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Abstract

We propose a 2D registration method for multi-modal
image sequences of the retinal fundus, and a 3D metric
reconstruction of near planar surface from multiple views.
There are two major contributions in our paper. For 2D reg-
istration, our method produces high registration rates while
accounting for large modality differences. Compared with
the state of the art method [5], our approach has higher
registration rate (97.2% vs. 82.31%) while the computation
time is much less. This is achieved by extracting features
from the edge maps of the contrast enhanced images, and
performing pairwise registration by matching the features
in an iterative manner, maximizing the number of matches
and estimating homographies accurately. The pairwise reg-
istration result is further globally optimized by an indirect
registration process. For 3D registration part, images are
registered to the reference frame by transforming points via
a reconstructed 3D surface. The challenge is the recon-
struction of a near planar surface, in which the shallow
depth makes it a quasi-degenerate case for estimating the
geometry from images. Our contribution is the proposed 4-
pass bundle adjustment method that gives optimal estima-
tion of all camera poses. With accurate camera poses, the
3D surface can be reconstructed using the images associ-
ated with the cameras with the largest baseline. Compared
with state of the art 3D retinal image registration methods,
our approach produces better results in all image sets.

1. Introduction

Multi-modality image registration is a fundamental task
in medical image applications. Images captured from dif-
ferent sensors or across time frames often have different
modalities and the alignment of these images is critical for
diagnosis. Retinal image registration is one of the appli-
cations. The intensity of the the angiograms vary substan-
tially while the sodium fluorescein dye in the retinal vessels
circulates. Figure 1 shows an example of a retinal image
sequence. In such a problem domain, mutual information

[16] is widely used. It measures the statistical dependency
between the image intensities, which is maximum when
the images are geometrically aligned. However, it is time-
consuming, thus impractical. Several attempts have been
made in finding invariant features in retinal images. [5] uses
high level Y features extracted at vessel junctions that are
invariant to intensity variance. However, such features are
too sparse and not well distributed for a robust and accurate
registration. Stewart proposed the dual bootstrap iterative
closest point algorithm [15] that has almost perfect registra-
tion rate. It starts from a local region where two landmarks
are matched, and expand the region by aligning the detected
blood vessel centerlines using ICP algorithm. However, the
approach is limited to 2D registration since the matches pro-
duced by aligning points on vessel centerlines are not accu-
rate enough for estimating 3D geometry. Another weakness
of the two approaches is that the extraction high level fea-
tures is time-consuming.

Figure 1. Retinal images in different modalities

We propose here a feature based method for 2D registra-
tion that registers multi-modality images with a high suc-
cess rate. The left part of Figure 2 shows the flow chart of
the process. We extract SIFT [12] features from contrast en-
hanced edge response images. A similar approach was pro-
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posed in [4], in which SURF features are used. However,
it didn’t address the issue of registering images with high
variation in intensities. For each image pair, we match the
features and derive the homography relationship between
images in an iterative manner. Although Can et al. [3]
showed that the curved nature of retina can best be taken
into account by a quadratic model, the use of a homogra-
phy model can be justified in the following reasons: First,
we only register a local portion of the retinal surface, which
can be considered as near planar. Second, a homography
model has fewer parameters and is easier to estimate, espe-
cially when the matches are noisy. Third, we are interested
in depth variations due to anatomical features, which can-
not be accounted for by the homography, nor the quadratic
model. Instead, we need a 3D surface model to provide
good 3D registration. The accuracy of the 3D reconstruc-
tion relies on the accuracy of the fundamental matrix esti-
mation, where we use plane+parallax method, and the ho-
mography can be plugged right in.

At each iteration, the homography estimated from the
previous iteration is used to improve the quality of feature
matching. This method registers most image pairs in the
set. The result is further improved by chained registration,
in which the homography of a poorly registered image pair
is estimated by chaining a sequence of related accurate ho-
mographies. Our method has several advantages:

1. High registration rate. Our method has over 97% reg-
istration rate over 40 image sets with 574 image pairs.

2. It makes no assumptions about the content of the im-
ages. Compared with [15] [5] which extracts features
from vessel junctions, our method extracts SIFT fea-
tures that can be used on other multi-modality image
registration problems that do not have similar vascular
structures.

