
Fast Algorithms for L∞ Problems in Multiview Geometry

Sameer Agarwal
sagarwal@cs.washington.edu

Noah Snavely
snavely@cs.washington.edu

University of Washington, Seattle

Steven M. Seitz
seitz@cs.washington.edu

Abstract

Many problems in multi-view geometry, when posed as
minimization of the maximum reprojection error across ob-
servations, can be solved optimally in polynomial time. We
show that these problems are instances of a convex-concave
generalized fractional program. We survey the major solu-
tion methods for solving problems of this form and present
them in a unified framework centered around a single para-
metric optimization problem. We propose two new algo-
rithms and show that the algorithm proposed by Olsson et
al. [21] is a special case of a classical algorithm for gen-
eralized fractional programming. The performance of all
the algorithms is compared on a variety of datasets, and
the algorithm proposed by Gugat [12] stands out as a clear
winner. An open source MATLAB toolbox thats implements
all the algorithms presented here is made available.

1. Introduction
As the theory of multi-view geometry has matured, the

focus of research has recently shifted from the study of
the geometric and algebraic structure of the problem to the
numerical solution of the resulting optimization problems.

A particularly fruitful line of work has been the develop-
ment of methods that minimize the maximum reprojection
error across observations (the L∞ norm of the vector of
reprojection errors) instead of the more commonly used
sum of squared reprojection errors. The advantage of this
approach is that in many cases the resulting optimization
problem has new structure that is amenable to global opti-
mization. In particular these optimization problems turn out
to be quasi-convex [13, 15, 16] enabling efficient, globally
optimal solutions using the methods of convex optimization
[5]. A wide range of multi-view geometry problems have
been solved in the L∞ framework, including triangulation,
camera resectioning, homography estimation, structure and
translation with known rotations, reconstruction by using a
reference plane, camera motion estimation and outlier re-
moval [13, 15–17, 24, 25].

In all of these works, the method used for solving the
L∞ optimization problem is a bisection search for the mini-
max reprojection error. While this approach may be rea-

sonable for small problems like triangulation and camera
resectioning, the bisection algorithm is very slow for large
scale problems like structure and translation estimation with
known rotations, where the number of variables can be in
the hundreds of thousands for large problems [18].

The objective of this paper is to present fast algorithms for
the solution of large scale L∞ problems. We first show that
L∞ problems in multi-view geometry are convex-concave
generalized fractional programs (Section 2). Like the L∞
problem, generalized fractional programs are also quasi-
convex and can be solved using the bisection algorithm.
However, unlike a generic quasi-convex program they have
specific structure that can be exploited to build algorithms
which are significantly faster than the bisection algorithm.
We then introduce the parametric optimization problem that
lies at the heart of a number of methods for solving general-
ized fractional programs (Section 3). We survey the major
methods for solving generalized fractional programs and
present them in a unified framework centered around this
parametric optimization problem (Sections 4-7). Along the
way, we propose two new algorithms for solving L∞ prob-
lems (Section 4) and show that a recently proposed algorithm
by Olsson et al. [21] for L∞ optimization is a special case
of a classical algorithm for generalized fractional program-
ming (Section 5). We then compare the performance of the
various algorithms on a variety of large scale data sets and
show that an algorithm proposed by Gugat [12] stands out
as a clear winner (Section 8). Last but not least, we make
available an open source MATLAB toolbox for doing large
scale L∞ optimization. The toolbox includes all the code
used to perform the experiments reported in this paper.

We now summarize the notational conventions used in
the rest of the paper. Upper case letters, e.g., Pi, de-
note matrices, lower case Roman and Greek letters, e.g.,
a, γ, denote scalars, and bold-faced letters e.g., x,λ, de-
note column vectors. 0 and 1 denote vectors of all ze-
ros and ones respectively. Superscripted symbols, e.g.,
xk indicate iterates of an algorithm and the superscript
∗, e.g., γ∗, denotes an optimal solution. For two vectors
x = [x1, . . . , xn] and y = [y1, . . . , yn], x � y is used
to indicate xi ≤ yi, ∀i = 1, . . . , n. Finally, given scalar
functions fi(x) i = 1, . . . ,m, f(x) = [f1(x), . . . , fm(x)].

1

978-1-4244-2243-2/08/$25.00 ©2008 IEEE

2. The L∞ problem
We begin with a brief review of the L∞ problem in multi-

view geometry and its relation to generalized fractional pro-
gramming. We use the triangulation problem as an example.

Given camera matrices Pi = [Ri|ti], i = 1, . . . ,m,
where Ri = [ri1, ri2, ri3]> and ti = [ti1, ti2, t13] and the
corresponding images [ui, vi] of a point x ∈ R3, we wish to
find that value of x which minimizes the maximum repro-
jection error across all images:

min
x

m
max
i=1

∥∥∥∥[ui − r>i1x+ ti1
r>i3x+ ti3

, vi −
r>i2x+ ti2
r>i3x+ ti3

]∥∥∥∥
subject to r>i3x+ ti3 > 0, ∀ i = 1, . . . ,m.

