
 

Abstract 
We change the behavior of actors in a video. For instance, the 
outcome of a 100-meter race in the Olympic game can be 
falsified. We track objects and segment motions using a mod-
ified mean shift mechanism. The resulting video layers can be 
played in different speeds and at different reference points 
with respect to the original video. In order to obtain a smooth 
movement of target objects, a motion interpolation mechanism 
is proposed based on continuous stick figures (i.e., a video of 
human skeleton) and video inpainting. The video inpainting 
mechanism is performed in a quasi-3D space via guided 3D 
patch matching for filling. Interpolated target objects and 
background layers are fused by using graph cut. It is hard to 
tell whether a falsified video is the original. We demonstrate 
the original and the falsified videos in our website at 
http://www.mine.tku.edu.tw/video_demo/).  The proposed 
technique can be used to create special effects in movie in-
dustry.  
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1. Introduction 

The behavior of people in a video can be altered. Although 
this research may create a potential sociological problem, it is 
interesting and challenge to investigate video falsifying tech-
nology if it is used in good intend (e.g., special effects of a 
movie). To change the content of video, issues such as object 
tracking, motion interpolation, video inpainting, and video 
layer fusing need to be implemented. Object tracking has been 
studied for a while. For instance, adaptive block matching [4] 
could be used to track objects efficiently. Contributions of the 
investigations of motion interpolation are mostly found in 
computer graphics. However, it is difficult to interpolate video 
motions. One approach to solve the problem starts from the 
investigation of video inpainting technologies [11, 12], which 
could rely on an image completion mechanism. Image in-
painting/image completion [3] is a technique to re-
store/complete the area of a removed object which is manually 
selected by the users. Image inpainting techniques can com-
plete holes based on both spatial and frequency features. 
Structural properties, such as edges of a house are extracted 
from spatial domain and used to complete an object with its 
structural property extended [3]. On the other hand, textural 
information can be propagated from the surrounding areas 
toward the center of hole such that a seamless natural scene 
can be recovered [7]. In an inpainting process, the user has to 

select a target object to be removed (and thus the hole is cre-
ated).  

In general, the problem of image completion can be defined 
as the following. Assuming that the original image I is de-
composed into two parts, I = Φ ∪ Ω, where Ω is a target 
area/hole manually identified by the user, and Φ is a source 
area with information to be used to complete Ω. And, there is 
no overlap between the target area and the source area. These 
terms (i.e., I, Φ, and Ω) are commonly used in most articles 
discussing inpainting algorithms. However, when dealing with 
removing objects from a video, several issues should be fur-
ther considered. Manually selecting a target area is impossible 
due to the number of frames. Also, human recommended 
structural/textural information is difficult to obtain, even with 
edge detections. Therefore, video inpainting needs to incor-
porate with a robust tracking mechanism and an effective 
structural/textural propagation mechanism.  

Given the target object, one approach to complete the hole 
in video is to directly apply the techniques used in image 
completion, i.e., treating each video frame as an independent 
image. Most image completion techniques are based on one 
assumption – the target object, Ω, has a similar texture and 
continuous structure from the source area Φ. Therefore, the 
source and target areas are divided into equal-size patches, 
with the size of a patch being small (e.g., 3 by 3 or 5 by 5 
pixels). Patches from the source area, using a sophisticated 
matching mechanism, are selected to fill-in holes in the target 
area. Two important measurements are used: priority and 
confidence values [3]. Priorities of patches which lay on the 
boundary of source and target areas are computed according to 
spatial properties of the patches. Confidence values indicate 
the degree of reliable information of a patch inpainted onto the 
target area. The fill-in process is repeated from the outer 
boundary of the target area toward the inner boundary, until 
the target area is completed.  

 

  
The Original Video The Falsified Video 

Figure 1. Video Falsifying (In the same video, speed of the two 
runners in the red boxes are changed. The rest are intact.) 

