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Abstract

We present a novel algorithm for simultaneous color and
depth inpainting. The algorithm takes stereo images and
estimated disparity maps as input and fills in missing color
and depth information introduced by occlusions or object
removal. We first complete the disparities for the occlusion
regions using a segmentation-based approach. The com-
pleted disparities can be used to facilitate the user in label-
ing objects to be removed. Since part of the removed regions
in one image is visible in the other, we mutually complete
the two images through 3D warping. Finally, we complete
the remaining unknown regions using a depth-assisted tex-
ture synthesis technique, which simultaneously fills in both
color and depth. We demonstrate the effectiveness of the
proposed algorithm on several challenging data sets.

1. Introduction
Digital photos have become a ubiquitous part of our ev-

eryday life. As a result, image inpainting, a digital image
processing technique to seamlessly fill in holes in an image,
has received considerable attention in the research commu-
nity. While most existing inpainting works mainly focus on
texture completion on a single image, we in this paper ad-
dress a novel problem of completing both texture and depth
of a stereo image pair after object removal.

Our proposed stereoscopic inpainting algorithm is de-
signed to jointly complete missing texture and depth by
leveraging the following advantages introduced by the
stereo images. First, the region to be filled after object re-
moval may be partially visible in the other camera view,
reducing the need to entirely “hallucinate” the color in the
holes. Secondly, the depth information from stereo match-
ing can be used to differentiate structural elements and
guide the texture synthesis process. Lastly, the consistency
of inpainting results on both images and depth maps pro-
vides a quality measure, based on which an iterative algo-

rithm can be developed to automatically detect artifacts and
refine the completion.

Being a counterpart of conventional color completion
techniques, by utilizing stereo images and depth informa-
tion our approach is able to complete complex salient struc-
tures exist in the missing region and provide more plausi-
ble texture synthesis results. Experimental results demon-
strate that our novel completion framework produces im-
ages with higher fidelity and fewer artifacts compared to tra-
ditional inpainting works. What is more, besides pure two-
dimensional texture synthesis, stereoscopic inpainting can
also be used to facilitate many interesting applications in
3D (e.g. View Synthesis and Image-Based Modeling) since
our algorithm makes it more practical to obtain consistent
stereo images and depth maps with undesired objects being
removed.

1.1. Related work

This work is related to a sizable body of literature on im-
age inpainting, started by the work of [1]. Of particular in-
terest are the example-based approaches [5, 11, 15] which
fill missing regions with patches sampled from known ar-
eas. To better cope with salient structures in the images, Sun
et al. [19] proposed a system that allowed the user to specify
curves or line segments on which the most salient missing
structures reside, and Drori et al. [7] proposed to use “point
of interest” to further improve the completion quality. Cues
from multiple images have also been explored in the past.
Kang et al. [13] used landmarks to match images and then
copied warped patches from different images. Wilczkowiak
et al. [22] suggested to increase the sampling spaces by
considering patches from images taken from different per-
spectives. This work differs from both [13] and [22] in that
we perform depth estimation from the input images and use
the resulting depth to guide the sampling process. [2] also
uses depth information from photos to perform completion.
However their input is a video sequence and the completion
process requires a large number of nearby video frames and
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photographs (typically 75 as reported in the paper).
In addition to image inpainting, this work also relates to

the literature on occlusion handling in stereo vision. Oc-
clusions are one of the major challenges in stereo. A sub-
stantial amount of work has been devoted to detecting oc-
clusion areas. A not-so recent survey can be found in
[8]. More recent work suggested to solve stereo matching
and occlusion detection jointly within energy minimization
frameworks [6, 18]. In particular, [12, 6, 18] proposed to
complete occlusion areas with disparities from the back-
ground. However, they all suffer from significant artifacts
where the scene is not frontal-parallel. The occlusion han-
dling algorithm proposed in this work is related to a line
of stereo work that based on segmentation or plane fitting
[3, 14, 20, 23, 24]. These approaches typically worked by
first solving depth in reliable regions, dividing the reliable
regions into color segments, fitting planes to the segments,
and assigning the rest unreliable pixels to these planes. Op-
timal assignment can be achieved by minimizing some en-
ergy functions [3, 14]. Although this work uses a similar
plane extension idea for filling occlusion regions, it differs
from the aforementioned approaches: this work is specifi-
cally designed for refining depth maps and filling occlusion
regions and works with depth results from any stereo al-
gorithm; it takes into account the visibility constraint for
deciding plane assignment; we propose a novel algorithm
that can obtain a globally smooth result and is also efficient.
Depth filling is not a new problem. [21] proposed a texture-
synthesis type of approach. It sampled both the images and
the depth and propagated inwards from the boundaries of
the missing regions with considerations for edges. The ma-
jor limitation of [21] is that it copies depth values directly
and therefore does not work for scenes that are not frontal-
parallel. This work can be considered as a first-order exten-
sion of [21] that is able to handle scenes containing planes
of arbitrary orientations.