The constraint r>i3x+ ti3 > 0 ensures that the point x lies
in front of each camera, and making use of it, the above
problem can be re-written as a general problem of the form

min
x

m
max
i=1

∥∥[a>i1x+ bi1,a
>
i2x+ bi2

]∥∥
a>i3x+ bi3

subject to Cx � d,

where the constants aij , bij , C and d are appropriately de-
fined.

There is flexibility in the choice of the norm ‖ · ‖. The
L2-norm leads to the formulation considered by Kahl [15]
and Ke & Kanade [16], and the L1-norm leads to the formu-
lation considered by Seo & Hartley [23]. In both of these
cases, each fraction in the objective function is of the form
fi(x)/gi(x), where fi(x) = ‖a>i1x + bi1,a

>
i2x + bi2‖ is

a convex function and gi(x) = a>i3x + bi3 is concave, in
particular gi(x) is affine. For the remainder of this paper we
will not differentiate between the two norms, and consider
the generic optimization problem

min
x∈X

m
max
i=1

fi(x)
gi(x)

(P)

where X = {x|Cx � d} is the convex polyhedral feasible
set. Compactness of the feasible set is a common require-
ment for the convergence analysis of optimization algorithms.
For L∞ problems, the set X is usually not compact. This
is however not a significant hurdle. A closed bounded set
is a compact set. The feasible set X is closed by definition,
and it is always possible to enforce compactness by adding a
constraint ‖x‖∞ ≤M to X for some large constantM with-
out affecting the solution to the original problem. Therefore,
without loss of generality, we assume that X is a compact
convex polyhedral set with a non-empty interior.

2.1. Generalized Fractional Programming
A non-linear optimization problem is a generalized frac-

tional program if it can be written as

min
x∈X

m
max
i=1

fi(x)
gi(x)

(GFP)

where X is a nonempty subset of Rn, fi(x) and gi(x) are
continuous on X and gi(x) are positive on X [10]. Further,
if we assume

1. X is a convex set,
2. ∀i, fi(x) is convex and gi(x) is concave, and
3. ∀i, either fi(x) are non-negative or the functions gi(x)

are affine,

then GFP is a convex-concave generalized fractional pro-
gram. P is therefore a convex-concave generalized fractional
program. From here on, the phrase generalized fractional
program will always refer to convex-concave generalized
fractional programs.

As was shown in [15] and [16], P is quasiconvex. In fact,
all generalized fractional programs are quasiconvex. The
proof is as follows:

By definition, a function h(x) is quasi-convex if its
domain is convex and for all γ, the sublevel sets Sγ =
{x|h(x) ≤ γ} are convex [5]. The domain of the objective
function h(x) = maxi fi(x)/gi(x) is the convex set X and
its γ-sublevel set is given by

Sγ = {x ∈ X |h(x) ≤ γ}
= {x ∈ X |max

i
fi(x)/gi(x) ≤ γ}

= {x ∈ X |fi(x)/gi(x) ≤ γ, ∀i = 1, . . . ,m}
= {x ∈ X |f(x)− γg(x) � 0}

If f(x) is non-negative, then Sγ is empty for γ < 0, other-
wise g(x) is affine and f(x)− γg(x) is a convex function
for all γ ∈ R. Thus, depending on the value of γ, the set Sγ
is either an intersection of a set of convex sets, or else Sγ is
empty; in either case it is a convex set.

2.2. The Bisection Algorithm

Given initial bounds on the optimal value γ∗, we can
perform a bisection search to find the minimum value of
γ for which Sγ is non-empty, at each iteration solving an
instance of the following feasibility problem(Algorithm 1).

Find x

subject to f(x)− γg(x) � 0

x ∈ X (Pγ)

If Sγ is non-empty, the optimization algorithm will return
some x ∈ Sγ as output, otherwise it will report that the prob-
lem is infeasible. For the L2 norm this reduces to a Second
Order Cone Program (SOCP), and for the L1 norm it reduces
to a Linear Program (LP). In both cases, efficient polynomial
time methods exist for solving the resulting optimization
problem [5]. This is the standard method for solving generic
quasi-convex optimization problems [5] and the algorithm
suggested by Kahl [15] and Ke & Kanade [16].

Algorithm 1 Bisection Algorithm
Require: Initial interval [l1, u1] s.t. l1 ≤ γ∗ ≤ u1.

