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Abstract

In photometric stereo a robust method is required to deal
with outliers, such as shadows and non-Lambertian reflec-
tions. In this paper we rely on a probabilistic imaging
model that distinguishes between inliers and outliers, and
formulate the problem as a Maximum-Likelihood estima-
tion problem. To signal which imaging model to use a hid-
den binary inlier map is introduced, which, to account for
the fact that inlier/outlier pixels typically group together, is
modelled as a Markov Random Field. To make inference of
model parameters and hidden variables tractable a mean
field Expectation-Maximization (EM) algorithm is used. If
for each pixel we add the scaled normal, i.e. albedo and
normal combined, to the model parameters, it would not be
possible to obtain a confidence estimate in the result. In-
stead, each scaled normal is added as a hidden variable,
the distribution of which, approximated by a Gaussian, is
also estimated in the EM algorithm. The covariance matrix
of the recovered approximate Gaussian distribution serves
as a confidence estimate of the scaled normal. We demon-
strate experimentally the effectiveness or our approach.

1. Introduction
Photometric stereo, first introduced by Woodham [16],

allows the estimation of reflectance (albedo) and local sur-
face orientation (normal) at each pixel by using several im-
ages captured from a fixed viewpoint but for different illu-
mination conditions. Ideally, for each captured image, the
surface is lit by a single distant light source. For a Lam-
bertian surface, the amount of light reflected depends on
the angle the normal makes with the illumination direction,
the illumination intensity and the albedo, which can be ex-
pressed by the following equation,

z = λρlTn = (λl)T(ρn) = s
T
b (1)

where z is the pixel intensity observed at a surface patch, b
is the unit normal n scaled by the albedo ρ and s is the unit

Figure 1. Top left: One of 169 captured input images. Top right:
The mean of the posterior scaled normal distribution normalized,
also known as the normal map (color coded in the usual way). Bot-
tom left: Posterior inlier probability. Bottom right: The covariance
of the posterior normal distribution, visualized by its trace. Dark
(small trace, small covariance) indicates higher confidence.

illumination direction l scaled by the illumination intensity
λ. Both scaled normals b and scaled lights s are basic en-
tities in photometric stereo. With known scaled lights (cal-
ibrated photometric stereo), each pixel intensity measure-
ment yields a linear equation in the scaled normal. Three
such measurements, corresponding with linearly indepen-
dent scaled lights, suffice to determine the scaled normal.
Extraction of the albedo and normal is trivial. This way
the surface shape and the pattern on the surface produced
by varying albedo can be successfully separated. We will
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not consider the case where both scaled normals and scaled
lights are unknown (uncalibrated photometric stereo).
In reality, however, the presence of shadows and the

complex material behavior exhibited by some surfaces ren-
der this Lambertian assumption invalid and force us to re-
sort to methods which are robust against such complicating
effects. Despite the extensive research on such robust meth-
ods (see subsection 1.1), the presence of severe shadows,
highlights, complex geometry and materials, still pose seri-
ous problems to photometric stereo.
Recently [15, 17, 18], with the availability of cheap

memory and computing power, the use of a dense set of
images (> 100) in photometric stereo emerged as a viable
alternative. Such methods start from the observation that for
a wide range of illumination directions most pixel intensi-
ties measured exhibit a purely Lambertian behavior. Given
enough such measurements this fact can be exploited to de-
termine the normal and albedo, by iteratively trying to find
a consensus around the Lambertian model, as expressed by
Eq. 1. Also, using a larger number of illumination direc-
tions can lead to increased normal-noise averaging and thus
higher quality normals. The approach presented in this pa-
per falls into this category.
The successful application of a proper probabilistic