3. It is fast. SIFT feature extraction is much faster
than high level feature extraction. The most time-
consuming process is the iterative feature matching
that can be limit by using fewer iterations. Compared
with [5], our approach is 8 times faster.

4. It can be extended to 3D registration. The correspon-
dences produced from SIFT feature matching is sub-
pixel level accurate and their number large enough,
which is suitable for 3D registration.

The output from our 2D registration method can be used
in 3D reconstruction and 3D registration. The reconstruc-
tion of 3D surface has several advantages. By inspecting
the 3D shape of a retinal surface, blisters which result from
lesions can be easily identified. The 3D registration process
also needs accurate 3D surface to infer point transforma-
tion between images. The reconstruction of retinal images

belongs to the category of near-planar surface reconstruc-
tion, which is carefully studied in [6]. It is a difficult prob-
lem due to the lack of depth information, which is a quasi-
degenerate case for the estimation of the 3D structure [8].

The 3D surface reconstruction and registration processes
are illustrated in the right part of Figure 2. First the fun-
damental matrix for each image with respect to the refer-
ence frame is estimated. The corresponding fundamental
matrix inliers are then input to a 4-pass bundle adjustment
to estimate all camera poses. To reconstruct the 3D sur-
face, we use the image associated with the camera that has
the widest baseline with respect to the reference camera
for dense stereo matching. The resulting dense correspon-
dences are used to triangulate the 3D points on the surface.
Finally, images are registered to the reference frame by back
projection. The novelty of our approach is the 4-pass bundle
adjustment in which the objective is to estimate the poses of
all cameras. In [6], the camera selection strategy does not
take the baseline into account, and produces poor results
when two cameras are close.

The rest of the paper is organized as follows: Section
2 describes the 2D registration approach to multi-modality
image sequences. We describe the image pre-processing,
the iterative nearest neighbor matching and the chained reg-
istration, followed by experimental results. Section 3 de-
scribes the 3D registration approach. We describe the 4-pass
bundle adjustment method and evaluate its performance in
terms of accuracy. The last section concludes the paper and
outlines future work.

2. 2D Registration of Multi-Modality Images

Since our approach uses some of the techniques in [1],
we start by reviewing their method. Let Γi, Γj denotes
the SIFT features extracted from Ii, Ij respectively. To
match features, the nearest neighbor matching (NN-Match)
is used. Each SIFT feature in Γi is matched to its nearest
neighbor in Γj by computing the Euclidean distance in the
feature space. Moreover, to prevent false matching, the dis-
tance of the nearest neighbor has to be less than the second-
nearest neighbor by a ratio (we use 0.8). Note that with a
larger search area, there will be more matching candidates
and less probability for a feature to be matched. Let Mi,j

denotes the set of matches produced from NN-Match, Hi,j

denotes the homography that warps image Ii to image Ij ,
i.e., Ij = Hi,j(Ii). To estimate Hi,j , RANSAC [7] is em-
ployed to perform a robust estimation. It performs several
iterations on Mi,j . At each iteration, a homography model
is built and its corresponding inliers correspondences are
determined. The best homography estimate is the one with
the largest number of inliers.

Our registration consist of three major steps. First the
images are preprocessed to enhance the contrast and further
transformed into edge map. Then we extract SIFT features
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Figure 2. Flow chart

from the edge maps and perform pairwise image registra-
tion using iterative nearest neighbor matching. Finally, the
chained registration method is used to further improve the
registration result from previous stage. These three steps
are described in the following sections.

2.1. SIFT on Edge Response Images

SIFT feature extraction can produce large amount of
descriptive features that increases the number of reliable
matches. Edge information can be retrieved easily, and is
widely spread across the image. More importantly, edge re-
sponse preserves the gradient magnitude of the surface and
ignores its gradient direction, which is invariant in multi-
modality imagery. [10] use a similar idea, gradient mir-
roring, which associates opposite gradient directions in the
SIFT descriptor. Although this approach is invariant to con-
trast reversals, the descriptor is less descriptive and would
degrade the performance of matching.

Figure 3 shows two retinal images and their correspond-
ing edge response images. Though the two images are quite
different in intensity structure, their edge responses are sim-
ilar. It is exptected that features extracted from edge re-

sponse images are more likely to be matched.