1: loop
2: γk = (lk + uk)/2, Solve Pγk to get xk

3: if feasible then
4: x∗ = xk, uk+1 = maxi fi(xk)/gi(xk), lk+1 =

lk

5: else
6: lk+1 = γk, uk+1 = uk

7: end if
8: if uk+1 − lk+1 ≤ ε1 then
9: return (x∗, uk+1)

10: end if
11: end loop

Consider the sequence γk, which converges to γ∗ in the
limit. If, for some α and c < 1, the following limit exists

lim
n→∞

|γk+1 − γ∗|
|γk − γ∗|α

= c

then the sequence γk is said to have an order of convergence
α. Sequences for which α = 1 are said to converge linearly.
In general, sequences with higher orders of convergence
converge faster than sequences with lower orders. In many
cases of interest, the exact order of convergence is hard to
prove and we have to satisfy ourselves with lower bounds on
the order of convergence. For example, if

lim
n→∞

|γk+1 − γ∗|
|γk − γ∗|

= 0,

it implies that α > 1 and the sequence is said to be super
linearly convergent.

While simple to implement and analyze, the bisection
algorithm suffers from two major shortcomings. First, in
each iteration, the bisection algorithm reduces the search
space by half, hence α = 1 and c = 1/2. Thus the bisection
algorithm converges linearly. Second, effort spent on search-
ing for a feasible point when the set Sγ is empty is wasted,
i.e., it tells us nothing about the solution beyond the fact that
the optimal mini-max reprojection error is greater than γ.

2.3. Related Work in Computer Vision

The complexity of the L∞ optimization problem is a
function of the number of observations. One interesting
feature of the L∞ problem is that only a small subset of
the observations actually constrain the solution, i.e., if we
remove all observations not in the support set of the optimum,
this reduced problem would have the same solution [25].
Using this observation, Seo & Hartley propose an iterative
algorithm that solves a series of L∞ problems to construct
a subset of the observations which is guaranteed to contain

the support set of the optimal solution [23]. The hope is that
each intermediate L∞ problem is small enough to be solved
quickly and that the total effort is less than what is needed to
solve the full problem. In our experience, the performance
of this algorithm depends crucially on the distribution of
reprojection errors and for distributions with thick tails the
performance can be quite poor.

Olsson et al. exploited the pseudo-convexity of the re-
projection error to construct an interior point method that
numerically solves the Karush-Kuhn-Tucker equations [21].
This method was found to be numerically unstable with slow
or pre-mature convergence. They also proposed a second
method based on solving a series of SOCPs, which had good
empirical performance. However, no convergence theory for
this method was given. In this paper we show that this second
method is in fact a classical method for solving generalized
fractional programs and has super-linear convergence.

We note that in this paper we do not cover the work on
interior point methods developed specially for fractional
programs [11, 20]. These methods require the development
of specialized codes. Our interest is in methods which can
exploit the development of advanced solvers for linear and
conic programming to build scalable algorithms.

3. A Parametric View of L∞ Optimization
Let us now consider the following parametric optimiza-

tion problem:

w(γ) =

 minw,x w
subject to f(x)− γg(x) � w1

x ∈ X
(Qγ)

Parametric here implies that we will be considering the
solution of this optimization problem for various values of
the parameter γ. We denote by w(γ) the optimal value
function; for each γ, w(γ) is equal to the minimum value
attained by the variable w. Earlier, we saw that for fixed
values of γ, f(x)−γg(x) is convex, thusQγ is also a convex
program. Note that if we fix w = 0 then Qγ reduces to Pγ .
Further, if the set X is non-empty, then Qγ is feasible for all
values of γ, and w(γ) > 0 if and only if Pγ is infeasible.

The optimal value function w(γ) has a number of inter-
esting properties:

Theorem 1 ([7]). For all γ, w(γ) is finite, decreasing and
continuous. P and Qγ always have optimal solutions. The
optimal value of P , γ∗, is finite and w(γ∗) = 0. w(γ) = 0
implies γ = γ∗.

Theorem 1 establishes a link between the solutions of Qγ
and P . The problem of solving P can now be rephrased the
problem of finding the zero of the function w(γ). In the next
four sections we describe four different approaches to this
problem. All of the approaches are based on solving a series
of problems Qγk ; what differentiates them from each other

is how they exploit the structure of P and Qγ to determine
the sequence γk, and how quickly this sequence converges
to the optimal γ∗.

4. Bisection and related methods
The problem of finding the roots of an function of one

variable is one of the oldest problems in mathematics, and
there are a wide variety of solution methods available.

The simplest algorithm is the bisection algorithm, which
starts with an interval known to contain a root and performs
a binary search to find it. The bisection method for solv-
ing quasi-convex problems, described earlier, does exactly
this; since this method only considers the sign of w(γ), an
indication of the feasibility or infeasibility of Pγ is enough.

We now consider two new methods for finding the root
of w(γ).

