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Abstract

In this paper, we study how to build a vision-based sys-
tem for global localization with accuracies within 10cm. for
robots and humans operating both indoors and outdoors
over wide areas covering many square kilometers. In par-
ticular, we study the parameters of building a landmark
database rapidly and utilizing that database online for real-
time accurate global localization. Although the accuracy
of traditional short-term motion based visual odometry sys-
tems has improved significantly in recent years, these sys-
tems alone cannot solve the drift problem over large areas.
Landmark based localization combined with visual odome-
try is a viable solution to the large scale localization prob-
lem. However, a systematic study of the specification and
use of such a landmark database has not been undertaken.

We propose techniques to build and optimize a landmark
database systematically and efficiently using visual odome-
try. First, topology inference is utilized to find overlapping
images in the database. Second, bundle adjustment is used
to refine the accuracy of each 3D landmark. Finally, the
database is optimized to balance the size of the database
with achievable accuracy. Once the landmark database
is obtained, a new real-time global localization methodol-
ogy that works both indoors and outdoors is proposed. We
present results of our study on both synthetic and real data-
sets that help us determine critical design parameters for
the landmark database and the achievable accuracies of our
proposed system.

1. Introduction

Real-time 6 degree-of-freedom (DOF) pose estimation of
moving cameras has been studied for several decades with
numerous applications in robotics, vehicle navigation and
augmented reality. Most of the systems [7, 1, 9, 5, 12, 4,
10, 14] for camera pose estimation are based on detection
and tracking a set of natural feature points in the scene.
Assuming the scene feature points are stationary, methods
based on this idea use them as reference points, thus the rel-
ative camera motion between two consecutive frames can
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be estimated. While contact-free and non-intrusive, these
incremental-motion based methods work well only for a
short period of time and the systems drift eventually as the
error accumulates. This is a rather significant weakness of
the existing visual odometry systems. Furthermore, uninter-
rupted operation over long periods of time may not be possi-
ble as even single frame drops or errors can be catastrophic.
This is referred to as “robustness” issue in [13]. For navi-
gation in large-scale areas continuously, such incremental-
motion based visual odometry is not practically viable.

The latest research efforts [6, 5, 11, 9] are aimed at over-
coming these limitations. A simple but effective method is
to incorporate more measurements from either same or dif-
ferent sensors. For example, a rough map (low accuracy) of
where the observer has been can be utilized to improve vi-
sual odometry [6]. In addition, different types of non-vision
sensors including GPS [5], IMUs [11] and absolute orienta-
tion sensors [9] are incorporated into visual odometry sys-
tems. More recently, an extra pair of stereo-cameras facing
backwards has been added to form a multiple-stereo-pairs
rig [10], which demonstrates quite significant improvements
both in accuracy as well as robustness. However, a rough
map can not always be available; and the GPS measure-
ments can not always be accurate since the satellite signals
can dropout easily in urban canyons and indoors. Even with
the use of multiple cameras and IMUs, errors still accumu-
late to grow the drift, although at a slower speed.

Due to recent advances in the image searching tech-
niques, real-time landmark matching with a large landmark
database has become possible. For example, in [13], a rapid
recognition technique with randomized lists is utilized to
perform landmark matching in real-time. The performance
of this system is shown over a small landmark database (sev-
eral hundred landmarks). In [14], an efficient indexing tech-
nique based on vocabulary trees is proposed to perform the
real-time landmark matching over a large online-collected
database (over tens of thousands landmarks). However, the
main focus of both methods is how to do the landmark
matching on-the-fly. No focus is given to building an ac-
curate or compact landmark database efficiently (with min-
imum human efforts).



In this paper, we examine how to integrate landmark
matching to a pre-built (with continuously updating) land-
mark database to improve overall performance of a vi-
sual odometry system. The goal being to obtain accurate
global localization (within 10 cm.) indoors and outdoors
over a large areas (e.g. multiple square kilometers) can
be achieved. The first challenge is to build the landmark
database efficiently using a robot or human worn system.
Essentially, the human or robot would traverse the area
the day before and from that we would build the landmark
database. The second challenge is to use the automatically
built large landmark database for global localization in real-
time.