Figure 3. Retinal images and their corresponding edge responses

2.1.1 Image Pre-processing

To extract a sufficient large number of SIFT features from
the edge response images, we preprocess the images by en-
hancing their contrast and removing noise. First, the inten-
sity histogram is equalized to a Gaussian distribution with
μ = 128, σ = 48. In images that have very low contrast,
such an operation generates much noise. We denoise such
images with Non-local Mean Filter [2]. Then we compute
the edge response on the contrast enhanced images using a
Sobel filter. Finally, we use contrast limited adaptive his-
togram equalization (CLAHE)[13] to enhance the contrast
of the edge. In our experiments, such a preprocessing yields
the greatest number of true matches.

2.1.2 Experimental Results

We compare the quality of matching using SIFT features ex-
tracted from edge response images with those from original
images. We select 10 pairs of images that have very differ-
ent intensity profiles. In each image pair, the SIFT features
on the original images and edge response images are ex-
tracted and matched respectively. We also label some con-
trol points so that we can compute the ground truth homo-
graphies of the image pairs and the number of true matches
available. The true matches are the ones that comply with
the ground truth homography. Figure 4 shows that match-
ing features extracted from edge response images produce
more true matches than original images.

Figure 4 also plots the number of true matches and total
matches in the edge response images. It show that the num-
ber of true matches are too few too for RANSAC to estimate
a good homography model. The issue now becomes how to
estimate an accurate homography from the noisy matches.



Figure 4. Number of matches and true matches in the original im-
ages and edge response images

2.2. Feature Matching in Two Images

In our data sets, the displacement between images could
be large. To account for large displacement, the size of the
neighborhood should be large. However, as described ear-
lier, this results in fewer matches, which may decrease the
accuracy of the homography estimation. Hence, there is a
trade off between the displacement we can account for and
the number of matches we can produce.

2.2.1 Iterative Nearest Neighbor Matching

We propose Iterative Nearest Neighbor Matching algorithm
to solve the problem. If we have a rough estimate of the
Hi,j , a feature at x in Ii can have a higher chance to be
matched by performing NN-Match in a smaller neighbor-
hood which centers at Hi,j(x). With more matches, a more
accurate homography can be estimated. Our approach is il-
lustrated in algorithm 1. It starts with a large search area
with radius r = rmax and assume the homography Hi,j as
identity. At each iteration, every feature x ∈ Γi is matched
to its nearest neighbor in Γj where the matching candidates
are in the search area centers at Hi,j(x) with radius r. Then
RANSAC is employed on the matches to estimate a more
accurate homography for the next iteration. It iterates until
the smallest search area r = rmin is reached. Although this
approach looks similar to ICP algorithm, it is unique as the
estimated homography in the previous iteration can be used
in the next to narrow down the search region and produce
more reliable matches.

input : Features Γi and Γj with respect to image
Ii and Ij

output: Homography Hi,j and matches Mi,j

initialize Hi,j ← I, r ← rmax;1

while r > rmin do2

Mi,j ← NN-Match ( Γi, Γj , Hi,j , r );3

Hi,j ← RANSAC (Mi,j);4

r ← r/2;5

end6

Algorithm 1: Iterative Nearest Neighbor Matching

2.2.2 RANSAC Inlier Score

We also made modifications to RANSAC. Let H and HI
denotes a homography and its corresponding inliers respec-
tively. In standard RANSAC, the best homography is the
one with the largest number of inliers. In other words, the
best homography is the one with the highest score which is
defined as

Score(H) = |HI| (1)

However, as shown in Figure 4, there are some cases where
the true matches are few. In such cases, a good homogra-
phy estimate does not have significantly more inliers than a
poor one. Worse, two homographies have same amount of
inliers and using eq(1) do not update the homography esti-
mate from one to a better one. We solve this issue by fur-
ther assigning each inlier a weight. A higher weight is given
when the orientations of the two matched SIFT features are
consistent with respect to the homography estimate:

G(m) = CI(Hi,j(Ort(xi)), Ort(xj )) (2)

where Ort(·) is the orientation of a SIFT feature, and m =
(xi, xj) is a pair of match of features in Γi, Γj repectively.
CI is the consistency indicator function. We use a Gaussian
function with μ = 0, σ = 0.5 for CI . Then the new score
for a homography is defined as:

Score(H) =
∑

mk∈HI

G(mk) (3)

where mk is the k-th homography inlier in HI .
We also want to bias inliers that spread across the en-

tire image since with the same amount of inlier correspon-
dences, those that are more uniformly distributed contribute
less error to the homography estimate. Therefore, matches
that are densely congregated should be given lower weights.
Let D(·) be the function that measures the inlier density
around an inlier, we have each inlier mk weighted by
1/D(mk). From 3, we have the third edition for Score(H):

Score(H) =
∑

mk∈HI

G(mk)/D(mk) (4)

2.3. Chained Registration

Chained registration is a global optimization approach
after all the images are pairwise registered. With the pair-
wise registration result, images can be registered to one an-
other tindirectly. This is illustrated in Figure 5(a). Let a
circle and a cross in row i column j denotes a successful
and a failed registration from image Ii to Ij respectively. In
the example, I2 cannot be registered to I3 directly. How-
ever, since I2 can be registered to I1 directly, and I1 can be
registered to I3 directly, I1 becomes the bridge to register
I2 to I3. We can perform another run of registration, where



at algorithm 1 line 1, we initialize H2,3 as H1,3H2,1 instead
of I , and r = rmin instead of rmax. In other words, we
perform a NN-Match directly in a small area that roughly
centers at the matching point. In such a way, we can over-
come failure pairs that do not have enough true matches for
Iter-NNM to converge to a correct homography.
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Figure 5. Chained registration

2.3.1 Cost Function for Chained Registration

To select the best images for chained registration, we use
the shortest path algorithm, in which each node represents
an image. The internal nodes along the shortest path from i
to j are the images used for chained registration. The edge
cost Ci,j is defined as the inverse of Score(Hi,j):

Ci,j = 1/Score(Hi,j) (5)

Figure 5(b,c) gives a simple example. (b) is the cost table
that results from direct pair-wise registration, in which the
registration from 2 to 3 has a lower score (higher cost). To
improve it, we run an additional direct registration in which
we initialize the homography as H1,3H2,1 since I2, I1, I3 is
the shortest path from I2 to I3.

We run such a registration over every image pair (Ii, Ij).
Every time Score(Hi,j) increases, all image pairs that
have their shortest paths going through edge IiIj are re-
registered again since the initialization may improve. The
process continues until no image pairs get higher homog-
raphy scores. Note that the final Score(Hi,j) could still
be low so that the corresponding shortest path goes through
other nodes. In such a case, we use the chained homogra-
phies along the shortest path as the best homography esti-
mate.

Finally, we use all-pair shortest path algorithm on the
set of images [6]. The image with the least total shortest
path cost to all the other images is selected as the reference
frame.

ref = arg min
i

∑

j

CostShortestPath(Ii, Ij) (6)

2.3.2 Experimental Results

We compare three methods, the NN-Match, the iterative
NN-Match and the iterative NN-Match + chained registra-
tion over 10 data sets. Figure 6 plots the successful registra-
tion rate. It shows that by using chained registration, most
of the data sets’ registration rate can be improved to 100%.

Figure 6. Registration rate comparison of NN-Match, Iterative
NN-Match and Iterative NN-Match + Chained registration

We perform another thorough test over 40 data sets.
Among all 574 image pairs which contain large image vari-
ance in terms of intensity, scale, and displacement, only 16
images are not registered (97.2% registration rate). The
average time required for an image set with 20 images is
40 minutes. On the machine with the same computational
power, the Y feature based registration method takes 300
minutes. Figure 7 shows one of the difficult cases for which
our method can still produce accurate registration. (a) and
(b) are two images significantly different from each other.
(c) is the registration result shown in a checkerboard view.

(b) (c)(a)

Figure 7. Registration of 2 images with large modality difference

Figure 8 shows one of the failure cases. (a) is the inten-
sity histogram of the original image. We can see the entire
image information is squeezed within 10 discrete levels. (b)
and (c) are the results of the original image thresholded at 9
and 11 respectively.

(b)I>9 (c)I>11(a)histogram

Figure 8. Poor dynamic range

3. 3D Registration and Reconstruction of Near-
Planar Surfaces

Other than registration rate, the performance of image
registration methods can be measured by the residual error.
However, this is only true when the points in the image are
co-planar. In our case, the retinal surface is only near planar
and it contributes residual error in a 2D registration. We
need to register the image sequence in 3D, where a lower
residual error represents a better registration.