4.1. A New Bisection Algorithm

Because the feasible set Sγ gets smaller as γ gets closer to
γ∗, the feasibility problem Pγ gets harder as we get closer to
the solution. Since Qγ is always feasible, our first proposal
is to use to use Qγ in place of Pγ in the bisection problem,
replacing the feasibility test with a test for the sign of w(γk).

4.2. Brent’s Method

The bisection algorithm is an extremely robust algorithm,
but this robustness comes at the price of linear convergence.
Interpolation-based algorithms, such as the secant method
and the method of false position, use a model (linear or
quadratic) to predict the position of the root based on the cur-
rent knowledge of the function. A number of interpolation-
based methods have superlinear convergence.

A modern method which combines the speed of
interpolation-based methods with the robustness of the bi-
section algorithm is the Brent method [6]. This method uses
a inverse quadratic interpolation scheme with safeguards
that include bracketing and switching to bisection when the
interpolation update moves too slowly. Our second proposal
is to use Brent’s method to find the roots of w(γ).

5. Dinkelbach’s Algorithm
In the last section we considered root finding methods

that solve the equation w(γ) = 0 by querying the value of
w(γ) at various values of γ. These methods do not make
use of the structure of P or Qγ , and treat the function w(γ)
as a black box. There is hope that methods which consider
the form of P and Qγ can achieve better performance than
such black box methods. Starting in this section we consider
methods that take the specific form of the objective function
of P into account.

The first class of methods we consider are based on esti-
mating and using the gradient of w(γ). We begin by consid-

ering the special case of P when m = 1, i.e., the single ratio
problem:

min
x∈X

f(x)
g(x)

(P1)

and its associated parametric problem

w(γ) = min
x∈X

f(x)− γg(x). (Q1γ)

Since w(γ) is the minimum of an affine function over a
convex region, it is concave in γ. Further, let γk ∈ R and
xk be the solution to Q1γ . Then for all γ we have

w(γ) ≤ f(xk)− γg(xk)

≤ (f(xk)− γkg(xk))− g(xk)(γ − γk)

≤ w(γk)− g(xk)(γ − γk)

Thus, −g(xk) is a supergradient of w(γ) at γk [5]. Super-
gradients generalize the notion of derivatives for concave
functions. When a function is differentiable, it has a unique
supergradient equal to its derivative, but a general concave
function can have more than one supergradient at a point.

Newton’s method for finding the roots of the equation
w(γ) = 0 can be stated as the following update rule:

γk+1 = γk − w(γk)
∂γw(γk)

.

The utility of supergradients is that they can be used to
construct a Newton method for concave functions. Replacing
the gradient with the supergradient gives us

γk+1 = γk +
w(γk)
g(xk)

=
f(xk)
g(xk)

(1)

Depending upon the smoothness properties of w(γ), Newton
methods can have convergence rates quadratic or better. Un-
fortunately, since w(γ) is not differentiable in general, and
we only have access to its supergradients, the convergence
rate of Eq. 1 is only superlinear [14]. This method is known
in the literature as Dinkelbach’s Procedure [9]. Motivated
by Eq. 1, Crouzeix et al. suggested [8] using

γk+1 = max
i

f(xk)
g(xk)

to solve the case when m > 1. Algorithm 2 describes the
resulting algorithm. One would hope that an analog of the
supergradient inequality will hold true for this algorithm too.
Unfortunately that is not true and only a weaker inequality
holds: [8]

w(γ) ≤

{
w(γk)−mini{gi(xk)}(γ − γk) γ > γk

w(γk)−maxi{gi(xk)}(γ − γk) γ < γk

(2)

Consequently, the resulting algorithm converges only lin-
early.

Algorithm 2 Dinkelbach’s Algorithm
Require: Initial γ1 ≥ γ∗

1: loop
2: Solve Qγk to get (xk, wk)
3: γk+1 = maxi fi(xk)/gi(xk)
4: if |wk| ≤ ε2 then
5: return (xk, γk+1)
6: end if
7: end loop

5.1. Scaled Dinkelbach’s Algorithm
But all hope is not lost. Observe that

min
x∈X

m
max
i=1

fi(x)/vi
gi(x)/vi

for any vi > 0 has exactly the same solution as P . In par-
ticular, this is true for vi = gi(x∗), where x∗ is an optimal
solution to P . Let us consider the corresponding parametric
problem

w′(γ) =

min w

subject to fi(x)− γgi(x)
gi(x∗)

≤ w, i = 1, . . . ,m

x ∈ X

At γ∗, the above problem has the solution x∗. Now
let us see what happens to Eq. 2 at (γ∗,x∗). Since
maxi{gi(x∗)/gi(x∗)} = 1 = mini{gi(x∗)/gi(x∗)}, the
two cases of the inequality 2 collapse into one. Thus, in
the neighborhood of x∗, −maxi{gi(x)/gi(x∗)} is approx-
imately the supergradient and we can recover superlinear
convergence. Of course we do not know x∗ a priori. But
it suggests a modification to Algorithm 2, where Qγ is
replaced by the scaled problem

min w

subject to f(x)− γg(x) � wg(xk−1)
x ∈ X (Q′γ)

The resulting algorithm is known as Dinkelbach’s Procedure
of Type II, or the differential correction algorithm [2].