1.1. Overview

Before describing each component of our system in de-
tail, the overall structure of the paper is first outlined.

We first describe an online pose estimation technique that
integrates the traditional incremental-motion based visual
odometry with visual landmarks to achieve both accurate
and robust global localization. Next we discuss how to au-
tomatically build an accurate landmark database using data
being collected by a robot or human. The position and ori-
entation of the landmarks is computed using a combination
of visual odometry, together with the use of topology in-
ference to choose spatially neighboring frames and bundle
adjustment. We also propose a pruning method to reduce
the size of the landmark database. Finally we present re-
sults with our system over synthetic video data (generated
by rendering a textured 3D model) and real video sequences
respectively.

In summary, there are three main contributions in our
paper: (1) a set of techniques to improve the accuracy of
a landmark database; (2) a pruning method to reduce the
size of the landmark database and represent it compactly;
(3) a real-time methodology that integrates the traditional
incremental-motion based visual odometry with visual land-
marks to achieve both accurate and robust global localiza-
tion.

2. Real-Time Localization with A Pre-Built
Landmark Database

Figure 1 is a schematic of our proposed two-stage global
localization system that combines visual odometry with
landmark based localization.

When the system initializes, it locates itself by search-
ing the whole landmark database. This is done via the fast
indexing technique using vocabulary tree [8, 2]. Once it lo-
cates itself globally, it will update the current camera pose
and its uncertainty to estimate a search region. The esti-
mated search region will serve as a geo-spatial constraint to
select a smaller set of landmarks for matching in the next
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Figure 1. The flowchart of the combined global localization tech-
nique.

frame. As a result, both efficiency and accuracy can be in-
creased.

If the system fails to locate via landmark-based local-
ization, the visual odometry system takes over. The visual
odometry system localizes by estimating the frame-to-frame
relative poses and integrating them over time. The system
will return to landmark-based localization as soon as an im-
age is found in the landmark database.

Since the incremental-motion-based visual odometry
alone will drift eventually as the error accumulates, it is
only locally accurate. On the other hand, landmark-based
navigation alone prevents drift, but it requires a huge land-
mark database to produce smooth and continuous trajectory.
Therefore, after integrating them together, this two-stage lo-
calization technique employs complementary modules to in-
crease the robustness of the combined system.

Before describing each of the modules in our system, the
basic setup of our built system is introduced.

2.1. Multi-Stereo Visual Odometry System

We have developed a helmet-based visual odometry sys-
tem that consists of two pairs of stereo-cameras mounted in
a helmet, one facing forward while the other facing back-
ward as shown in Figure 2(a). Both stereo pairs are syn-
chronized via a developed synchronization circuitry so that
they can be captured at the same time. A snapshot of the
four synchronized images from both pairs is shown Fig-
ure 2 (b), with each camera capturing a gray-scale image
with 640 x 480 pixel resolution.

Similar to the system proposed in [10], our system starts
with the Harris corner detection and tracking individually
for each stereo pair. Subsequently, the camera pose is es-
timated from the detected Harris corners. However, during
the pose estimation, different from [10], a tightly coupled
multi-stereo fusion algorithm as well as local bundle adjust-
ment will be utilized to refine the final camera pose, which
will be elaborated in Section 3.2 and 3.4.

In addition, in order to increase the robustness of the



(a) (b)
Figure 2. The helmet-based prototype system: (a) front and back
views of the system; (b) captured images of both stereo pairs.

system, an inexpensive IMU unit is added, which is a $2K
Crista IMU that drifts over 720° per hour. Via the Kalman
Filtering as proposed in [11], the system is able to proba-
bilistically combine both the IMU and visual odometry mea-
surements together so that it still can produce an accurate
pose temporarily when both stereo pairs fail to perform ac-
curate pose estimation due to the lack of features or bad
illuminations.