model combined with Expectation-Maximization in do-
mains such as multi-view stereo [12, 5] and face recogni-
tion [2], suggest similar techniques for solving the robust
photometric stereo problem from a dense set of images. By
fully exploiting the data redundancy inherent in the dense
and noisy data, we are able to recover accurate normals and
albedos despite the presence of severe shadows, highlights,
complex geometry, and inaccurate illumination intensity
calibration. The probabilistic imaging model used in this
paper distinguishes between an inlier and outlier process for
explaining observed pixel intensities. Prior information can
be used to speed up convergence and guide the solution to
more likely configurations. For this reason, the coherence
present in inlier/outlier pixels is expressed by modelling the
inlier map as a Markov Random Field. Indeed shadow and
highlight pixels do not usually find themselves isolated. Ev-
erything is formulated in a Maximum-Likelihood setting.
Model parameters and hidden variables are inferred through
mean field Expectation-Maximization algorithm, of which
the convergence properties are well known. Part of a so-
lution is also to know how good your solution is, at least
qualitatively. To get a confidence measure on the result, we
add the scaled normals to the hidden variables instead of
the model parameters. This way approximate posterior dis-
tributions of the requested scaled normals follow from the
EM procedure, which then can be used for interpreting the
(un)certainty of the result. If there a is need for smooth-
ing the normals, these distributions can be used to guide the
smoothing process, by not allowing normal configurations

with low probability.

1.1. Related Work

Since Woodham [16], there has been much research on
robust methods. One of the earliest extensions, due to Cole-
man and Jain [4], was to use 4 images to detect highlights
in the absence of shadows. Each combination of 3 images
yields an estimate for the albedo. If the recovered albedos
differ significantly, a highlight should be present. The com-
bination producing the smallest albedo contains only the
Lambertian component and is used. The case of shadows
in the absence of highlights follows by similar reasoning.
Barsky and Petrou [1] can handle both cases by using color
images to distinguish between highlights and shadows.
A large body of work is devoted to the recovery of

more complex reflectance models along with the local sur-
face orientation. Non-Lambertian effects are considered
inliers of these reflectance models. Provided enough im-
ages are available, the reflectance parameters can be esti-
mated locally, and such methods are therefore suitable for
surfaces with spatially varying reflectance properties. Na-
yar et al. [10] applied photometric stereo to a so-called
hybrid reflectance model which is a linear combination
of Lambertian and specular components. Tagare and de-
Figueiredo [14] developed the theory of photometric stereo
for the class of m-lobe reflectance maps. Goldman et al. [6]
exploit the observation that for many objects, pixel be-
haviour can be well represented by a mixture of a small
number of reflectance models. Surface orientation, re-
flectance parameters and mixture weights are estimated in
an alternating fashion.
Other methods do not estimate parameters of reflectance

models but rather exploit some of their properties. By
computing a data-dependent rotation of RGB color space,
Mallick et al. [8] show that the specular component in re-
flectance can be separated from the simpler, diffuse com-
ponent for surfaces that can be modelled with a dichromatic
reflection model. Images in this transformed color space are
used to obtain photometric reconstructions. Hertzmann and
Seitz [7] make use of orientation consistency to establish
correspondence between normals of an unknown object and
one or more reference objects imaged under the same illu-
mination. The reference objects have known geometry and
material properties similar to the unknown object. Cluster-
ing is used to obtain a full segmentation into different ma-
terial types. However, both these methods [7, 8] do not take
shadows into account.
Recently, several robust photometric stereo algorithms

have been developed that use a dense set of images [15,
17, 18]. To improve results, Tang et al. [15] use a MRF
formulation, inspired by Sun et al. [13], to impose discon-
tinuity preserving smoothness on the normals. Efficient in-
ference is accomplished by tensorial belief propagation. In



a similar MRF approach, Wu and Tang [17] use graph-cuts
for inference. However, neighborhood constraints on nor-
mals have been reported to erase fine surface details [18].
The same authors, Wu and Tang [18], use Expectation-
Maximization to recover the albedo while simultaneously
clustering a set of initial normals obtained through ratio im-
ages. The matching cost defined in measurement space is
augmented with an ad hoc clustering term.