5.1.1 Equivalence to Olsson et al.

There is another way in which we can arrive at this algorithm.
Let us re-write P as

min γ

subject to f(x)− γg(x) � 0

x ∈ X (P)

Now, consider the first-order Taylor expansion of the term
γgi(x) around (γk, gi(xk))

γgi(x) ≈γk−1gi(xk) + (γ − γk−1)gi(xk−1)

+ γk−1(gi(x)− gi(xk−1))

=γk−1gi(x) + (γ − γk−1)gi(xk−1) (3)

Let w = γ − γk−1. Then P can be approximated as

min w + γk−1

subject to f(x)− γk−1g(x) � wg(xk−1)
x ∈ X

which is exactly the optimization problem suggested by [21]
for the case of the L2 norm. [21] reported good empirical
performance of the resulting algorithm, but did not provide
any convergence analysis. Since γk−1 is a constant, this
optimization problem is equivalent to Q′γk . Thus we have
shown that the algorithm suggested in [21] is the classical
Dinkelbach Procedure of Type II, and therefore has superlin-
ear convergence. Further, the algorithm is applicable to both
the L1 and L2 norm cases.

6. Dual Dinkelbach’s Algorithm
The parametric problemQγ is a convex program. We now

consider an algorithm that uses the Lagrangian dual of Qγ
to construct a superlinearly convergent algorithm [3]. Let Σ
denote the set of vectors λ ∈ Rm such that λ � 0,1>λ = 1,
and let

γ(λ) = min
x∈X

λ>f(x)
λ>g(x)

. (4)

Then the following theorem characterizes γ(λ).

Theorem 2 ([3]). If λ∗ = arg maxλ∈Σ γ(λ), then γ(λ∗) =
γ∗ and if x∗ = arg minx∈X λ∗>f(x)/λ∗>g(x) then x∗ is
also an optimal solution of P .

Theorem 2, motivates solving P by solving
maxλ∈Σ γ(λ). Notice that like w(γ), γ(λ) is the op-
timal value function of an optimization problem, in this case
the minimum value of a generalized fractional program with
a single fraction. Making an analogy with the duality theory
of constrained optimization [5], it is possible to consider
Eq. 4 to be a dual of P with zero duality gap.

So how does one go about maximizing γ(λ)? Since Eq. 4
is a fractional program, consider the parametric problem
associated with it:

w(γ,λ) = min
x∈X

λ>(f(x)− γg(x))

From Theorem 1 we know that w(γ,λ) > 0 implies that
γ(λ) > γ. This suggests the following iterative update

λk+1 = arg max
λ∈Σ

w(λ, γ(λk)) (5)

and the following result holds true.

Algorithm 3 Dual Dinkelbach’s Algorithm
1: Choose λ0 ∈ Σ
2: loop
3: γk = minx∈X λk−1>f(x)/λk−1>g(x)
4: Solve Qγk to get (xk, wk,λk,µk)
5: if |wk| ≤ ε1 then
6: return
7: end if
8: end loop

Theorem 3 ([3]). If f(x) is positive, strictly convex and
g(x) is positive concave, then Eq. 5 converges superlinearly.

Consider now the Lagrangian of Qγ :

L(x, w,λ,µ; γ) =w + λ>(f(x)− γg(x)− w1)

+ µ>(Cx− d) (6)

Our use of the symbol λ as the dual variable associated with
the constraint f(x)− γg(x) � w1 is deliberate. Indeed the
following holds true

Theorem 4 ([3]). If (x∗, w∗,λ∗,µ∗) is a primal-dual solu-
tion to Qγ , then λ∗ = arg maxλ∈Σ w(λ, γ)

Algorithm 3 describes the resulting algorithm. The al-
gorithm successively approximates γ∗ from below and can
be considered a dual to the Dinkelbach algorithms which
approximate γ∗ from above.

7. Gugat’s Algorithm
Recall that the reason why Dinkelbach’s Procedure of

Type I has linear convergence in the case of multiple ratios
is because the supergradient inequality does not hold true
anymore. The Scaled Dinkelbach’s Algorithm works well in
the neighborhood of the optimal solution, but its linearization
breaks down away from the solution.