The video inpainting algorithm discussed in [9] adopts the 
image completion approach proposed in [3] with static camera 
assumption. A moving target in a stationary video can be 
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removed by filling-in exemplar patches in the same frame onto 
the missing background. Since the moving target can be par-
tially occluded by another moving object, an inter-frame 
search is needed to find the best candidate patch. Only the 
portion of moving foreground in the selected patch is copied. 
The priority of the rest pixels in the background is adjusted to 
zero such that background is not changed. The video 
in-painting algorithm for still camera [9] is further extended to 
cope with non-stationary videos under restricted camera mo-
tions [10]. Background and foreground of video are separated, 
with optical-flow mosaics generated. A similar priority con-
cept used in [9] is also used in [10], to find the highest priority 
filling-in patches in the foreground. After foregrounds of all 
frames are inpainted, the remaining background holes are 
filled using patches directly from adjacent frames and texture 
synthesis. A few assumptions are made in [10], e.g., camera 
motion is parallel to the plane of frames (i.e., no intrinsic 
camera rotations). And, a moving object may not change its 
size (i.e., no zooming). Another paper [14] uses a motion layer 
segmentation algorithm to separate a video sequences to sev-
eral layers according to the amount of motion. Each separated 
layer is completed by applying motion compensation and 
image completion algorithms. Except the layer with objects to 
be removed, all the rest of layers are combined in order to 
restore the final video. However, temporal consistency among 
inpainted areas between adjacent frames was not taken care of 
in [14]. The work discussed in [7] also removes objects from 
video frame by a priority scheme. Fragments (i.e., patches) on 
the boundary of the target area are selected with a higher pri-
ority. However, a fragment is completed using texture syn-
thesis instead of copying from a similar source. A graph cut 
algorithm is used to maintain the smooth boundary between 
two fragments. To maintain a smooth temporal continuity 
between two target fragments, two continuous source frag-
ments are selected with a preference. However, complex 
camera motion is not considered in [7].  

The article [13] looks at the problem from a 3-D perspective, 
which includes pixel positions (2-D) and frame numbers 
(time). The algorithm optimizes searching of patches at dif-
ferent resolution level. The inpainting results are visually 
pleasant. The only drawback is that the work [13] assumes the 
missing hole of every video frame is provided. Therefore, 
there is no tracking mechanism used to identify the object to be 
removed. The inpainting algorithm discussed in [5] repairs 
static background as well as moving foreground. The algo-
rithm takes a two-phase approach, sampling phase and 
alignment phase, to predict motion of moving foreground and 
to align the repaired foreground with the damaged background. 
Since the algorithm can be extended to use a reference video 
mosaic, with proper alignment, the algorithm discussed in [5] 
can also work for different intrinsic camera motions. However, 
the background video generated based on the reference video 
mosaic is important. Mistreatment of a generated background 
video will result in ghost shadows of the repaired video. In [6], 
the same group of authors [5] further extends their algorithm to 
deal with variable illumination. Although part of the process 
(i.e., layer separation and moving foreground sampling) is 
semi-automatic, the completion process is automatic. 

In one earlier investigation [11], the authors analyze tem-
poral continuities based on stationary and non-stationary video 

with slow or fast foreground. The authors use a modified 
exemplar-based image completion mechanism. More specifi-
cally, for stationary videos, patches can be searched from 
different frames and copied to fill in a target area, which is 
tracked by a simple computation of optical flow. For 
non-stationary video, tracking mechanism can be extended to 
deal with fast or slow moving objects. However, complicated 
video motions degrade the inpainting performance, due to the 
problem of “ghost shadows.” That is, due to the temporal 
discontinuity of inpainted area, flickers can be produced and 
lead to a visual-annoyance.  

 

 
 
 
 
 
 
 

 
 

 
 
 
 
 
 

 

Figure 2. Procedure of Video Falsifying 
 
In [12], the authors partially solve the “ghost shadows” 

problem by using a motion segmentation mechanism and a 
modified video inpainting procedure. The inpainted video is 
improved with less ghost shadows. However, it is still hard to 
deal with more complicated camera motions.   