2. Objective Function
Let θ be the model parameters, and let z and h denote

all the input images and hidden variables, respectively. The
maximum likelihood (ML) solution of the model parame-
ters is given by:

θML = argmax
θ

p(z |θ)

= argmax
θ

{ ∑
h

p(z,h |θ)
}

= argmax
θ

{
log

∑
h

p(z,h |θ)
}

(2)

The hidden variables h = {b,v} contain a scaled normal
map b and inlier maps v. Included in the model parameters
θ are the inlier noise variance σ2, the prior inlier fraction αi

for image i, and a parameter vectorβi used in the histogram
to describe the outlier process for image i.
Given that we are solving the photometric stereo prob-

lem, the probabilistic distribution of the hidden scaled
normal map is of particular interest. An approximation
to this unknown distribution will be estimated during the
Expectation-Maximization (EM) procedure in section 4. So
by including the scaled normals into the set of hidden vari-
ables, instead of into the model parameters, a confidence
measure becomes available.

3. Description of Probabilistic Model
In this section the complete data likelihood term p(z,h |

θ), used in Eq. (2), will be explained in detail. The as-
sumption of independent b and v allows for the following
decomposition,

p(z,h |θ) = p(z |b,v, θ)p(b |θ)p(v |θ) (3)

where p(z | b,v, θ) is the probability of observing the im-
age data given the model parameters and the state of hidden
variables, p(b |θ) and p(v |θ) are priors on the normal map
and inlier maps, respectively.
The image likelihood p(z |b,v, θ) can be factorized fur-

ther over all individual pixel likelihoods as follows,

p(z |b,v, θ) =
∏

i

p(zi |b,vi, θ)

=
∏

i

∏
x

p(zi,x |bx, vi,x, θ) (4)

where zi and vi are image i and its corresponding inlier
map, respectively. For the pixel location x in image i, zi,x

and vi,x are pixel intensity and inlier status (either +1 or
−1), respectively. The continuous 3-vector bx corresponds
to the scaled normal at pixel location x. We assume each
of the observations zi,x independent of one another, and
conditioned only on the hidden variables vi,x and bx cor-
responding to the same image and location. The individual
pixel likelihood used in this paper makes a distinction be-
tween an inlier process f(.) and an outlier process g(.). The
inlier process generates the pixels for image regions not af-
fected by shadows or non-Lambertian effects. Other regions
are assigned to the outlier process. In the inlier process the
observed pixel intensities are generated as follows,

zi,x = si
T
bx + ε (5)

in which we recognize Eq. 1, the basic equation of Lam-
bertian photometric stereo perturbed by iid additive noise
ε sampled from a zero mean univariate normal distribution
with variance σ2. We can characterize the inlier process by
the probability density function (PDF) f(.),

f(zi,x; si
T
bx, σ2) = N (zi,x; si

T
bx, σ2) (6)

The outlier process is generally unknown, but the unknown
PDF can be characterized by a normalized histogram g(.), of
which the parametersβi are estimated during the EM proce-
dure. Each histogram bin (equally spaced in our case) cor-
responds to a range of pixel intensities of which the proba-
bility is given by an entry in the parameter vector βi. Using
vi,x to signal the inlier status of measurement zi,x, the indi-
vidual pixel likelihood can now be summarized as follows,

p(zi,x |bx, vi,x, θ) =

{
f(zi,x; si

T
bx, σ2) if vi,x = +1

g(zi,x; βi) if vi,x = −1
(7)

where σ2 and βi are model parameters. At this point we
would like to highlight some differences with earlier ap-
proaches [15, 17, 18]. In [15, 17] the matching cost used
in the inlier process is some kind of algebraic distance, ne-
cessitated by the albedo cancellation (ratio images). In [18],
the inlier matching cost was properly defined in the obser-
vation space, similar to our own approach, but augmented
with a clustering term. These alternative matching costs do
not allow for an easy interpretation. Also in [18], by treat-
ing pixels individually each has its own noise variance σ2,
which seems unnecessary, and an outlier process with uni-
form distribution is used, instead of the more expressive his-
togram proposed here.
The prior p(b | θ) expresses any prior knowledge we

have regarding the scaled normals. If nothing is known be-
forehand, any distribution with very large covariance can
be used to express that the scaled normal can be located al-
most anywhere in scaled normal space. For the mean we