3. How to Improve the Accuracy of the Land-
mark Database

3.1. Landmark Database

In our system, we define a landmark as a feature point in
the scene. Specifically, it is extracted from the image using
a Harris corner detector. For each landmark, it is associated
with three elements: a 3D-coordinates vector representing
its 3D location, a 2D-coordinates vector representing its 2D
location in the image and a feature descriptor that character-
izes its appearance. Here, the Histogram of Oriented Gradi-
ents (HOG) descriptor [12] is used.

In order to make each individual landmark uniquely, the
spatial relationship with its neighboring landmarks is also
utilized. Therefore, instead of adding each landmark into
the landmark database individually, the database is repre-
sented as a collection of landmark shots, where a landmark
shot is a set of landmarks captured at a specific camera lo-
cation and view point (or camera pose), and each landmark
shot works as a basic unit during landmark matching. For
one landmark shot, besides storing all the location (2D+3D)
and appearance (HOG) information of each landmark into
the database, its camera pose at which they are taken is also
stored.

When building a landmark database for a given area, a
robot or person wearing our developed multi-stereo rig will
move around to collect a set of video sequences. From
the collected video sequences, the landmark shots and its
camera pose will be estimated and stored into a landmark
database. For a large area, we would like this database to
be both accurate and compact in size. Therefore, the key
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tasks during database construction would be estimating the
precise camera pose for each landmark shot, estimating the
precise 3D location of the landmarks, as well as selecting
the representative landmark shots.

First, a method to build an accurate landmark database
is introduced. Specifically, we propose to build the land-
mark database by minimizing a global error measure defined
over all the landmarks and the associated camera poses.
Figure 3 depicts a flowchart for the approach. The ap-
proach uses standard techniques of image matching to estab-
lish neighborhood relationships (topology) amongst camera
views and global bundle block adjustment for optimizing
pose and 3D landmark estimates.
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Figure 3. The flowchart of landmark database creation.
Given a video sequence, the algorithm starts with a pose
estimate for each image frame using our multi-camera vi-
sual odometry algorithm.

3.2. Multi-Stereo Fusing

In [10], a two-stage multi-stereo fusion algorithm is pro-
posed during pose estimation. In the first stage, camera
poses are estimated by the front-pair and back-pair individ-
ually at each frame. Then during the second stage, a pose
selection mechanism is utilized to select the one that pro-
duces the smallest cumulative error over both pairs as the
final pose of the multi-camera system.

In order to improve the overall accuracy of pose estima-
tion, we extend the above algorithm to perform a multi-
stereo fusion that tightly couples both front and backward
stereo pairs together to refine the estimated pose.

Specifically, for the front stereo pair (designated to be the
master pair), given one consecutive stereo image pair at time
frame ¢, the cost function e;” during the pose estimation is
defined as a robust function f of the re-projection errors in
both the left and right images of the stereo pair as follows:

ki
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where P; is the pose of the left camera of the stereo pair at
frame ¢, and k; is the number of feature points, whose 3D
coordinates are X; and 2D coordinates in the left and right
images are mffj and xy; respectively, P represents the fixed
relative pose between left and right cameras or the extrinsic
parameters of the stereo pair. To make it robust against the
outliers, the Cauchy-based robust cost function f(x,y) =
log(1 + ||z — y||*/o?) is utilized, where o is the standard
deviation parameter.

Similarly, for the backwards stereo pair (designated to be

the slave camera), given the consecutive stereo image pair



at time frame ¢, the cost function e can be represented as
follows:
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where P§ = P,,,P,P,,} and P, is the fixed relative pose
between the front stereo-pair and back stereo-pair. Specifi-
cally, Pp,s, P and P? are calibrated in advance using stan-
dard camera calibration methods.
Therefore, when both the front and back stereo-pairs are
integrated together, for the consecutive stereo image pairs at
frame ¢, the cost function e, is expressed as
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3.3. Topology Inference

Global consistency of reconstructed landmarks is en-
forced by minimizing the total global error in the overlapped
regions along a path with respect to the pose for each frame
and 3D landmark parameters. However, a key issue is how
to identify pairs of frames that overlap. We employ a topol-
ogy inference algorithm to automatically find a set of spa-
tially overlapped images in a large set of images. Figure 4
illustrates the flowchart of the topology inference algorithm.
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Figure 4. The flowchart of topology inference.