The Original Video 
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Spatiotemporal Specification for Video Falsifying 



 

 Video inpainting mechanism can be used to produce special 
effects (e.g., hollow man) in movie industry. We further use 
video inpainting and a newly proposed motion interpolation 
technique to create special effects. For instance, the behavior 
of a person in a video can be altered (e.g., speed of walking, 
direction of running, height of jumping, etc). An example of 
video falsifying is shown in Figure 1. We changed the winner 
of a 100-meter running race. A series of challenge issues in 
video technology need to be solved, such as tracking and video 
layer separation, motion interpolation and re-positioning, and 
video layer fusion. In order to precisely model the spatio-
temporal behavior of each video layer (and object), we con-
sider a video as a spatiotemporal fluctuated domain. That is, 
different video space (layer) can be run in different speed and 
screen position. We define a spatiotemporal fluctuation func-
tion which is used as a user specification to alter a video.  

The procedure of video falsifying is illustrated in figure 2. 
Given a spatiotemporal specification for video falsifying, the 
original video is subdivided into several layers. We use a 
modified mean shift algorithm [2] to separate foregrounds 
from the video. The stick figures of foreground objects are 
obtained in each frame to produce an object stick video, which 
is used as guidance in our motion interpolation procedure. 
Motion of objects can be interpolated by using a guided qua-
si-3D video inpainting mechanism. Depending on the relative 
time of a viewer (i.e., the speed of seeing a video), background 
motion (i.e., due to camera motion) can also be interpolated. 
Finally, we adjust the relative position (optional) of each ob-
ject and use a graph cut mechanism to fuse video layers. 
 
1.1. Our Contributions 
 The procedure of video falsifying is challenge. A series of 
mechanisms needs to be investigated. Our contributions in-
clude the following: 
 

 A guided quasi-3D video inpainting mechanism is pro-
posed – exempla-based inpainting is extended to 2D plus 
time. 

 A new motion interpolation mechanism is proposed based 
on stick figures and guided inpainting.  

 A spatiotemporal fluctuation function is defined and im-
plemented on video examples to justify our approach. 

 
Although the proposed mechanism can be used to produce 

special effects of movies, it is also possible to create fake video. 
We have to deal with a problem of video forensics in the fu-
ture. 

 
2. Motion Layer Segmentation and Tracking 

 In order to change the behavior of actors in a video, the 
video falsifying procedure needs to separate actors from the 
background. In fact, a mechanism for video layer separation is 
necessary. We adopt the Mean Shift feature space analysis 
algorithm [2] for color region segmentation in each frame. 
This step allows an initial segmentation of objects from their 
background. Color region segmentation is then combined with 
motion segmentation for video layer separation. 

To deal with motion segmentation, we use a block 
searching algorithm to compute motion map based on HSI 
color space. To estimate the similarities among blocks of size 
5 by 5 (fixed in our algorithm), we use Sum of Absolute Dif-
ferences (SAD) based on the HSI color components separately 
and the differences are accumulated. 
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dis(Bi, Bj) = ( , )SAD i jH + ( , )SAD i jS + ( , )SAD i jI  
 The function dis(Bi, Bj) is used to find a minimal distance 
between two similar blocks. However, it is not possible to use 
the resulting motion map to identify an object (or layer) since 
the search results of adjacent blocks may not be adjacent (in 
most cases). But, a color region due to Mean Shift has adjacent 
pixels. Thus, we calculate the overlap between motion map 
and color region segments. We use color segments to identify 
object parts while use the average motion vectors of the 
overlapped areas to identify the motion of object parts. How-
ever, although one object should belong to a video layer in 
general, it is possible for an object to have two or more seg-
ments with different motions (e.g., legs and hands of a walking 
person are moving in different vectors). Therefore, we have to 
decompose an object. The mean shift algorithm [2] can also be 
used to deal with this problem. The mean shift algorithm uses 
LUV color space, with L and U as a two dimensional space 
and V as the density for feature space analysis. This analysis 
mechanism can be used to compute motion map, by using (Mx, 
My) to substitute (L, U) and use the average pixel luminance as 
the density, where (Mx, My) denotes the motion vector of a 
block. Mean-shift is used to segment blocks, not pixels in this 
case. Thus, the resulting object is segmented into different 
sections based on motions. Figure 3 illustrates the results of 
motion segmentation of three examples. The target objects and 
their motion vectors are displayed in row (c). This program 
output shows different portions are with different motion 
vectors in the same target object. Motion segmentation is 
important for video inpainting [12]. With a proper searching 
range for patches, ghost shadows can be eliminated. The so-
lution will be discussed in the new video inpainting procedure. 
 

