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Abstract

In this paper, we propose a novel robust retrieval and
classification system for video and motion events based on
null space representation. In order to analyze the robust-
ness of the system, the perturbed null operators have been
derived with the first order perturbation theory. Subse-
quently, the sensitivity of the null operators is discussed in
terms of the error ratio and the SNR respectively. Mean-
while, the normwise bounds and componentwise bounds
based on classical matrix perturbation theory are presented
and discussed. Given the perturbation, uniform sampling
are proposed for the convergence of the SNR and Poisson
sampling are proposed for the convergence of the error ra-
tio in the mean sense by choosing the rate parameter the
same order as the number of samples. The simulation re-
sults are provided to demonstrate the effectiveness and ro-
bustness of our system in motion event indexing, retrieval
and classification that is invariant to affine transformation
due to camera motions.

1. Introduction

In recent years, object motion trajectory-based recogni-
tion has aroused significant interest, such as sign language
data measurements, Car Navigation System(CNS), in sports
video trajectory analysis and automatic video surveillance.
An object trajectory captured from different view-points
leads to completely different representations, which can be
modelled as affine transformation approximately. To get a
view independent representation, the trajectory data is rep-
resented in an affine invariant feature space. This paper
addresses the important question of how to perform video
retrieval and classification using motion trajectories when
the query and video sequences in the database are taken
from cameras with different view or possibly from moving
cameras.

In [4], the mathematical form of the representation of
the null space invariants has been derived. In this paper, we
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will rely on the theoretical formulation of the null space in-
variants to demonstrate its enormous potential in computer
vision and related fields. Specifically, we will demonstrate
the invariance of the null space representation of motion tra-
jectories of moving objects to camera orientation and move-
ment. We will subsequently investigate the robustness of the
proposed approach to view invariance based on null space
representation. We will evaluate the sensitivity of trajectory
analysis to noisy data by using tools from perturbation the-
ory. We will determine the performance of the null space
representation in terms of both the error ratio and SNR. We
will finally derive the optimal sampling strategy that mini-
mizes the sensitivity to noise perturbation and thus ensures
the robustness of null space representation. Moreover, we
will demonstrate that the optimal sampling strategy required
to maximize the SNR is provided by uniform sampling. We
therefore observe that the null space representation is partic-
ularly suitable for the invariant representation of computer
vision systems since they traditionally rely on uniform sam-
pling for data acquisition (e.g. uniform sampling of the tem-
poral dimension is used to capture video signals).

1.1. Null space representation

A fundamental set of 2-D affine invariants for an ordered
set of n points in R? (not all colinear) is expressed as an
n-3 dimensional subspace, H" 3, of R"~!, which yields
a point in the 2n-6 dimensional Grassmannian Grg(n —
3,n — 1), a manifold of dimension 2n-6. Null space in-
variant (NSI) of a trajectory matrix (each row in the matrix
corresponds to the positions of a single object over time) is
introduced as a new and powerful affine invariant space to
be used for trajectory representation. This invariant, which
is a linear subspace of a particular vector space of a partic-
ular vector space, is the most natural invariant and is def-
initely more general and more robust than the familiar nu-
merical invariants. It does not need any assumptions and
after invariant calculations it conserves all the information
of the original raw data. Let Q; = (x;,y;) be a 2-D point
fori=0,1,...N-1 N ordered non-linear points in R2. Consider
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Figure 1. Visual illustrations of the motion trajectory images and
their null space representation from CAVIAR data set in [1]

the 3 x N matrix M as:
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As described in [4], HV =3 is spanned by the vector v; =
(gb, gt ..., q}'\,il)T, i=3,4,...,N-1, where
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The invariants of the trajectory are defined as:

HN_3 = {q: (q[)aqla"'anfl)T ERN_l

Mq=(0,0,0)T} . 3)

2. Perturbation analysis
2.1. Perturbation analysis of null spaces

Perturbation analysis is an important mathematical
method which is widely used for analyzing the sensitivity of
linear systems by adding a small term to the mathematical
description of the exactly solvable problem. Let’s assume
the noise matrix Z as:

€z,0 €x,1 €x,N—1
€y,0 €y,1 €y, N—1 s “4)
0 0o .. 0

where ¢; ;, €, ; have IID Gaussian distribution with zero
mean and the variance 2. So the perturbed trajectory ma-
trix M = M + Z can be represented as:

To+ €x0 L1+ €zl TN-1+ €x,N-1
Yo+ €yo Y1+ €y YN—1 + €y, N—1 )
1 1 1

Let us derive the perturbed null operator with the first
order perturbation.