3.1. Camera Pose Estimation Using 4-Pass Bundle
Adjustment

Our approach to the 3D registration is as follows. After
2D registration, the reference frame Iref is determined by
the all pair shortest path algorithm. For each image Ii in the
sequence, the fundamental matrix Fi with respect to Iref is
estimated using the plane+parallax method [11]. The cor-
responding fundamental matrix inliers, denoted as FIi, are
input to a 4-pass bundle adjustment (4P-BA) to accurately
estimate the camera poses as illustrated in Figure 9.

In the first-pass bundle adjustment, we assume the struc-
ture Xi on the plane frontal parallel to the reference cam-
era, and estimate the camera pose by minimizing the re-
projection error:

E(Pi) =
∑

mk∈FIi

‖xk
i − PiX

k
i ‖2 (7)

where mk = (xk
i , xk

ref ) is the k-th fundamental matrix
inlier consist of features in Γi, Γj respectively. Pi =
K[Ri|Ti], where K is the internal camera parameter.

In the second-pass bundle adjustment, we fix the camera
pose and estimate the 3D structure Xi by triangulation.

In the third-pass bundle adjustment, we refine both the
camera pose and the 3D structure again by minimizing the
re-projection error:

E(Pi, Xi) =
∑

mk∈FIi

‖xk
i − PiX

k
i ‖2 (8)

where Pi and Xi are initialized using the output from the
first-pass and second-pass bundle adjustment respectively.

Let Ibest denotes the best image with respect to Iref for
estimating the geometry. After we have estimated the poses
of all cameras, we select the camera that has the widest
baseline to the reference camera (illustrated as the green
camera in Fig. 9) and use the associated image as Ibest to
estimate the sparse structure. We fix this structure and refine
all other camera poses in the fourth-pass bundle adjustment.

To estimate the 3D surface, we compute the dense cor-
respondences of image Iref and Ibest. First the images are
rectified using the algorithm that minimize re-sampling ef-
fects [9]. Then we compute the disparity map using window
based stereo matching [14], in which mutual information
[16] is used as the similarity measurement of two windows.
The surface can be triangulated the same way as we recon-
struct the sparse structure in the fourth bundle adjustment.

Finally, with all camera poses and the 3D surface, images
are registered to the reference by back projection. Let xref

be the projection of X , the back projection function is

X = bp(xref ) (9)

and image Ii is registered to Iref by

xi = PiX = Pibp(xref ) (10)

?
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Figure 9. Flow chart of 4 pass bundle adjustment

Although our proposed approach looks similar to [6],
they are different in the following aspects and ours produces
significantly better results:

1. Accurate fundamental matrix estimates. Our SIFT cor-
respondences are significantly more numerous than Y
correspondences, and produce more accurate funda-
mental matrix estimates.

2. Accurate camera pose and 3D surface estimates. The



objective of the 4-pass bundle adjustment is to estimate
accurate poses of all cameras. Using the image associ-
ated with the camera of the widest baseline, we can re-
construct the sparse structure and the 3D surface with
minimum error. Choe’s method uses the image with
the best 2D registration score with respect to Iref . It
is obvious that when two images are identical, the reg-
istration error is zero, but carries no 3D information at
all, thus unsuitable for 3D reconstruction.

3. Accurate registration. In the fourth bundle adjust-
ment, the cameras are refined using the accurate sparse
structure. Together with the accurate 3D surface, im-
ages can be registered with minimum error. In Choe’s
method, both the 3D surface and the camera poses are
not optimal, and the 3D registration can be inaccurate.

We will see in the experiment that using the camera with
the largest baseline minimizes the error in terms of camera
pose, 3D structure and the 3D registration.