then typically choose a small scaled normal oriented to-
wards the camera. By adding a prior numerical problems
are also avoided in case not enough inlier observations are
available. The prior can be factorized as follows,

p(b |θ) =
∏
x

p(bx) (8)

where for reasons of simplicity all scaled normals are as-
sumed independent of one another, and of θ. If ever a
smoothness on the normals needed to be enforced, this prior
would be the place to do it. In our work we assume the in-
dividual prior p(bx) is modelled by a trivariate normal dis-
tribution with mean mx,prior and covariance Cx,prior, as
specified here,

p(bx) = N (bx;mx,prior,Cx,prior) (9)

In the following we assume no correlation between shad-
ows and highlights of different images. For some cases,
such as cavities and images with nearby activated light
sources, this assumption is almost certainly violated, how-
ever, the experiments validate its use. The prior p(v |θ) can
be then factorized as follows,

p(v |θ) =
∏

i

p(vi |αi) (10)

where αi is a model parameter describing the fraction of
pixels in image i generated by the inlier process. Shadows
and highlights will not usually give rise to isolated outlier
pixels, but rather form spatially coherent regions in an im-
age. To take this coherence into account, similar to [2], we
model each inlier map vi as aMarkov Random Field (MRF)
with an associated Gibbs-prior distribution as follows,

p(vi |αi) =
1

Z(T )
exp

(
−U(vi)

T

)
.

∏
x

αi

1+vi,x

2 (1− αi)
1−vi,x

2 (11)

where

U(vi) = −
∑

x

∑
y∈N(x)

vi,xvi,y (12)

is a measure of coherence, lower values mean higher co-
herence, T is a temperature parameter, Z is a normalization
constant and N(x) denotes the 4-neighborhood of x. In-
stead of defining the fraction of inlier pixels over all the
pixel locations in a specific image, the approach in [18] de-
fines it over all measurements in images at specific pixel
location. This is again a consequence of their individual
treatment of pixels. In one of our earlier approaches we fol-
lowed a similar path, but found that convergence with EM
was unstable. By defining it over all pixel locations within

the same image, the impact of individual pixels on the inlier
fraction becomes negligible and therefore has a stabilizing
effect. It also means less parameters have to be estimated.
A similar argument can be made for σ2.
The probabilistic model is now fully specified. The next

section will give details on inference of the various model
parameters and distributions of hidden variables. An EM
algorithm is used.

4. Update by Expectation-Maximization
Even for modest sized images, the total number of con-

figurations of h is huge, hence direct optimization of the
log-likelihood in Eq. 2 is infeasible. The Expectation-
Maximisation (EM) [3, 11] algorithm offers a solution to
this problem. The algorithm is derived using a variational
approach. We will briefly mention the steps involved. By
Jensen’s inequality, which follows from the fact that the log
function is concave, a lower bound for the log-likelihood
can be written down as follows,

log
∑
h

p(z,h |θ) = log
∑
h

qh(h)
p(z,h |θ)

qh(h)

≥
∑
h

qh(h) log
p(z,h |θ)

qh(h)

= F(qh(h), θ) (13)

Any probability distribution qh(h) over the hidden variables
gives rise to a lower boundF(qh(h), θ), which is the nega-
tive of a quantity known in statistical physics as the free en-
ergy. Optimizing the functionalF(qh(h), θ)with respect to
qh(h) and θ results in a tightening of the bound. Unfortu-
nately, in many interesting models the data are explained by
multiple interacting hidden variables, such as the MRFs in
our case, which can result in intractable posterior distribu-
tions qh(h). In the variational approach we can constrain
the posterior distributions to be of a particular tractable
form. This will not generally result in the bound becom-
ing an equality, unless of course the exact posterior lies in
the family of constrained posteriors. We use the mean field
approximation, where qh(h) is fully factorized over the hid-
den variables,

qh(h) = qb(b)qv(v)

=
{∏

x

qbx
(bx)

