �MnM � �� with the normalized
cross-correlation (NCC) as similarity measure. Then, we
need to determine s as a ratio of the medians of two
overlapping segments, � �MnM � and � �MnM � �� , by which

0M� has been detected with a maximal NCC.
Using Eq. (12), we can compute S and, finally,

recover the 22 ! affine matrix A as:
2121 ��� RMMA s , (13)

where 21M� and 21�M are normalized.
It is worth noting that the above derivation

demonstrates mathematically that the affine part of the
distortion of an image can be extracted from its general
projective one in the inverse-polar space. This unique
feature of the inverse-polar ray projection is verified
experimentally later.

2.3.2 Recovery of two projective parameters
After determining the four affine parameters, we can

recover the two projective parameters, e and f by invoking
the shift-sensitive radial functional properties. In
particular, we apply Q to both sides of Eq. (8) and obtain:

� � � � � � � �� ����$���$ ���� n
I , (14)

where � � � �� ���$ ,Q IIP rI� and � � � �� ���$ ������ ,Q IIP rI . It
is worth noting that n is always equal to �1 for shift-
sensitive functions [5]. Also, since � � � ����� 1�I and
� � � � � ������� � , we can rewrite the above equation as:

� � � � � � � ��$�$���� ���� . (15)



After computing � ��� via Eq. (3) and evaluating � ��$
and � ��$ �� via the inverse-polar ray projections, we can
compute � ��� using Eq. (15).

From Eq. (3), we know that � ��� contains the two
projective parameters, e and f. Thus, to solve for e and f,
we need two constraints. Here, we compute e and f as the
medians of sequences of ie and if . Each ie and if in
the sequences are derived using a pair of values of � ��� ,
i.e., � � � �� ��%���� �ii , , where the two angles, i� and

�%� �i , are in the angle range � �21,�� . For �%� �i to be
in � �21,�� , we need to compute it as an angle modulo the
angular span, 12 �� � . For simplicity, the angle difference,

�% , is kept constant for all pairs.
In particular, two constraints from � � � �� ��%���� �ii ,

can be expressed as:
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Solving these linear equations, we obtain ie and if as:
� � � � � � � �� � � �
� � � � � � � �� � � ��
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In the above computation, given one � �i�� , we have to
choose another, � ��%�� �i , �% apart. For both � �i�� and
� ��%�� �i to be able to provide independent information,

�% should be as large as possible. On the other hand, to
avoid � � 0sin ��% in the above computation, �% cannot
be as large as �. Thus, the maximal possible �% equals
2& , half way between � �i�� and its opposite, � �&�� �i .

3. Algorithm
Based on the inverse-polar ray projection described

above, an algorithm for recovering a projective
transformation between two segmented images is outlined
below:
(1) Initialization:

'( Acquire two segmented image patches, a source
image and a target image.

'( Set the projection center of the source image patch
outside the object.

'( Compute � �� for the source image patch with the
pole at the projection center according to Eq. (6).

'( Determine � �MnM � by the two-step normalization

of � �� according to Eqs. (10) and (11). 21�M is
also determined.

'( Compute � ��$ for the source image patch with the
pole at the projection center according to Eq. (7).

'(Set a search range for the projection center of the
target image patch to, for example, � �7,7� around a
pre-estimated value.

(2) Iterate the following two steps for each point in the
search range of the target image patch and update
results:
Step 1: Recovering the four affine parameters:
o Compute � �� �� along each ray from the
projection center of the target image patch
according to Eq. (6).

o Determine � �MnM � �� by the two-step
normalization of � �� �� according to Eqs. (10)

and (11). 21M� is also determined.
o Determine 0M� by 1-D mapping � �MnM � and

� �MnM � �� , and set R according to Eq. (12).
o Determine s as a ratio of the medians of

� �MnM � and � �MnM � �� .
o Recover the affine transformation, A, according
to Eq. (13).