3.2. Experimental Results

The first experiment evaluates the accuracy of the recov-
ered camera poses. As depicted in Figure 10, we synthesize
a near-spherical surface that mimics the shape of the retina,
and create a reference camera with 0 translation and 0 rota-
tion that faces the z-direction where the surface has a depth
of 1000. We then create 4 sets of images that are translated
10, 20, 40 and 80 away from the reference camera respec-
tively that cover the range in the real image data. Each set
has 4 images that are translated in different directions on the
X-Y plane. The cameras are rotated respectively so that a
large area in the two images can overlap.

b=80

b=40
b=20

d=1000

b=10

X

Y

Figure 10. The camera configurations of the experiment. b and d
are the length of the baseline and depth respectively

To understand the camera pose error with respect to the
baseline, we use each camera as the best camera and employ
4P-BA to compute the corresponding average error of all
cameras. Given the true camera translation and rotation,
the relative error of the estimated translation and rotation
are determined by Etrans = ‖ttrue − t‖/‖t‖ and Erot =
‖rtrue − r‖/‖r‖ respectively. Figure 11(a) and (b) plots
the average relative error of the 4 sets of images. It shows
that the camera pose recovered by 3P-BA has error rate less

than 7.5% when the translation of the camera is 80. It also
shows that cameras with the largest baseline (b = 80) have
the lowest error.
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Figure 11. Errors with respect to different camera baselines

The second experiment evaluates the reconstruction error
with respect to different camera poses using the same 16 im-
ages. For each image, we recover the corresponding camera
pose and estimate the corresponding 3D surface. We then
compute the average error of the 3D surface with respect
to the baseline. Given the true position of the 3D structure,
the average error of the estimated structure is determined by
Estruct = 1

n

∑n
j=1 (‖Xj

true − Xj‖) where n is the number
of points. The result is shown in Figure 11(c). The error de-
creases significantly when the baseline increases.

The third experiment compares the registration errors of
3D registration and 2D registration. We use the same data
set. For each image, we use it as Ibest to estimate all cam-
era poses P i and the corresponding 3D surface. Then we
project the ground truth 3D points and the estimated 3D
points using P i

true and P i respectively and compute the pro-
jection error in pixels. We also compute the average 2D
registration error. The result is shown in Figure 11(d). The
back projection error drops significantly when baseline in-
creases.

Finally, we compare our method with Choe’s on the re-
constructed surfaces of real image sets. Without ground
truth surface data, we measure the average local depth vari-
ance of the surface since a smooth shallow surface should
have a relatively low variance in depth. The local depth
variance is computed at every dense point with a neighbor-
hood of size 100. The result is shown in Table 1. In all
9 image sets, we produce more near planar surfaces. Par-
ticularly in case 1 and 9, the surfaces reconstructed using
Choe’s method are totally wrong and result in extremely
high variance in depth. There is only one case where Choe’s
method selects the same image for 3D reconstruction. Fig-
ure 12 shows some of the cases. In each row, the left and
right surfaces are the reconstructed results from the same
view point using our approach and Choe’s respectively. The
surfaces on the right side are poorly reconstructed. Our sur-
faces, on the other hand, are smooth and slightly curved
just like the way retinal surfaces should be. Our ability to
recover the true 3D shape of an object is very important to
retinal diagnosis and other operations where 3D volumes



reveal information that images do not.

3.93 4.684.89 5.016.68 4.03 2.456.59 3.054P-BA

3P-BA 4.1310.78 5.5615.43 3.486.59 636.1828.32 8.14

Table 1. Average local depth variance comparison of the recon-
structed surfaces

Choe'sOurs

Figure 12. Comparison of the 3D retina surface reconstruction

4. Conclusions

We have presented a 2D registration method that regis-
ter multi-modality images accurately with high registration
rate and a 3D surface reconstruction method that recovers
accurate camera poses and 3D structure for 3D registration.

In 2D registration, SIFT features are extracted from edge
maps and iteratively matched to produce a larger set of re-
liable matches from which an accurate homography can be
estimated. The chained registration further optimized the
pairwise registration result globally by registration in an in-
direct way. Compared with state of the art 2D retinal image
registration methods, ours achieves a near perfect registra-
tion rate over a massive real data set, while the time required
is much less.

In 3D registration, we use 4P-BA to recover accurate
camera poses, which gives us the clue to select the best im-
age associated with the camera with the largest baseline.
Using the best image, both the 3D surface and the camera
poses can be accurately recovered, and the 3D registration
by back projection is therefore accurate. Compared with
state of the art near planar surface reconstruction method,
we produce more accurate surfaces in all data sets.

Our future work includes validating the approach on a
larger data set, increasing the 3D registration rate, and 3D
surface reconstruction from multiple views.
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