(a)The 
Original 
Frame    

(b)Color 
Segmen-

tation    
(c)Target 

Object 
and Vec-
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Figure 3. Examples of Motion Segmentation 



 

  3. Spatiotemporal Video Falsifying 
After video layers are identified and the target objects are 

selected, the user needs to specify the spatiotemporal specifi-
cation for video falsifying. For instance, the user can select a 
target layer (or object) to slow down its temporal property, 
change the spatial position, or even to reverse the action in 
time. The specification needs to define the behavior of each 
layer, although the default follows the original video property. 
A model for spatiotemporal decomposition is necessary, 
which is discussed below. 

A two-dimensional video space, S, is regarded as a partial 
projection of scene from the 3-D world onto a 2-D screen. The 
discrete time of S, denoted as T, is represented as a sequence 
of frame indices. That is, the model for spatiotemporal de-
composition is regarded as (S × T) where S and T are discrete 
domains representing 2D video space and frame index, re-
spectively.  

3.1. Spatial Decomposition 
The 2D video space, S, can be decomposed in spatial do-

main. We define  
 
S = ∪i = 1, …, l Li,p,  
 

where Li,p is the i-th layer of S at a relative position p to the 
screen origin. The default relative position p = (0, 0) (i.e., no 
transformation of layer Li,p). In general, a transformation (in-
cluding translation, scaling, rotation, and other functions) can 
be applied to a layer or the entire video space. In this paper, 
however, we only deal with translation and reflection. And, ∪
i = 1, …, l is a layer composition function which takes l layers and 
compose the 2-D video space.  

We further define Γ as a time function, which takes a layer 
(or the entire 2-D video space) and extract the time indices [t1, 
t2, …, tk] = T. Thus, 

Γ(Li,p) = [t1, t2, …, tk], and for all i = 1, …, l, by default, Γ(Li,p) 
=Γ(S).  

That is, by default, the spatial decomposition of S has all layers 
with the same time indices. However, the number of indices, k, 
could be different between layers when temporal decomposi-
tion is applied.  
 
3.2. Temporal Decomposition 
 A video can be decomposed in temporal domain. We define 
a temporal projection function, ↓, which takes a layer (or a 
video space) and one of its time index, x, and extract an object 
(or frame). That is, 
 
fx = S ↓ x = (∪i = 1, …, l Li,p) ↓ x = ∪i = 1, …, l (Li,p) ↓ x  
 
Thus, fx is a frame of video space S which is composed from all 
layers projected simultaneously at time x.  In this case, the 
layer composition function ∪i = 1, …, l is applied to all l layers at 
time x. However, the relative position p of each later Li,p could 
be adjusted.  
 

3.3. Spatiotemporal Fluctuation 
In an ordinary situation, Γ(Li,p) = [t1, t2, …, tk]. That is, layer 

Li,p  has k frames. We denote the time indices of Li,p as [t1, t2, …, 
tk]L i,p. It is reasonable to define a temporal fluctuation function 
F, which is applied to the time indices, 

F(Γ(Li,p))= F([t1, t2, …, tk]L i,p)= [tm, tm+1, …, tn]L i,p 

where tm, tm+1, …, tn are temporal fluctuation indices with 
respect to layer Li,p. For example, 

F([t1, t2, …, tk]L i,p)= [t1, t2, t3], i.e., object in the first three 
frames are extracted (i.e., truncated video). Or, F([t1, t2, …, tk]L 

i,p)= [t1, t3, t2j+1], i.e., objects in odd frames are extracted (i.e., 
to create fast motion video).  