Step 2: Recovering the two projective parameters:
o Compute � ��$ �� along each ray from the
projection center of the target image patch
according to Eq. (7).

o Compute � ��� according to Eq. (15).
o Compute the two projective parameters, e and f,
as medians of sequences ie and if according to
Eq. (17).

Update results:
Compute the 2-D similarity (NCC) between the
source image patch and the target counterpart and
update the records for the recovered projective
transformation and the target projection center if
NCC is higher.

4. Experimental Results
We experimentally verify that the proposed inverse-

polar ray projection can be used to recover a general
projective transformation. Our test set consists of:

278278! “key” (Fig. 1), 202202 ! “lock” (Fig. 1),
480640! “stop sign” (Fig. 6) and 480640 ! “fish” (Fig.

6). Transformations between images are either similarity,
affine or projective ones. We use global thresholding to
segment the object, each of which is less than 150 pixels in
each dimension. In two experiments, we use synthetic
transformation so that we can compare the recovered
parameters with the ground-truth. In these experiments,
image warping is performed by the bilinear interpolation.

To show that the angle range of ray projections can
vary in � �&2,0 , the projection centers are placed
differently in source images. For image set “key”, the



centers are inside the hole, so that the ray projection
covers the full angle range. For the other three image sets,
the centers are outside the objects. Thus, the related ray
projections cover only a partial angle range. However, for
comparison, each recovered transformation is presented as
if the source projection center were at the center of the
source image. In all cases, the ray projection is performed
in the polar space with an angular sampling interval 1° and
a radial sampling interval 1 pixel.

Recovered transformations are evaluated as follows.
First, a recovered transformation is compared with its
ground truth if available. Secondly, a similarity measure
(NCC) is computed for each pair of matching image
patches.

4.1. Recovery of transformations for zoom and
rotation

Results from synthetic data. Two synthetic image pairs
have been tested. A pair is used to recover the similarity
Transformation (1) listed in Table 1; the transformation is
a 0.5× digital zoom and a rotation of 60°. The recovered
transformation is listed in Table 1 as Transformation (2).
We can see that the recovered values are close to their
ground truth counterparts. The transformed and
reconstructed images are shown in Fig. 2. The obtained 2D
similarity measure is 0.963195 for Transformation (2).

The pair is used to check the projective effect on the
recovery of a similarity transformation listed in Table 2 as
Transformation (3). The recovered transformations are
shown in Table 2 as Transformation (4). The recovered
values are in a very good agreement with the ground truth.
This gives an experimental support to the theoretic
analysis that the affine distortion can be separated from a
general projective one. The transformed and reconstructed
images are shown in Fig. 3. The obtained similarity
measure is 0.947707 for Transformation (4).

Results from real data. A real image pair is tested with
actual perspective changes captured in the images. The
recovered transformations are listed in Table 5 as
Transformation (9) and shown in Fig. 7. The obtained 2D
similarity measure is 0.965766.

4.2. Recovery of transformations for viewpoint
changes

Results from synthetic data. Two synthetic image pairs
have been tested. A pair is used to recover the affine
transformation (5), listed in Table 3. This transformation is
actually extracted from other real image pairs [8]. The
recovered transformation is listed in Table 3 as
Transformation (6). The transformed and reconstructed

images are shown in Fig. 4. The obtained 2D similarity
measure is 0.968325.

The other pair is used to check again the projective
effect on the recovery of an affine transformation.
Transformation (7) in Table 4 adds two new projective
parameters. The recovered transformation is listed in Table
4 as Transformation (8). The recovered values are again in
a good agreement with the ground truth. This gives a
second experimental support to the above analysis that the
affine parameters can be determined in the presence of
projective distortion. The images are shown in Fig. 5. The
similarity measure is 0.954690.