Database

As shown in 4, at each frame ¢, a set of feature points
are first extracted from the front and back stereo pairs in-
dividually to establish a set of 3D-2D feature point corre-
spondences. From the set of 3D-2D feature point corre-
spondences, we estimate pose, P, using the multi-stereo
fusion technique described above. Subsequently, given the
estimated camera pose P, a radius for a 3D search region
is obtained automatically via the uncertainty based on the
estimated drift rate.

Subsequently, all the landmarks acquired at the posi-
tions within the obtained search region are selected from
the landmark database to form a landmark cache. For effi-
cient landmark retrieval, the landmark database is indexed
via a pre-built vocabulary tree [8]. Images from the front

and back stereo pairs are matched to the vocabulary tree-
indexed landmark cache to obtain a list of top-ranked land-
marks. These are subsequently refined by imposing the
epipolar constraint [3]. Finally, we utilize the number of
matched landmarks to characterize the matching score for
each image, and the image with the highest score that satis-
fies a predefined threshold is returned as a successful match.

For efficiency, we store the mapped node indices at each
layer in the tree for each landmark in the landmark database
so that the visual word quantization need be done only once.

With the topology inference technique, all the revisits to
locations already stored in the landmark database are iden-
tified successfully, regardless of the complexity of the envi-
ronment or the number of overlaps along the system’s path
during the process of landmark collection. Once a re-visit
or an overlapped image pair is found, all the frames be-
tween the reference frame and the current frame will be used
for optimization using bundle adjustment. This part is de-
scribed next.

3.4. Bundle Adjustment

Bundle adjustment is used to find optimized estimates of
poses for the landmark images and the corresponding 3D
landmarks. Specially, given a set of N frames starting at
time ¢ = 1, the final cost function e is expressed as:

e(Prmt v, XM X5) =) ey(P, XM X)) (4)

t=1

where X™ =
Xt .UXxNe,

Bundle adjustment minimizes the final cost function e
over the set of N frames by solving the camera poses P;
and the 3D feature coordinates X ;:

xXtmJ..Uxym and X°
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where X;—; g = X™ |JX?®, and K is the total number
of feature points.

Solving the above equation is a non-linear minimiza-
tion problem, which is solved using the iterative Levenberg-
Marquardt non-linear least-squares approach [3]. During
the minimization, the initial values are taken from the esti-
mated poses from the multi-stereo fusion described in Sec-
tion 3.2 directly.

Bundle adjustment provides a globally optimized land-
mark. However, for a fixed large-scale site, the size of the
built landmark database is usually very large. For example,
in order to cover an area with one square kilometers, if we
collect one landmark shot at every meter apart, there will be
10% landmark shots totally. In addition, if we assume that
each landmark shot contains 300 landmarks, then as listed



Table 1. The size of landmarks on the disk .

Size HOG 2D 3D Indexes

a LM (bytes) 128 16 24 25
an image (300) (MB) 0.0366  0.0046 0.0069  0.0072
a database (10%) (GB) | 35.7422 44922 6.7383  7.0313

in Table 1, there will be at least 54.004Gigabytes in total,
which is quite large.

On the other hand, given an image collected at a fixed
location, all the images collected nearby may not need to be
stored into the landmark database. Therefore, it is neces-
sary to reduce the size of the landmark database and build a
compact as well as efficient database.

3.5. How to Build A Compact and Efficient
Database

The key questions to be addressed for a practical land-
mark based localization system covering many square kilo-
meters include: (1) How many landmarks need to be col-
lected? (2) What is the density of the landmarks? (3) How
much translational and rotational sampling is adequate for a
given level of localization performance?

In order to answer these design questions, we use the
metric of accuracy of localization with landmark matching
as an output parameter with respect to variation in the pa-
rameters governing the specified questions. We will sys-
tematically vary the density of landmarks and use the output
metric to evaluate the quality of localization.