 We can further generalize F to a spatiotemporal fluctuation 
function, 

$F(S) = $F(∪i = 1, …, l Li,p)  
= ∪i = 1, …, l (F1(Γ(L1,p1)), F2(Γ(L2,p2)),…Fl(Γ(Ll,pl)) ).  

Thus, F1, F2, ..., Fl are different temporal fluctuation functions 
applied to different layers (and objects) with different relative 
positions. These functions (i.e., F1, F2, ..., Fl) are defined by the 
user. Note that, it is possible for a projection (Li,p) ↓ t to be 
evaluated to an empty object, if the video layer fails to match t 
with common time indices of all layers. In this case, an object 
is not displayed in the video and background inpainting is 
necessary.  
 It is interesting to design the spatiotemporal fluctuation 
function $F. For instance, $F could skip a section of layers, 
reverse the time indices of a layer, change the positions of 
layers, or enlarge objects in layers. In order to compute the 
result of the spatiotemporal fluctuation function, motion in-
terpolation and inpainting techniques are required. 
 
4. Motion Interpolation Using Inpainting 
 Motion of the target object needs to be interpolated.  In 
some situation, motion interpolation may create background 
holes due to different shape of objects that are removed. Thus, 
video inpainting to these holes are required. 
 
4.1. Motion Interpolation of Target Objects 

A target object can be segmented into a layer Li,p of S. To 
produce a fast animation of the layer, a temporal fluctuation 
function such as F([t1, t2, …, tk]L i,p)= [t1, t3, t2j+1] can sample 
the object in odd frames to be displayed in a normal speed. 
However, to produce a slow motion of the target layer Li,p, 
motion interpolation is required. In figures 4(a) and 4(d), Γ(Li,p) 
= [tn, tn+3]. Figures 4(b) and 4(c) are interpolated motions. The 
resulting video can be played in three times slower than the 
original video.  

In order to obtain the interpolated figures, we use a new 
video inpainting technique. This new mechanism uses a 
rule-based thinning algorithm [1] to obtain the stick figures of 
target objects. The stick figures are used to guide the selection 
of patches, which are copied from the original video to fill the  
interpolated objects.  



 

    
(a) tn (b) tn+1 (c) tn+2 (d) tn+3 

Figure 4. Example of Motion Interpolation 
 

In ordinary video inpainting [11, 12], the target area Ω 
copies patches of 3 by 3 or 5 by 5 pixels from the source area Φ. 
The information is searched and pasted in 2D space. The 
concept can be extended to a 3D video space (2D plus time). 

 

 
Figure 5. Patch Selection in 3D Video Inpainting 

 
 As illustrated in Figure 5, the upper potion illustrates a 
concatenation of target objects, with missing regions covered 
by blue polygons. Mission region can be very general, as to 
remove the entire target object. The advantage of using 3D 
patches in video inpainting may allow us to produce a smooth 
movement of the target object. However, for motion interpo-
lation, additional criteria should be considered. 

   
(a) Target (b) Stick Figure (c) Contour 

Figure 6. Stick Figure and Contour of a Runner 

Firstly, it is possible for target objects to perform actions in 
a repeated cycle (e.g., walking man, flying bird, running train, 
etc). Secondly, a stick figure can be used to estimate the rela-
tive positions of patches (e.g., head, body, and legs). Thus, 
patch selection needs to consider reproducing cyclic motions 
and maintaining the relationship of object parts. The compu-
tation of stick figures [1] does not need to be precise. Since the 
target objects have missing potions in most cases, stick figures 
are used only to estimate relative positions of object parts if 
they are visible. Stick figures and the contours of target objects 
can be used to predict repeated cycles.  