2. Stereoscopic inpainting
This paper addresses the following problem: Given a

stereo image pair and estimated disparity maps for both
views, allow users to remove foreground objects in the
scene and then complete the missing color and depth infor-
mation in uncovered areas. In particular, we assume the in-
put stereo images are rectified and use {IL, IR} to refer the
left and right images, respectively. The disparity maps are
precalculated using a stereo algorithm and are denoted as
{DL, DR}. We do not require the stereo algorithm to pro-
vide accurate disparity estimations in occluded areas, but
assume that the occluded areas in both disparity maps are
detected. We use {OL, OR} to denote the sets of occluded
pixels in the left and right views, respectively.

We remark that the proposed algorithm can work in con-
junction with any existing stereo approach, but produces

better results when taking high quality disparity maps as
inputs. In this paper the disparity maps are precalculated
using the symmetric stereo algorithm [18], which solves
stereo matching and occlusion detection simultaneously in
a global optimization framework and has been proved to be
one of the top performers [17]. Note that, if an alternative
stereo algorithm is used, occlusion regions can still be de-
tected using the method of [8].

2.1. Overview of the algorithm

Taking {IL, IR}, {DL, DR} and {OL, OR} as input, the
algorithm starts with filling the missing disparity informa-
tion caused by occlusions using a segmentation-based depth
filling approach. The results of this step are complete dis-
parity maps for both views, denoted as {D̄L, D̄R}. The user
is then asked to label the foreground object to be removed.
After object removal, the uncovered pixels have unknown
color and depth information, which need to be completed.
We use {ΩL,ΩR} to refer the uncovered pixels in the left
and right views, respectively. Since some of the pixels in
ΩL are visible in the right view and some in ΩR are visible
in the left view, we warp both 〈IL, D̄L〉 to the right view and
〈IR, D̄R〉 to the left view to fill these pixels. To inpaint the
remaining pixels in ΩL and ΩR, an iterative texture synthe-
sis procedure is proposed. This procedure fills in both color
and depth information simultaneously, as well as automat-
ically detects unreliable solutions using a disparity-color
consistency constraint. The final results of the algorithm
are color and depth images for both views with foreground
object being removed, referred as {I ′L, I ′R} and {D′L, D′R}.

2.2. Segmentation-based occlusion filling

In order to infer unknown disparity values for occluded
pixels in {OL, OR}, we employ the widely used segment
constraint, i.e., the disparity values vary smoothly within
each segment and the corresponding 3D surface can be
modeled by a plane. Accordingly, we only need to assign a
disparity plane to each segment, instead of assigning a dis-
parity value to each individual pixel.

The occlusion filling process for the two views are per-
formed independently and we only discuss one of the views
in detail. The process starts by performing the mean shift
segmentation [4] on the stereo images to group pixels into
a set of color segments S̃ = {S1, S2, . . .}, where each seg-
ment Si is a set of adjacent pixels with similar colors. Note
that a slight over-segmentation is preferable over under-
segmentation since it better satisfies the segment constraint.

To fill disparity values for pixels inO ⊂ OL, we first find
out all the segments that overlap withO. This is to compute
a set Υ:

Υ = {S|S ∈ S̃ ∧ ‖S ∩O‖ > 0} (1)

where S ∩ O is the set of pixels that belong to both sets S



Algorithm 1 Pseudocode for disparity plane assignment
1: while Υ 6= ∅ do
2: 〈t, s〉 = arg mint∈Υ,s∈S̃−ΥE(t, s)
3: Assign the disparity plane for s to t
4: Υ = Υ− {t}
5: end while

and O. ‖ · ‖ denotes the number of pixels in a set.
Our goal is to assign a disparity plane to each segment in

Υ so that the disparity values of all pixels in O can be cal-
culated using the plane parameters of the segment to which
it belongs. Depending on the number of occluded pixels in
a given segment, two different filling approaches are used.