For our study, we define a 10 x 10 meter grid of loca-
tions as shown in Figure 5 (a) on the ground with precisely
marked positions. At each location, the camera-rig is ro-
tated 32 times along the pan-direction (horizontally) with a
sampling of 11.5 degrees to collect 32 stereo image pairs.
One pair of sample images taken at two consecutive angles
for the same location is shown in Figure 5 (b). The figure
shows a large overlapped region between these two images.
In total 3200 images are collected.
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Figure 5. (a) The topology of the 10 by 10 grié points; (b) A pair of
sample images taken at two consecutive angles for a same location.
Subsequently, each image is matched to all the 3200 im-

ages using the landmark matching algorithm. The relative
pose is thus estimated for each image pair from the matched
landmarks. Since the ground-truth of the relative pose be-
tween any image pair is known, an error is computed for
each estimated relative pose as the Euclidean distance be-
tween the ground truth and the estimate. We define a suc-
cessful match or landmark localization as a localization er-
ror less than a pre-defined threshold (we use 5cm in our ex-
periments).

We summarize the results in Table 2. The independently
varied parameters are the translational distance and the ori-
entation difference between consecutive landmark images.
Each entry of the table shows the percentage of images that
were localized with an error less than Scm. For instance,
the table shows that for an angular distance of 22.5 degrees
and displacement of 2m., about 71% of the database images
were localized with less than 5 cm. localization error.

If in the operating area, our system can combine frame-
to-frame visual odometry with landmark based localization
done over about 30% of the area, then it is adequate to
sample the landmark images at 6 meters translational and
about 40 degrees orientational separation (within 3-meter
displacement and 22.5 angular distance in Table 2). In other
words, the systematic quantitative results provide us with an
empirical basis for choosing an operating point in the design
of a localization system.

Table 2. The successful rate of the landmark-based localization
under different displacement and view-angle changes (under Scm
pose estimation accuracy) .

Angle Dev. Distance Deviation (meter)
(degree) 0 1 2 3 4 5

0 1 0.998 0914 0.551 0.394 0.331
11.25 1 0.993 0.883 0476 0.330 0.279
22.50 1 0.928 0.713 0.337 0.211 0.158
33.75 0.337 0459 0322 0.098 0.077 0.069
45.00 0 0.074 0.035 0.023 0.021 0.015
56.25 0 0.017 0.019 0.005 0.004 0.003

4. Experiment Results
4.1. Synthetic Video Generation

In reality, due to the difficulty of collecting the full set of
ground-truth camera pose data (three translations and three
angles) at each frame during experiments, how to evaluate
the performance of the visual odometry system becomes an
important issue. So far, most of the existing works either use
loop closure [7, 10] or DGPS [7, 5] to evaluate the perfor-
mance. However, DGPS itself may not be accurate enough
to serve as the ground-truth, and loop closure may not be
able to reflect the accuracy at those positions other than the



closure points. Therefore, in our experiments, a set of syn-
thetic video sequences with the perfect camera pose data at
each image frame are generated. The method to generate
these synthetic videos is described briefly as follows.

Specifically, the first step is to build a 3D model of a real
physical site that covers both indoors and outdoors. Then a
person wearing our helmet-based system walks around the
site and the trajectories (both translations and orientations)
of the camera motion are estimated by the system. Once
these real walking trajectories of the camera motion are ob-
tained, they are used to control a virtual stereo-camera-rig to
move through the built 3D site model exactly like the per-
son, and all the images viewed by the virtual camera-rig will
be captured simultaneously.

Via the above approach, different types of synthetic
video sequences can be obtained, with the obtained real
camera pose data serving as the ground-truth. Since these
synthetic video sequences are very similar to the real col-
lected video sequences, they are perfectly suitable for the
performance evaluation of any visual odometry system.