The computation of stick figures is due to [1]. Figure 6 il-
lustrates a target object, its stick figure, and a contour of the 
target object. Objects in figure 6 are normalized by the average 
size of bounding boxes in the entire video. The prediction of 
cyclic motion can be computed by comparing the stick figure 
and contour of the normalized target object in a selected frame 
and a range of following frames. The comparison uses a best 
effort approach to find the most similar overlapped stick fig-
ures and contours. We use several selected frames (and the 
tracked target objects) for prediction. A majority count of 

results is used to decide the cycle. In the example of 100-meter 
race, the cycle is found to be 30 frames.  

     

   
(a) tn (b) tn+1 (c) ∪ (d) fit (e) no 

Figure 7. Stick Figure and Contour of a Runner 

 A missing stick figure can be reproduced either by search-
ing for other stick figures in repeated motion, or by interpola-
tion of two known stick figures. The algorithm below finds 
reference stick figure in motion cycles. 
 
Algorithm: Find Reference Stick Figure 
Given a target object Li,p , and the motion cycle is r frames 
Compute missing reference stick figure of Li,p at a given time tx  
1. Track Li,p in the video and normalize Li,p by the size of 

bounding box  
2. Compute the stick figures and contours of Li,p  in the video 
3. Let the stick figure of Li,p  in time tx = SF 
4. Let the pixels of Li,p  in time tx = P 
5. For frame indices n in [x+r-2, x+r-1, x+r, x+r+1, x+r+2] 

∪[x-r-2, x-r-1, x-r, x-r+1, x-r+2], where Li,p at a given 
time tn is known (i.e., Li,p  is not missing at n) 
1. Align the center positions of 2 stick figures in tn and 

tn+1 and compute the closing boundary, SFB(Li,p), of 
stick figures (see first row of Figure 7(c))  

2. Find the union of pixels, UP(Li,p), of Li,p in tn and tn+1 
(see second row of Figure 7(c))  

3. If all pixels of SF are in SFB(Li,p) 
return stick figure of Li,p at time tn  

            else  
if all pixels of P are in UP(Li,p)  

return stick figure of Li,p at time tn  

                    else  
return stick figure not found 

If the reference stick figure cannot be obtained from the 
above algorithm, an interpolated stick figure from two known 
target objects is used. However, the result is less realistic as 
compared to using the stick figure found in repeated motion. 
Figures 8(a) and 8(b) are known sticks, with the union stick in 
figure 8(c). The thinning algorithm is then applied to the union 
stick to obtain the interpolated stick in figure 8(d).  

    
(a) Stick a  (b) Stick b  (c) ∪ (d) Result 

Figure 8.Interpolated Stick Figure 

Our motion interpolation algorithm is based on the follow-
ing two assumptions:  



 

 
 The missing region Ω has a similar texture and color rep-

resentation to the source region Φ; and 
 The missing target region has a continuous motion with 

respect to the source region. 
 
The first assumption encourages us to extend an ordinary 
video inpainting or image completion algorithm. The second 
assumption allow us to consider a video, (S × T), as a 2D plus 
time domain. For fast motion video, given a limited sampling 
frame rate, our motion interpolation may not obtain good 
results. This is the limitation of our mechanism. However, the 
problem can be solved if a high speed video recording device 
is used.  
 Finally, we present our motion interpolation algorithm. 
Assume that (S × T) = I3 = Φ3 ∪ Ω3, where Φ3 is a source 
space and Ω3 is a target space, and Φ3 ∩ Ω3 = ∮ (i.e., an empty 
set). The notation of our 3D video inpainting algorithm fol-
lows one discussed in [3]. However, new concepts are used in 
our mechanism: 

 Patches on the reference stick figures will be copied as 
guidance before the inpainting algorithm starts. This is an 
important achievement to ensure that motion is properly 
interpolated.  

 Patches copied should be obtained from a corresponding 
relative position from the source (i.e., copy patches from 
head to head, from legs to legs). Information of relative 
position is obtained while we track objects via the mean 
shift mechanism. The separation of patch search not only 
guarantees the visual quality but also improves the speed 
of inpainting procedure, since search space is reduced for 
each individual portion. 