Plane fitting for (partly) visible segments. A segment
S is considered as visible or partially visible if it contains
enough pixels with known disparities. The following crite-
ria is used to determine whether the number of known pixels
is enough:

‖S −O‖ > max(6, λ · ‖S‖) (2)

where S −O is the set difference between S and O and the
parameter λ is set to 0.4.

The plane parameters for S can be computed based on
pixels in set S − O since their disparity values are already
estimated by the stereo algorithm. In this paper, a RANSAC
based plane fitting approach is applied [9]. Once processed,
segment S is removed from set Υ if S ∈ Υ.

Plane assignment for the remaining segments. As-
signing a proper disparity plane to the remaining segments
in Υ is more challenging due to the lack of pixels with
known disparity values within the segment. To find optimal
disparity planes for these segments, we propose a greedy
algorithm that works in a best-first filling order.

As shown in Algorithm 1, the algorithm iteratively
searches for the segment pair 〈t, s〉 that minimizes a match-
ing cost E(t, s), where segment s already has disparity
plane assigned and t does not. Once such a pair is found,
the segment t will be assigned to the same disparity plane
as the one for segment s. The matching cost between seg-
ments s and t, E(t, s), is defined as a weighted average of
three different terms:

E(t, s) = Eclr(t, s) +λadjEadj(t, s) +λvisEvis(t, s) (3)

where the first term, Eclr(t, s), measures the color similar-
ity between the two segments. It is defined as:

Eclr(t, s) = 1−
~Ct

‖~Ct‖
·

~Cs

‖~Cs‖
(4)

where ~Ct and ~Cs are the average color vectors of segments
t and s, respectively. The second term, Eadj(t, s), is simply
a binary function that returns 0 if segments t and s are ad-
jacent and 1 otherwise. This term encourages neighboring

segments to be assigned to the same disparity plane. The
last term utilizes the weak consistency constraint in [10] to
penalize disparity assignments that introduce inconsistent
visibility relationships. This constraint dictates that, if a
pixel is occluded, it must be occluded by something closer
to the viewpoint, i.e., its corresponding pixel in the other
view must have a higher disparity value:

D̄L(x, y) ≤ DR(x− D̄L(x, y), y)
D̄R(x, y) ≤ DL(x+ D̄R(x, y), y) (5)

The above constraint is not strictly enforced since the input
disparity maps, {DL, DR}, may contain errors. Instead, vi-
olation of the constraint is allowed but is penalized using the
cost term Evis(t, s). We let function Evis(t, s) return the
ratio of pixels in t that violate the weak consistency, when
their disparities are computed using the disparity plane of
segment s. The two constant scalars λadj and λvis are de-
termined empirically. In our implementation λadj = 0.03
and λvis = 0.05 are used throughout.

2.3. Foreground object removal

After the occluded areas are filled in both views, the user
is asked to label the foreground objects to be removed, i.e.,
specifying {ΩL,ΩR}. This can be done using any image
editing tool on either the input color image I or the com-
pleted disparity map D̄. Labeling on disparity map is easier
because sharp depth discontinuities and the absence of high
frequency texture can facilitate the process in both speed
and quality. After the user specifies the objects to be re-
moved in one of the stereo views, the label for the second
view can be generated automatically using the pixel corre-
spondence information provided by disparity map D̄. How-
ever, additional user interactions may still needed to correct
the artifacts and noise caused by inaccurate disparities.

2.4. Mutual completion through warping

Removing a foreground object leaves holes in both input
images and disparity maps for both views, since there is
neither color nor depth information available for the part
of the background that is uncovered. However, due to the
viewpoint difference between the two stereo images, part
of the uncovered region in one view may be visible in the
other. Hence, we can use the two stereo images to mutually
complete each other through 3D warping [16]. That is if
(x− D̄L(x, y), y) ∈ ΩR we can set:{

I ′R(x− D̄L(x, y), y) = IL(x, y)
D′R(x− D̄L(x, y), y) = DL(x, y)

(6)

Similarly, if (x+ D̄R(x, y), y) ∈ ΩL, we can set:{
I ′L(x+ D̄R(x, y), y) = IR(x, y)
D′L(x+ D̄R(x, y), y) = DR(x, y)

(7)



Completion through warping needs to be performed with
care. For example, when more than one pixel is warped
to the same destination, the one with the highest disparity
value shall be used since it is the closest to the viewpoint.
Furthermore, in order to prevent errors being introduced by
incorrect disparity values, we also enforce the ordering con-
straint during the warping. Although the ordering constraint
is not always satisfied in real scene, it allows us to err on the
side of caution.