}{∏
i

∏
x

qvi,x
(vi,x)

}
(14)

We further constrain qbx
(bx) and qvi,x

(vi,x) to have a par-
ticular analytical form, as follows,

qbx
(bx) = N (bx;mx,Cx) (15)

qvi,x
(vi,x) =

{
wi,x if vi,x = +1
1− wi,x if vi,x = −1

(16)



With this choice of constrained posterior and the probabilis-
tic model explained in the previous section, an analytical ex-
pression for the lower bound can be derived. The derivation
is tedious but relatively straightforward, and will be made
available as a technical report if the paper is accepted. Set-
ting to zero the derivatives of this expression with respect
to the posterior distribution parameters mx, Cx, wi,x and
the model parameters θ, results in what is classically called
the E-step and M-step of the algorithm, respectively. The
update equations are given by,

E-step

mx = (C−1
x,prior +

1

σ2

X

i

wi,xsisi
T)−1

.

(C−1
x,priormx,prior +

1

σ2

X

i

wi,xsizi,x) (17)

Cx = (C−1
x,prior +

1

σ2

X

i

wi,xsisi
T)−1 (18)

wi,x =
1

1 + exp(−Qi,x)
(19)

M-step

αi =
1

N

X

x

wi,x (20)

σ
2 =

P
i

P
x

wi,xPi,xP
i

P
x

wi,x

(21)

β
k
i ∝

X

i

X

x

(1− wi,x)δk(zi,x) (22)

and the following definitions,

Qi,x
�
= log

αi√
2πσ2

exp
`
−

Pi,x

2σ2

´

(1− αi)g(zi,x; βi)

+
2

T

X

y∈N(x)

(2wi,y − 1) (23)

Pi,x
�
= (zi,x − si

T
mx)2 + si

T
Cxsi (24)

where δk(zi,x) is an indicator function which evaluates
to 1 if the pixel value falls in the kth histogram bin and
evaluates to 0 otherwise. The update equations are applied
in alternating fashion until convergence, upon which the pa-
rametersmx andCx serve as an estimate of a scaled normal
distribution at pixel location x. We found that the order in
which these updates are applied is not so important.

Initialisation The algorithm needs some bootstrapping.
Initially, for each pixel location the 50% brightest intensi-
ties are considered inlier measurements, since outliers will
be predominantly dark shadowed pixels. Ignoring the prior
terms in Eq. 17, a solution formx independent of σ2 is ob-
tained. Plugging Eq. 18 (also ignoring the prior term) into
Eq. 21 and isolating σ2, result in an initial solution for σ2.
From this σ2 and Eq. 18 an initial solution for Cx follows.
Histograms are initialised with each bin having equal prob-
ability, and prior inlier fractions are set to 0.5. After this the
above update equations are applied in alternating fashion.

5. Results
As acquisition device, a dome structure containing 264

light sources, similar to [9], has been chosen. A digital cam-
era is mounted on top of the dome, facing downwards at
the object to be digitized. By construction the directions
of illumination are known, but a calibration procedure to
determine their intensities is still necessary. In one of the
experiments (see Fig. 1) a larger version of this dome was
used, where only a quarter of the sphere is covered with
169 light sources and the object of interest is sitting on a
turntable viewed by a camera mounted on a gantry moving
in the vertical plane. However, this does not mean that the
method proposed in this paper is restricted to this type of ac-
quisition devices. In all our experiments 64 histogram bins
are used. The number of images used in our experiments
always corresponds to the number of light sources.
Bob the Builder Photometric stereo reconstruction re-
sults of Bob the Builder are shown in Fig. 5. We show the
recovered albedo, a 3D model obtained through normal in-
tegration and a synthetically generated image for a virtual
light source (relighting). Also, the distinction between nor-
mal confidence and scaled normal confidence is illustrated.
For surface patches with low albedo (zero in worst case),
the normal cannot be estimated with great confidence, in-
deed large variation in normal orientation will only results
in negligible pixel intensity variation. So, it is possible to
have high confidence in the scaled normal estimate but low
confidence in the normal estimate, which is most notica-
ble on the dark feet of Bob. Given the scaled normal co-
varianceCb, the normal covarianceCn can be shown to be
∂n