 
Algorithm: Patch Assertion 
Given layer Li,p of S   
Insert patches of reference sticks into Ω3 
1. Compute Γ(Li,p) and F([t1, t2, …, tk]L i,p)  
2. Let MI = miss(Γ(Li,p), F([t1, t2, …, tk]L i,p)) 
3. For each Li,p in MI 

1. Let mission portion of Li,p = ω 
2. Find stick figure of Li,p 
3. Find patches of ω  
4. Copy patches of ωintoΩ3 

The algorithm firstly computes the missing frames by function 
miss (i.e., frames to be inpainted), based on the differences of 
the original frame indices of Li,p and the result of the temporal 
fluctuation function. The missing indices are stored in list MI. 
 

  
 

(a) Stick (b) Patch (c) Ω3 in 2D 
Figure 9. Stick Figures for Patch Assertion  

The algorithm then computes the mission portion of each Li,p 
in MI and finds the corresponding sticks and patches on sticks 
(see figure 9(a) and 9(b)). These patches are guidance inserted 
into Ω3 (the space of missing objects). Thus, Ω3 is reduced to a 

smaller region (see figure 9(c), shown in red in 2D). And, Φ3 
includes these stick patches. 
 

Let P(p) = C(p) * D(p), where C(p) is a confidence term and 
D(p) is a data term. Let δΩ3 be a front surface on Ω3 and ad-
jacent to Φ3.  
 
C(p) = 1.0 iff p ∈ Φ3   and   C(p) = 0.0 iff p ∈ Ω3 
∀ p ∈ δΩ3, C(p) = (∑ q ∈ (Ψp

3
 ∩ Φ

3
) C(q)) / |Ψp

3| 
 
where Ψp

3 is a 3D patch centered at point p. And, the size of 3D 
patch is denoted as |Ψp

3| = 3×3×3 = 27 pixels. Alternatively, a 
53 = 125 pixels patch can be used with a less efficient com-
putation. Basically, the confidence term represents the per-
centage of useful information inside a patch centered at p. 
 The data term, D(p), however, is different from D(p) de-
fined in [3]. We use a 3×3 Sobel convolution kernel to obtain 
the edge map, Φ3ε, of Φ3. Instead of computing the isophote 
[3], we compute the percentage of edge pixels in the patch, by 
obtaining information from the edge map of the source region. 
Therefore, our data term is proposed as: 

∀ p ∈ δΩ3, D(p) = min(1, (∑ q ∈ (Ψp3 ∩Φ3ε) c)) * var(Ψp
3) / |Ψp

3|,  
where the constant, c, represents the weight is set to 1 (for 
simplicity). And var(Ψp

3) is the color variation of the patch. 
Finally, the algorithm is discussed below. 
 
Algorithm: Motion Interpolation 
Given Ω3  
Complete  Ω3 using information from Φ3 
Repeat until region Ω3 is empty  

1. Compute boundary δΩ3 and P(p), ∀ p ∈ δΩ3 
2. Propagate texture and structure information  

1. Find Ψp
3

^ = max(∀Ψp
3

 , p ∈ δΩ3) 
2. Find Ψq

3
^  = min  Ψq3 ∈ Φ3 SSD(Ψp

3
^, Ψq

3) 
3. Copy Ψq

3
^∩Ω3 to Ψp

3
^ ∩Ω3  

3. Set C(p) = C(p^) * (SSD(Ψp
3

^, Ψq
3

^) / α), ∀p ∈Ψp
3

^  ∩ Ω3 

 The algorithm uses Sum of Square Difference (i.e., SSD) to 
estimate the color difference of two 3D patches and use a 
normalization factor α to make C(p) between 0.0 and 1.0. 

As an example, parts of a source video are removed in 10(a). 
Stick figures are obtained in 10(b), with reference sticks gen-
erated illustrated in 10(c). The results in 10(d) are computed 
by our 3D video inpainting algorithm for motion interpolation. 
Thus, the foreground is completed. However, we still need to 
deal with the background, which is discussed next. 