Once a pixel’s color and depth information is filled
through warping, it will be removed from {ΩL,ΩR}. This
simplifies the texture synthesis process to be described in
the next section.

2.5. Iterative texture synthesis

The remaining pixels in {ΩL,ΩR} are the parts of un-
covered background that are invisible in both stereo im-
ages. An iterative process is used in this paper for filling
these pixels. Within each iteration, a modified version of the
exemplar-based texture synthesis approach [5] is applied to
fill both the left and right views independently. The results
obtained for the two views are then cross-validated to detect
unreliable solutions. Only the reliable ones found are added
into the final color and disparity inpainting results 〈I ′, D′〉.
The iterative process terminates after a maximum of N it-
erations and the pixels still considered unreliable after the
iteration terminates will be filled using the best solutions
found through texture synthesis.

Depth-assisted texture synthesis. In [5], the authors
propose a scheme for determining the optimal order of fill-
ing unknown pixels. While their technique is capable of
propagating linear structure and complex texture into un-
known areas, it may use samples from irrelevant texture ar-
eas and the propagation of these implausible textures can
lead to poor results. To alleviate this issue, our approach
makes use of the depth information to improve the sam-
pling process. Our modification is based on the following
intuitions:
• With the additional depth information available, the

optimal sample should be decided based on both color and
depth similarities.
• The uncovered background is usually farther away

from the viewpoint than the removed foreground object.
Therefore the missing region should be filled using sam-
ples with smaller disparity values than that of the removed
object. This requirement is referred as the view distance
constraint.

Since the texture synthesis for the two views is handled
independently, we now describe the procedure for one view
only. We use Φ to denote the source regions that provide
samples in the filling process and use Ψp to refer the ` × `
square patch centered at pixel p. Using the same technique
described [5], we compute the filling priorities for all the

pixels in Ω and process these pixels in order of priority.
When handling pixel p, we search in Φ for a patch Ψq that
satisfies:

Ψq = arg min
Ψk∈Φ

F (Ψk,Ψp), (8)

where F (Ψs,Ψt) measures the difference between two
generic patches Ψs and Ψt. Instead of computing the dif-
ference using color similarity only as in [5], the matching
criterion we used is defined using both color and disparity
similarities, as well as the view distance constraint, as:

F (Ψs,Ψt) = Fclr(Ψs,Ψt)+Fdis(Ψs,Ψt)+Fviw(Ψs,Ψt).
(9)

Fclr(Ψs,Ψt) is the sum of absolute color differences of
the already filled pixels in the two patches. Fdis(Ψs,Ψt)
measures the disparity similarity of the two patches and is
defined as:

Fdis(Ψs,Ψt) = α
∑
µ

min(1, |D̄(s+ µ)− D̄(t+ µ)|),

(10)
where µ ∈ {x|(t + x) ∈ Ψt

⋂
Φ}. The last term Fviw

penalizes pixels in set Ψt

⋂
Ω that violate the view distance

constraint, i.e.

Fviw(Ψs,Ψt) = β
∑
ν

f(D̄(s+ ν), D̄(t+ ν)) (11)

where ν ∈ {x|(t + x) ∈ Ψt

⋂
Ω} and f(a, b) equals to 1

if a > b and 0 otherwise. Parameters α and β are set to 13
and 30 in our experiments, respectively.

After the optimal exemplar Ψq is found, the color of each
pixel p′ ∈ Ψp

⋂
Φ is copied from its corresponding position

q′ in Ψq . The disparity of p′ is computed using the disparity
plane parameter of the segment to which q′ belongs. In this
manner, our approach allows to simultaneously fill-in both
color and depth.

Consistency check. For most image completion ap-
proaches there is no decent way to detect visual artifacts
since the result is considered as optimal by the algorithm.
With additional image available and by performing inpaint-
ing for both images independently and simultaneously, the
potential incorrect solutions can be detected automatically
through consistency check.

Assuming the surfaces in the scene are close to Lamber-
tian, unreliable inpainted results can be detected based on
color consistency of corresponding pixels. That is, given the
color images {I ′L, I ′R} and their disparity maps {D′L, D′R}
completed after object removal, the following constraints
should be satisfied for all non-occluded pixels:

|I ′L(x, y)− I ′R(x−D′L(x, y), y)| < ε

|I ′R(x, y)− I ′L(x+D′R(x, y), y)| < ε (12)

where ε is the error threshold and is set to 20 in our experi-
ment.