∂b
Cb

∂n

∂b

T .
Ground truth As part of our ground truth experiments
we used rendered images of a sphere, examples of which
are shown in Fig. 2. A Phong reflectance model was used
and after rendering noise was added. The error between
estimate and groundtruth is measured in average angular er-
ror of the normals (in degrees). In Fig. 3(a) comparisons
are shown of the algorithm proposed here (without outlier
coherence) and our implementation of [18]. We believe the
clearly better results of our approach are due to a more nat-



Figure 2. 4 example images used in the ground truth experiments.

ural formulation of the problem, and by not assigning a dif-
ferent prior inlier fraction and noise variance to each indi-
vidual pixel location. In addition, we are also faster because
we do not have to solve for an initial set of normals equal
to the number of images, however, no running times are
available. In Fig. 3(a) the noise averaging becomes evident
as the number of images increases. In Fig. 3(b) and 3(c),
we investigate the effect of the coherence temperature on
the error. Both plots show a decreasing error for decreasing
temperature, however, in Fig. 3(c) the error increases again
for very low temperatures. At these temperatures, details in
the inlier maps are elimated, the effect of which seems to be
more pronounced in the error when more images are used
as in Fig. 3(c).

Statue Photometric stereo reconstruction results of a
small statue are shown in Fig. 1. For the acquisition the
camera was placed such that only the right side of the
statue was visible to the quarter sphere illuminating it. Tak-
ing a closer look, one notices that for surface patches on
the left of the statue, which usually find themselves in the
shadow, the reconstructed normals are noisier. These sur-
face patches, having only a few or no inlier measurements,
are clearly of lower confidence. The confidence estimation
of our procedure clearly identifies this situation, and apro-
priately assigns a lower confidence to these surface patches,
in Fig. 1 the confidence visualization is clearly lighter on
the left (lower confidence) than on the right (higher con-
fidence). Also shown is the posterior inlier probability, in
which the cast shadows have been correctly detected as out-
liers. The specular reflections on the knees are detected as
well.
By lowering the temperature parameter more coherence

is enforced on the hidden inlier variables, the effect of
which is clearly visible in Fig. 4. Lowering it too much
causes small details to be eliminated.

Relighting There are applications where a fixed view-
point suffices, but where one would like to interactively
move around a virtual light source. One of these is
cuneiform tablet reading, where e.g. assyriologists get a
better idea of the indentations on the tablet by casting shad-
ows in that manner. The most important property in convey-
ing these indentations to a user are the surface normals. The
surface normals and albedos recovered with our method can
be used in combination with a virtual light source to gen-
erate corresponding virtual images by evaluating the ren-

Figure 4. Influence of the temperature parameter on posterior in-
lier probability coherence. From left to right the temperature is set
to 50, 5 and 0.5, respectively.

dering equation Eq. 1, see Fig. 6. Shading can be done in
real-time through the use of pixel shaders in graphics cards.

Non-Lambertian Finally, we show successful recon-
structions for two challenging cases, see Fig. 7. In the first
case, the surface is very specular, and for the second case, a
piece of cloth with anisotropic material properties is recon-
structed.

6. Conclusion
In this paper we proposed a robust method for dense

photometric stereo reconstruction that can handle shadows
and non-Lambertian effects. The redundancy present in a
dense set of noisy images is fully exploited. Measurements
not consistent with the underying Lambertian assumption
are properly identified by a probabilistic model through the
use of hidden inlier variables. The coherence of the hidden
inlier variabels is expressed by a Markow Random Field
prior. Confidence estimation of the desired scaled normals,
is incorporated in our approach by considering them hidden
variables. Inference of the Maximum-Likelihood solution,
is made possible by a mean field Expectation-Maximization
approach. Very good results have been obtained on a variety
of challenging problems, such as severe shadows, specular
surfaces and even surfaces with anisotropic material prop-
erties.
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