4.2. Visual Odometry Improvements

In order to show the performance of our new set of pro-
posed techniques, a synthetic video sequence of a multi-
stereo-pair rig (it’s configured exactly same to our helmet
system) containing 1984 frames is created from a 106.23-
meter long real trajectory of our system as shown Figure 6
(a). A snapshot of the left camera of the front pair is shown
in Figure 6 (c).
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Figure (26‘? (a) The gg)gund—truth trajectory of the camera motion
(blue), the estimated trajectory by visual odmetry with old camera
fusion method only (red); (b) The estimated trajectory by visual
odometry with new camera fusion + bundle adjustment (red);(c) A
snapshot of the left-camera.

With the use of fusion method proposed in [10], from
the synthetic video sequence, the visual odometry system
outputs the estimated trajectory shown in Figure 6 (a). Ap-
parently, small error accumulates gradually as the system

moves over time and there is obvious deviation towards the
end of the sequence. As listed in Table 3, the average dis-
tance deviation at each frame is 0.2754 meter, and the final
deviation at the ending frame is 0.5312 meter after travelling
106.23 meters.

However, with the use of our proposed camera fusion
method, the average deviation drops to 0.1437 meter and
the final deviation at the ending frame drops to 0.2882 me-
ter. Finally, if we further turn on the bundle adjustment, the
average deviation drops to 0.0696 meter at each frame, and
the final deviation at the ending frame is only 0.1246 meter,
which is almost 5 times improvement.

Table 3. The deviations between the estimated trajectory and the
ground-truth trajectory for different techniques.

Dev. | Old Fusion New Fusion New Fusion+Bundle
Avg. 0.2754 0.1437 0.0696
Final 0.5312 0.2882 0.1246

4.3. The Combination of Visual Odometry and
Landmarks

In this experiment, the performance of the integrated
pose estimation algorithm is reported on both synthetic and
real video sequences.

4.3.1 Synthetic Video Sequences

A synthetic video sequence (only front pair this time) that
contains 1751 frames is generated from a 91.18-meter long
real trajectory as shown in Figure 7 (a). Figure 7 (b) shows
a left-camera snapshot of the virtual one-pair stereo-rig. In
addition, a set of landmarks are collected at a set of grid po-
sitions that are 1-meter apart as shown as the “red” dots in
Figure 7 (a). Specifically, at each position, 90 stereo-images
are collected at every 4 degrees along the pan direction (hor-
izontally).

Without the use of landmark database, the estimated tra-
jectory by the visual odometry only is shown as the “blue”
curve in Figure 7 (a), which clearly shows the growing drift
as the camera moves over time. As listed in Table 4, the
average of the computed distance deviation at each frame
is 0.2239 meter, and the deviation at the ending frame is
0.4187 meter.

Table 4. The deviations between the estimated trajectory and the
ground-truth trajectory under different landmark settings.

4m+180°
0.0434

3m+4°
0.0251

2m+4°
0.0210

Im+4°
0.0200

Dev. | front-pair
Avg. 0.2239

With the use of landmark database, the trajectory esti-
mated by the visual odometry together with the visual land-
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Figure 7. (a) The ground-truth trajectory of the camera motion

(dark), the estimated trajectory by visual odmetry only (blue) and
the positions where landmarks are collected (red). (b) A snapshot
of the left-camera.

marks is shown as the “blue” curves in Figure 8. Specif-
ically, the average of the computed distance deviation at
each frame is 0.0200 meter when using all the visual land-
marks (9000 landmark shots) collected at 1-meter apart with
4-degree interval, and its deviation at the ending frame is
0.0542 meter. When using the visual landmarks (2250 land-
mark shots) collected at 2-meter apart with 4-degree inter-
val, the average of the computed distance deviation at each
frame is 0.0210 meter and its deviation at the ending frame
is 0.0585 meter. Even when there are only 18 landmark
shots collected at 4-meter apart with 180-degree interval, the
average of the computed distance deviation at each frame is
only 0.0434 meter. It clearly shows the significant improve-
ment when the visual landmarks are integrated.

Y meter
Y meter

X meter X meter

(a) (b)
Figure 8. (a) The estimated trajectory by visual odmetry+visual
landmarks collected at 1-meter apart+4° interval (blue). (b) The
estimated trajectory by visual odmetry+visual landmarks collected
at 2-meter apart+4° interval (blue).