The classical presentation of Newton’s method is based on
assuming that the function being considered is differentiable.
If, however, we are satisfied with superlinear convergence,
Newton’s method can be constructed using the notion of the
one-sided derivative:

∂+
γ w(γ) = lim

δ→0+

w(γ + δ)− w(γ)
δ

The general problem of estimating the derivatives of the op-
timal value function with respect to the parameters of the
optimization problem is addressed in the perturbation the-
ory of optimization problems [4]. Under suitable regularity
conditions, a classical result relates the one-sided deriva-
tive of the optimal value function with the derivatives of the
Lagrangian as follows:

∂+
γ w(γ) = inf

x,w∈X(γ)
sup

λ,µ∈Λ(γ)

∂γL(x, w,λ,µ; γ)

Algorithm 4 Gugat’s Algorithm
Require: l1 ≤ γ1 ≤ u1, such that l1 ≤ γ∗ ≤ u1.

1: loop
2: Solve Qγk to get (xk, wk,λk,µk)
3: zk = maxi fi(xk)/gi(xk)
4: if zk < γ∗ then
5: x∗ = xk, γ∗ = zk

6: end if
7: uk+1 = min(uk, zk)
8: if wk ≥ 0 then
9: lk+1 = max(lk, γk + wk/σ)

10: else
11: lk+1 = lk

12: end if
13: if |wk| ≤ ε1 or (uk+1 − lk+1) ≤ ε2 then
14: return (x∗, γ∗)
15: end if
16: γk+1 = max

(
lk+1,min

(
γk + wk/λk>g(xk), uk+1

))
17: end loop

Here, L(x, w,λ,µ; γ) is the Lagrangian given by Eq. 6, and,
X(γ) and Λ(γ) are the sets of the primal and dual solutions
of Qγ . Results of this type, are however, not particularly
useful from a computational point of view, since they involve
finding a saddle point over the Cartesian product of all primal
and dual solutions.

Gugat showed that, given a particular primal-dual solution
pair (x∗, w∗,λ∗,µ∗), the derivative of the Lagrangian at that
point approximates the one-sided derivative well enough that
the Newton update converges superlinearly [12]. i.e.,

∂+
γ L(x∗, w∗,λ∗,µ∗; γ) ≈ −λ∗>g(x∗)

Thus, the update rule for γ can now be stated as

γk+1 = γk +
wk

λk>g(xk)
(7)

It is interesting to note here that, for the case when m =
1, λ∗ = 1 and wk = f1(xk) − γkg1(x), and the update
rule reduces to the familiar Dinkelbach’s update for single
fractions: γk+1 = f1(xk)/g1(xk)

Gugat’s algorithm combines update rule 7 with bracketing
which ensures that the iterates are always bounded and the
algorithm does not diverge. Finally, we need a number σ
that determines how much we can increase the lower bound
lk, if w(γk) is non-negative, without missing the root. This
modification ensures that the algorithm does not oscillate. σ
should obey, σ ≥ maxi maxx∈X gi(x). For our purposes, a
large upper bound (1e6) is sufficient.

8. Experiments
In this section we compare the performance of the various

algorithms we have described. Since our primary interest

is in large scale L∞ optimization, we restrict our attention
to the problem of estimating structure and translation with
known rotations. As demonstrated by Martinec & Pajdla,
solving this problem offers an alternative approach to the
problem of reconstruction from multiple views [18].

Six algorithms were compared. Bisect I is from [15].
Bisect II and Brent were proposed in Section 4. Dinkel
I and Dinkel II refer to Dinkelbach procedures of type I
and II respectively. Gugat refers to Gugat’s algorithm. The
Dual Dinkelbach algorithm is omitted because it displayed
extreme numerical instability when solving for γk using
the single ratio problem. All algorithms were implemented
in MATLAB. The MATLAB function fzero implements
Brent’s method and and we use this implementation in our
experiments. For the L2 norm, Qγ is a SOCP and we use
SeDuMi [27] as our solver.1 For the L1 norm, Qγ is an LP,
and we use MOSEK as the solver, as it had better runtime
performance than SeDuMi and was able to handle problems
that required memory greater than 2GB.

The algorithms were compared on 8 datasets. Tables 1
and 2 list the details of each dataset along with the perfor-
mance of each algorithm on it. For each algorithm we list
the runtime in seconds. Only the time used by the solver
is noted here. The number in parentheses is the number of
times the subproblem Qγ was solved (P for Bisect I).

The Dino and the Oxford datasets are available from the
Oxford Visual Geometry Group. The four Temple datasets
are from [22]. The Pisa data set is a proprietary dataset, and
the Trevi dataset is based on images of the Trevi fountain
found on Flickr [1]. Except for the first two datasets, which
come with camera information, the camera rotations and
focal lengths were obtained from an independent bundle
adjustment process [26]. Since outliers are a big issue in
L∞ problems, we used two kinds of datasets. The Dino,
Oxford, and Temple 1-4 datasets are clean datasets with
no significant outliers. Trevi and Pisa datasets contain a
significant number of outliers. No results for the L2 norm
are reported for the Temple 3 & 4 and the Pisa datasets.
For Temple 3, SeDuMi returned with a numerical failure.
Temple 4 and Pisa were too large for the 32-bit version of
SeDuMi to fit in memory. All experiments were run with an
initial guess of γ = 50 and a lower bound of 0 and an upper
bound of 100 pixels error. The termination parameters were
ε1 = 0.01, ε2 = 0.001.