Figure 1. Occlusion filling examples. From left to right: one of the stereo images; disparity maps without occlusion filling; occlusion
detection results using [18] (occlusion regions are marked in red); our occlusion filling results.

The above testing is performed on all pixels that are
completed using texture synthesis at current iteration, i.e.,
those in {ΩL,ΩR}. If the color and depth inpainting re-
sult for a given pixel (x, y) in ΩL passes the test, it is
considered as reliable and we thereby remove pixel (x, y)
from ΩL, as well as pixel (x − D′L(x, y), y) from ΩR, if
(x−D′L(x, y), y) ∈ ΩR. This symmetric consistency check
is applied twice to process the inpainting results generated
for both left and right views.

3. Experimental results

In this section we report the results of applying our
method on various stereo images and comparing against one
of the state-of-the-art automatic image completion methods.
In all the experiments the source region is set to Φ = I −Ω
and the patch diameter ` is 11. The sizes of test images are
about 500× 400.

Figure 1 shows the results of our occlusion filling
method. The first column shows three stereo images with
slanted surfaces and complicated scene structures. The sec-
ond column shows the disparity maps without occlusion fill-
ing applied. In the third column we show occlusion regions
(red) computed from using the algorithm of [18]. Dispar-
ity maps after occlusion filling are presented in the last col-
umn which shows that our algorithm is able to produce good

quality results.
We demonstrate the effectiveness of our iterative inpaint-

ing process in Figure 2. The first two images in the first row
are the stereo pair with uncovered areas marked in green.
The next two images are the results after mutual comple-
tion. Note that the sizes of unknown regions are reduced in
both images by copying information from the other view.
Furthermore, the cane, which is almost totally occluded by
the reindeer in the left view becomes partially visible. The
second row shows the color and disparity completion results
for both views after the first iteration. There are noticeable
artifacts, especially in the right image. These artifacts are
detected through disparity-color consistency check, shown
in green in the first two images of the third row. The next
two images in this row show the unreliable pixels found af-
ter the fourth iteration. As expected, the number of unre-
liable pixels reduces as more iterations are used. The last
row presents the joint inpainting results after four iterations.
More plausible results are achieved for both color and depth
inpainting, compared to the ones generated without enforc-
ing disparity-color consistency, i.e., the ones in the second
row.

Figure 3 shows more results on color image completion.
As can be seen, our algorithm is able to recover salient
structures that are largely occluded by the foreground ob-
ject. This advantage mainly comes from the stereo config-



Figure 5. Inpainting comparisons with the approach of [5]: Our
results are shown in Figure 2 and 3

uration which allows the exchange of reasonable amount of
visual information between images automatically. By in-
troducing depth information into the texture synthesis pro-
cedure our sample regions are more constrained compared
to traditional exemplar-based approaches thus reduces the
chance of sampling irrelevant texture information. For all
these four data sets, usually 3 to 5 iterations can produce
visually plausible results. The corresponding depth com-
pletion results for these data sets are shown in Figure 4.

Existing image completion algorithms may have difficul-
ties producing satisfactory results for the data sets shown in
this paper. Figure 5 shows some unsatisfactory completion
results using our implementation of the approach in [5]. We
carefully tuned the parameters so the best visual effects are
presented. For comparison, corresponding results from our
algorithm are given in Figures 2 and 3.

4. Conclusions

We have presented a novel technique that is able to
jointly fill in the missing color and depth caused by remov-
ing foreground objects from stereo image pairs. Compared
with conventional image inpainting approaches, the pro-
posed algorithm makes a good use of the additional view
available through: 1) letting the two stereo images to mutu-
ally complete each other so that the parts of missing region
that are visible in the other view can be reliably filled; 2)
using the estimated depth information to facilitate texture
synthesis so plausible exemplars can be acquired; and 3) en-
forcing disparity-color consistency between the inpainting
results for the two views so that unreliable solutions can be
detected and revised. The experimental results demonstrate
that, after the region for removal is identified, stereoscopic
inpainting can automatically produce very good results.

The use of two images has its disadvantage as well,

mainly in data acquisition. However we optimistically think
that acquiring stereo images will become easier and eas-
ier. The success of our approach depends on the quality of
the estimated depth maps. Therefore, it will suffer in cases
where stereo methods fail, such as textureless regions and
specular reflections.

In summary, stereoscopic inpainting is complementary
to traditional single-image inpainting. It is particularly ef-
fective for more structured inpainting since the depth infor-
mation provides additional cues as where the proper sample
can be copied. Being an automatic method, it is also suited
for batch processing of stereo videos.
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