4.3.2 Real Video Sequences

Real video sequences were also collected to validate our
proposed techniques. Specifically, during the experiments,

the person wearing our developed system tried to collect
the landmarks for a specific area. In addition, two loca-
tions are marked on the ground and the person had to travel
through them twice. The total collected video sequences
contain 3150 frames, and the total travelled path is around
311 meters. The estimated trajectory by the multi-stereo vi-
sual odometry without our proposed techniques is shown in
Figure 9 (b). From the front view shown Figure 9 (b), you
can see that there are large distance deviations at the revis-
ited locations marked by a small dark dot. In addition, from
the side view of its trajectories, we can see that there are
obvious deviations along the vertical directions.

Figure 9. (a) The gdgnt and side views of the f(:ls)t)imated camera tra-
jectory with our proposed techniques, where the positions marked
by a small dot represent the revisited locations. (b) The front and
side views of the estimated camera trajectory without our proposed
techniques.

Database Accuracy Refinement. With the use of the pro-
posed techniques, all the overlapped regions along the tra-
jectories will be first detected. Then with the new camera
fusion and bundle adjustment techniques, the pose of the
camera will be refined off-line. Figure 9 (a) shows both the
front and side view of the estimated trajectories after ap-
plying our proposed techniques. From its side view, you
can see the trajectory becomes very flat and there is almost
no deviation along the vertical direction (since the person
was walking on the flat ground). In addition, from the front
view of its trajectory, you can see that both revisited loca-
tions are aligned very well. Table 5 lists the distance de-
viations between both revisits in the estimated trajectories,
and it tells that the camera pose accuracy is improved quite
significantly with the proposed techniques.

Table 5. The distance deviations at two revisits (meters) .

Dev. Without New Methods ~ With New Methods
Point 1 1.2074 0.1607
Point 2 1.6272 0.3028

Database Size Pruning. If we want to create a landmark



database for the above region, we do not need to put all the
landmarks extracted from the front and back pairs at each
location into it, especially when the region is over multiple
square kilometers. In order to eliminate all the redundant
landmarks and represent it compactly, the distance interval
for the locations where the landmark shot is taken is set to be
2 meters and the angle interval is 15 degrees via Section 3.5.
Therefore, instead of adding all 3150-shots of landmarks
into the database, it only needs to add 79-shots as shown in
Figure 10.
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Figure 10. The locations where the landmark shots are added into
the landmark database.

Localization Via Integrated Pose Estimation. During
test, a new video sequence that contains 2376 frames was
recorded while the person travelled around 245 meters near
the region where the landmark database is collected. With
no use of the above pruned landmark database, in the es-
timated trajectory by the visual odometry alone, the devia-
tion at the revisit location marked by a dark dot is 1.9559
meters. However, once we integrate the above pruned land-
mark database, its deviation drops to only 0.2227 meter. The
deviation difference can be easily observed from the Fig-
ure 11 (a). In addition, the trajectory can be automatically
aligned to the coordinate system of the landmark database
as shown in Figure 11 (b).

a b
Figure 11. (a) The(eztimated camera trajectori(es) with visual odom-
etry alone (blue) or with our integrated approach (red), where the
position marked by a small dot represent the revisited location.
(b) The estimated camera trajectory with our proposed techniques
(blue) is aligned with the trajectory of landmark database (dark)
perfectly.

5. Conclusion

In this paper, we have presented a set of techniques
to reduce the global error during the process of landmark
database building for an unknown but fixed environment us-
ing the visual odometry. The global error is reduced via the
integration of a new multi-stereo fusion algorithm, an effi-
cient topology inference algorithm as well as the dynamic
bundle adjustment. Once an accurate landmark database is
built for the unknown environment, it is further reduced to
a realistic size and subsequently integrated into the visual
odometry for navigation within it repeatedly. Experiments
on both synthetic and real video sequences confirm the ef-
fectiveness of our proposed techniques.
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