There are number of interesting features in both tables.
Bisect I, Bisect II and Dinkel I are linearly convergent al-
gorithms and it shows in their poor runtime performance as
compared to the other three superlinear methods. There is
no clear winner between Bisect I and Bisect II, and while

1We also experimented with MOSEK [19], which is a leading com-
mercial LP and SOCP solver, and found that Qγ for moderate to large
sized problems triggered a bug in the solver leading to poor numerical
performance.

Dinkel I is usually better on datasets with low noise, on
datasets with a lot of outliers it consistently performs the
worst.

Of the three blackbox methods, Bisect I, Bisect II and
Brent, for L1 problems Brent’s method usually performs the
best, but for L2 problems Bisect I beat both Bisect II and
Brent’s method. Even for L1 problems, Bisect I becomes
more competitive as the problem size increases. This differ-
ence in performance can be explained by taking a closer look
at the problems Pγ and Qγ . Bisect I is based on solving Pγ
which is a feasibility problem where as Bisect II and Brent’s
method use Qγ , which is an optimization problem. For sim-
ilar values of γ, Pγ is easier to solve since the optimizer
terminates as soon as it finds a point inside the feasible set,
whereas it has to find the analytic center of the constraints
in case of Qγ . Unfortunately Bisect II and Brent’s method
are unable to exploit the value of w(γ) effectively enough
to offset the cost of solving more expensive sub-problems.
This becomes obvious if we look at the number of iterations
for these methods. Bisect I consistently takes more iterations
and still performs better on runtime as compared to Bisect II
and Brent’s method.

The clear winner out of the six algorithms is Gugat’s al-
gorithm, which had the best performance on every dataset.
It particularly shines for large-scale sets, where it is between
1.5 to 4 times better than the Bisection algorithm. Its clever
construction that exploits the dual solution to estimate the
gradient of w(γ) makes this algorithm both numerically ro-
bust and computationally efficient. Based on our experiences,
we recommend that Gugat’s algorithm be used as a standard
algorithm for L∞ optimization.

9. Discussion
In summary we have shown that L∞ problems are a

particular case of generalized fractional programming, and
methods for solving them can be used with great success
in multi-view geometry. While our experimental results
have only considered the structure and translation estimation
problem, the method presented in this paper are general and
applicable to all the different L∞ problems. We hope that
Gugat’s algorithm will become a standard tool for solving
L∞ problems in multi-view geometry.

It is also our observation that the L2 problems are poorly
conditioned as compared to the corresponding L1 problems.
Further, since LP solvers are much more mature than SOCP
solvers, the L1 norm formulation is a better one to solve in
our opinion. The exact cause of the conditioning problems
of L2 problems is a problem that deserves more attention.

In future work we hope to use the dual structure of Qγ to
analyze the problem of outlier removal.

Dataset Images Points Observations Bisect-I Bisect-II Brent Dinkel-I Dinkel-II Gugat
Dino 36 328 2663 12(13) 12(9) 7(5) 7(5) 6(4) 4(3)

Oxford 11 737 4035 19(13) 25(12) 12(6) 41(21) f(f) 10(5)
Temple 1 43 4233 29163 226(13) 196(9) 109(5) 132(6) 104(5) 81(4)
Temple 2 103 8063 63373 676(13) 576(10) 275(5) 339(6) 277(5) 220(4)
Temple 3 203 15898 128530 985(13) 1646(10) 778(5) 1079(7) 794(5) 472(3)
Temple 4 312 22033 178897 1353(13) 1875(9) 1042(5) 1426(7) 1237(6) 619(3)

Trevi 58 4054 15085 191(14) 101(10) 70(7) 247(24) 59(6) 50(5)
Pisa 100 64023 436060 14435(14) 17311(13) 13665(10) 28396(28) 11352(7) 4617(4)

Table 1. Runtimes for L1 norm reprojection error. All times are in seconds. The number in the parentheses indictes the number of times Qγ

or Pγ was solved. f denotes numerical failure. Parameter settings, ε1 = 0.01, ε2 = 0.001, σ = 1e6.