Results from real data. A real image pair is tested with
real perspective changes. The recovered transformation is
listed in Table 5 as Transformation (10) and shown in Fig.
8. The obtained 2D similarity measure is 0.946382. Our
direct experimental results (Table 5) include the detected
projection centers of the target image patches. This is
because the two translational parameters for a projective
transformation can be determined by the shift of the target
projection center relative to its source counterpart.

5. Conclusions
The above theoretic analyses and experimental results

demonstrate that the proposed inverse-polar ray projection
can be used successfully to recover a general projective
transformation between two segmented images. In the case
where only pure similarity or affine transformations exist
between images, the detected values for e and f can, in
general, reach as high as an order of 410� . This
phenomenon becomes pronounced when a test object is
small. We note that when an object is small, it becomes
difficult to obtain a precise description of its boundary.
This could be an important factor that affects the accuracy
of detected values, especially for the smaller projective
parameters.
In our ongoing work, we change the search area for the

target projection center from a specified region to a zone
surrounding the segmented object. Thus, the recovery of a
projective transformation can be carried out automatically.
We can also extend the present approach to extract
projective-invariant features for an object.
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Fig. 1. Original images “key” (left) and “lock” (right) used in
the synthetic transformation experiments.

Table 1. Ground truth and recovered values for image pair with
synthetic zoom and rotation.

Transformation Matrix Center No.
0.250000 -0.433013 0.000000
0.433013 0.250000 0.000000
0.000000 0.000000 1.000000

139
139

1

0.260945 -0.449556 0.000000
0.428431 0.262142 0.000000
-0.000499 0.000050 1.000000

139.671
138.359

2

Fig. 2. Image “key” after Transformation (1) (left) and
reconstructed using recovered Transformation (2) (right).

Table 2. Ground truth and recovered values for image pair with
synthetic zoom, rotation, and projection.

Transformation Matrix Center No.
-0.125000 -0.216506 0.000000
0.216506 -0.125000 0.000000
0.009000 -0.002500 1.000000

139
139

3

-0.145892 -0.210449 0.000000
0.206551 -0.121299 0.000000
0.010876 -0.002359 1.000000

138.638
139.041

4

Fig. 3. Image “key” after Transformation (3) (left) and
reconstructed using recovered Transformation (4) (right).



Table 3. Ground truth and recovered values for image pair with
synthetic viewpoint change.

Transformation Matrix Center No
0.430000 -0.670000 0.000000
0.440000 1.010000 0.000000
0.000000 0.000000 1.000000

101
101

5

0.423208 -0.687868 0.000000
0.438915 1.022944 0.000000
0.000147 -0.000871 1.000000

101.896
99.783

6

Fig. 4. Image “lock” after Transformation (5) (left) and
reconstructed using recovered Transformation (6) (right).

Table 4. Ground truth and recovered values for image pair with
synthetic viewpoint change with perspective effect.

Transformation Matrix Center No
0.660000 0.680000 0.000000
-0.150000 0.970000 0.000000
-0.003000 0.009500 1.000000

101
101

7

0.634170 0.739764 0.000000
-0.182782 1.000496 0.000000
-0.003158 0.010456 1.000000

101.443
101.301

8

Fig. 5. Image “lock” after Transformation (7) (left) and
reconstructed using recovered Transformation (8) (right).

Table 5. Recovered transformations for real image pairs.
Transformation Matrix Center No

0.178730 -0.571547 0.000000
0.576715 0.162475 0.000000
0.000319 0.000389 1.000000

312.833
254.713

9

0.288663 0.618915 0.000000
-0.461713 0.966568 0.000000
-0.000046 -0.000689 1.000000

320.347
229.946

10

Fig. 6. Original images “stop sign” (left) and “fish” (right) used
in the real transformation experiments.

Fig. 7. Image “stop sign” after zoom and rotation (left) and the
reconstructed image using recovered Transformation (9) (right).

Fig. 8. Image “fish” after transformation due to viewpoint
change (left) and the reconstructed image recovered
Transformation (10) (right).