(a) Source   
(b) Source 
Stick   
(c) Refer-
ence Stick   

(d) Result  
Figure 10. Motion Completion via Inpainting 

4.2. Inpainting Camera Motions 
 Due to different camera motions (e.g., zooming, tilting, etc.), 



 

video inpainting is difficult. To inpaint background video with 
constraint motions, we do not use the mosaic approach as 
discussed in [10]. Instead, we use a mechanism [12] to seg-
ment motions into different regions. Depending on the oc-
cluded objects, the background can be inpainted properly [12]. 
In addition, depending on the speed of viewing the video, 
interpolation of background may be needed. To create fast 
video (i.e., similar to fast forwarding a video tape), we down 
sample the video frames. However, to create slow video, we 
interpolate video frames. The mechanism to segment motion 
regions discussed in [12] is further extended to estimate in-
terpolated frames. These interpolated frames are produced 
after target objects are removed in each frame. Thus, our in-
painting mechanism uses a multiple pass approach to process 
all video frames.  
 

  
(a)Background (b)Target Object 

  
(c)Paste Target Object (d)Merge with Graph Cut 

Figure 11. Layer Fusion in Detail 
 
4.3. Video Layer Fusion via Graph Cut 
 Finally, after the motion of target objects are interpolated and the 
background camera motions are computed, we use a graph cut 
procedure [8] to merge the objects into background. In figure 
11, the target object is merged with the background with a 
simple paste mechanism shown in figure 11(c). The result of 
graph cut is shown in figure 11(d). This Max-Flow-Min-Cut 
strategy allows us to produce a seamless falsified video. If 
multiple target objects are required, the user will decide the 
order of merging. 

5. Experimental Results and Evaluation 
We demonstrate the specification of spatiotemporal de-

composition, with video results in figure 11. The target object 
in 11(a) is duplicated in 11(b) and relocated in different loca-
tions. A reflecting function is also applied to the object such 
that the same person is waking from left to right and from right 
to left: $F(S) = F1(Γ(L1,p1)) ∪ F2(Γ(L2,p2)) ∪ F3(Γ(L2,reflect)), 
where Γ(L1,p1)= Γ(L2,p2) =Γ(S), and p1 = p2 = (0,0). However, 
F3 =Γ(L2,reflect)= [tk, tk-1, …, t1] , and a reflection function is 
used in conjunction with a translation to repositioning L2,reflect. 

In figures 11(c), the two runners (3rd and 4th from the left 
track) has Γ(L3,p3)= [t1, t2, …, tk-3] and Γ(L4,p4)= [t1, t2, …, tk+3]. 
Thus, the 3rd runner runs faster than the 4th runner in figure 11 
(d). Similarly, figure 11(e) and 11(f) changes the outcome of 

the race.  In figure 11(h), only the positions of the player is 
changed. Thus, the player jumps higher than one in 11(g). 
Interested readers should look at our demonstration videos at 
http://www.mine.tku.edu.tw/video_demo/). 
 
6. Conclusion 

This paper proposed an interesting issue to alter the be-
havior of actors in a video. We discussed a spatiotemporal 
model for video decomposition. Motion of tracked targets can 
be interpolated by using a sophisticated 3D video inpainting 
mechanism. Video layers are then merged by using a graph cut 
mechanism. A series of difficult problems are solved. The 
most important contribution of this paper is in providing an 
interesting direction of video processing. And, for video in-
painting, guidance via patches on stick figures is firstly im-
plemented in our system.  

Although the examples are visually pleasant, however, a 
few limitations remain to be solved. Firstly, even with a high 
speed camera, it is possible to have blurred video source. It is 
hard to precisely track the target objects if the source is blurred. 
Also, shadows cannot be tracked precisely in our examples. 
We are working on these problems. In addition, in the future, it 
is necessary to develop an authoring tool to specify the spati-
otemporal fluctuation function for creating falsified videos.  
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Figure 12. Examples of Video Falsifying (see videos at http://www.mine.tku.edu.tw/video_demo/)  