Dataset Images Points Observations Bisect-I Bisect-II Brent Dinkel-I Dinkel-II Gugat
Dino 36 328 2663 6(9) 21(9) 11(5) 9(4) 9(4) 8(4)

Oxford 11 737 4035 12(12) 20(9) 62(28) 84(30) 30(10) 10(4)
Temple 1 43 4233 29163 180(11) 356(9) 226(5) 298(7) 199(5) 121(3)
Temple 2 103 8063 63373 439(11) 512(5) 558(5) 842(8) 566(5) 315(3)

Trevi 58 4054 15085 123(13) 156(8) 229(13) 743(30) 130(6) 33(2)

Table 2. Runtimes for L2 norm reprojection error. All times are in seconds. The number in the parentheses indictes the number of times Qγ

or Pγ was solved. Parameter settings, ε1 = 0.01, ε2 = 0.001, σ = 1e6.

Acknowledgements
The authors are grateful to Prof. Paul Tseng for several useful

discussions, Erling Andersen for his help with implementing the
algorithms in MOSEK and Kristin Branson for reading several
drafts of the paper.

This work was supported in part by National Science Foundation
grant IIS-0743635, the Office of Naval Research, Microsoft, and
the UW Animation Research Labs.

References
[1] Photo Tourism. http://phototour.cs.washington.edu.
[2] I. Barrodale, M. Powell, and F. Roberts. The differential

correction algorithm for rational l∞-approximation. SIAM J.
on Num. Anal., 9(3):493–504, 1972.

[3] A. Barros, J. Frenk, S. Schaible, and S. Zhang. A new al-
gorithm for generalized fractional programs. Math. Prog.,
72(2):147–175, 1996.

[4] J. Bonnans and A. Shapiro. Perturbation Analysis of Opti-
mization Problems. Springer, 2000.

[5] S. Boyd and L. Vandenberghe. Convex Optimization. Cam-
bridge University Press, 2004.

[6] R. Brent. Algorithms for Minimization Without Derivatives.
Courier Dover Publications, 2002.

[7] J. Crouzeix and J. Ferland. Algorithms for generalized frac-
tional programming. Math. Prog., 52(1):191–207, 1991.

[8] J. P. Crouzeix, J. A. Ferland, and S. Schaible. An algorithm
for generalized fractional programs. J. of Opt. Theory and
Appl., 47:35–49, 1985.

[9] W. Dinkelbach. On nonlinear fractional programming. Man.
Sci., 13(7):492–498, 1967.

[10] J. Frenk and S. Schaible. Fractional Programming. Springer,
2004.

[11] R. Freund and F. Jarre. An interior-point method for fractional
programs with convex constraints. Math. Prog., 67(1):407–
440, 1994.

[12] M. Gugat. A fast algorithm for a class of generalized frac-
tional programs. Man. Sci., 42(10):1493–1499, 1996.

[13] R. Hartley and F. Schaffalitzky. l∞Minimization in geometric
reconstruction problems. In CVPR, pages 504–509, 2004.

[14] T. Ibaraki. Parametric approaches to fractional programs.
Math. Prog., 26(3):345–362, 1983.

[15] F. Kahl. Multiple view geometry and the L∞-norm. In ICCV,
pages 1002–1009, 2005.

[16] Q. Ke and T. Kanade. Quasiconvex optimization for robust
geometric reconstruction. In ICCV, pages 986–993, 2005.

[17] H. Li. A practical algorithm for l∞ triangulation with outliers.
In CVPR, 2007.

[18] D. Martinec and T. Pajdla. Robust rotation and translation
estimation in multiview reconstruction. In CVPR, 2007.

[19] MOSEK ApS, Denmark. The MOSEK optimization tools
manual Version 5.0 (Revision 60).

[20] Y. Nesterov and A. Nemirovskii. An interior-point method
for generalized linear-fractional programming. Math. Prog.,
69(1):177–204, 1995.

[21] C. Olsson, A. Eriksson, and F. Kahl. Efficient optimization
for l∞ problems using pseudoconvexity. In ICCV, 2007.

[22] S. Seitz, B. Curless, J. Diebel, D. Scharstein, and R. Szeliski.
A comparison and evaluation of multi-view stereo reconstruc-
tion algorithms. pages 519–526, 2006.

[23] Y. Seo and R. Hartley. A fast method to minimize L∞ error
norm for geometric vision problems. In ICCV, 2007.

[24] K. Sim and R. Hartley. Recovering camera motion using l∞
minimization. In CVPR, pages 1230–1237, 2006.

[25] K. Sim and R. Hartley. Removing outliers using the l∞-norm.
In CVPR, pages 485–494, 2006.

[26] N. Snavely, S. Seitz, and R. Szeliski. Photo Tourism: Explor-
ing photo collections in 3D. TOG, 25(3):835–846, 2006.

[27] J. Sturm. Using SeDuMi 1.02, a Matlab toolbox for optimiza-
tion over symmetric cones. Opt. Meth. and Soft., 11-12:625–
653, 1999.