) T1+ €, T2t €, Tt €y
qé = —det Y1+ €yp Y2 + €y Yi + €y, (6)
1 1 1

Expanding eq. (6) and ignoring the second order perturba-
tion, it is easy to obtain:

o= a5+ €qi » (7

where € also has Gaussian distribution with zero mean
and the variance [(z; — 71)? + (22 — 21)% + (; — 22)? +
(i —y1)? + (yi — y2)? + (y1 — y2)?]6?, which is denoted
as (r?, + 1%, + r3,)0? for simplicity. Similarly, we obtain:

@ =i +eqi s (8)
@ =5+ €q ©)
G =g +eg, (10)
where €gi 1 €qi» Eg satisfy:
6‘1{ ~ N(07 (7%2 + Tgi + r%i)(SQ) ’ (11)
€qi ™ N(0, (rgy + 15 +17;)8%) (12)
eqi ~ N(0, (rgy + 1y +712)67) - (13)

2.2. Discussion of the error ratio

Based on the perturbed null operator, it is desirable to
know the ratio of the input error and the output error where
the input error is referred to the error of the trajectory ma-
trix and the output error is referred to the error of the null
operator. Let us compute the expectation of the square of



the Frobenius norm for the input error and the output error
respectively. It can be shown that:

E||Z||} = 2N¢§? (14)
Denoting the perturbed null operator matrix Q =
@ @
=3 ~N— -
@ 4 , E||Q — Q||% can be computed:
@o1 - N
N-1
EIQ- QI = Y[E(E)+E(E)+ B+ B(e
=3
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i=3

So the ratio of the output error and input error is:
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From eq. (16), it can be seen that the ratio only relies on the
trajectory itself while independent of the noise. Minimizing
T, we obtain:

xi:($0+3?31+$2)’yi:(yo+231+y2). a7

It indicates that the centroid of the first three points gives
the minimum value of the ratio of the output and the input
error.

2.3. Discussion of the SNR

Besides the error ratio, SNR is widely used to evaluate
robustness of the system. Let us derive the expression for
the output SNR. Defining the power of the output signal as

2 _ _ el .
|Q||%, SNR can be computed by Asyr = Fla-6T &
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where j # k. It can be seen that the critical points of SNR
are trajectory-dependent.

2.4. Bounds for the perturbation error

Using basic perturbation theorem as in [2], we obtain:

19 - Qll
1R

where ||.|| denotes a matrix norm and a consistent vector
norm. Equation (25) is referred as normwise bounds. If
we weaken the bound, we can relate it with the condition
number of M.

10 - Q|
1R

where the condition number x(M) = ||[M||||M~!|. Since

the left-hand side of the bound can be regarded as a rela-

. : Al [|M =]
tive error in Q. The factor . = ;
Q M) 1]

<Mz, 24)
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< MY Z]| = k(M) R

(25)

can likewise be

regards as a relative error in M. Thus the condition num-
ber «(M) implies how much the relative error in the matrix
of the system M = 0 is magnified in the solution. If in
addition || M ~1Z|| < 1, it is easy to obtain:

1Q-Ql _ M7z
el = 1-[a1Z]

(26)

The difficulty with normwise perturbation analysis is that it
attempts to summarize a complicated situation by the rela-
tion between three numbers: the normwise relative error in
Q. the condition number (M ) and the relative error in Q.
We can do better if we are willing to compute the inverse of
M:

Q-Q| <MY Z|Q]. 27)



Moreover, if for some consistent matrix norm
IIM~1|Z||| < 1, then (I — |[M~1||Z])~! is nonneg-
ative and

Q@ -QI <MYz MTY|ZllQl.  (@28)

The bounds in (27), (28) which are referred as component-
wise bounds [2] can be quite an improvement over norm-
wise bounds. The superiority of eqs. (15) and (18) over
the bounds in the (24)-(28) are two fold: (1) Compared to
(15), although the inequality (24)-(28) gives a more com-
pact form, they are not computationally feasible when the
information of the noise matrix is not available; (2) instead
of inequalities, eq. (18) provides a more convenient and di-
rect way to analyze the critical points and the convergence
of SNR.

3. Sampling strategy and convergence analysis

Given the perturbation, designing optimal sampling
strategy is very important for the robustness of the system.
In some scenario, such as the video sequences, uniform
sampling is required to ensure the quality of the video. In
other cases, such as animal mobility experiments and GPS
tracking, Poisson sampling is an important technique for
obtaining the information.

3.1. Uniform sampling

Arbitrary trajectories in x and y directions can be repre-
sented as:

v = f(t). (29)
y=g(t). (30

Expanding eqgs. (29) and (30) in Maclaurin series, we ob-
tain:

, " (n)
1= s+ £+ L0y 0y
g(t) = g(0) + ¢ (0)t + g”2(!®t2 4.4 wz@ . (32)

The distance between two arbitrary samples can be com-
puted as:

rhj = (=) + (e —yy)?
, (n)
= [fO)(t; —tg)+ ...+ / m(O) (th — th]? +
g™ (0)

(g (0)(t; — tg) + ... +
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With uniform sampling rate t; = kT, it is easy to obtain:
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Therefore, it can be seen from eqs. (34)-(36) that 7 is equal
to O(N?") which increases dramatically with the number
of the samples. With regard to SNR, we have the following
property:

Property 1:With uniform sampling ¢ = kT,

A(g™(0))* + B(f™(0))? n

652[(9(0))? + (f)(0))?]
652[(9™(0))? + (f)(0))?]

where A, B and C are defined in (19) and (20).

Remark: Property 1 can be proved by showing that both

Q% and E||Q — Q|3 are O(N?"*1). Thus, SNR is de-

termined mainly by three factors: (1) The coordinates of

the first three samples; (2) the values of the nth derivatives
at the origin; and (3) the variance of the noise.

lim A =
N ASNER

3.2. Poisson sampling

To guarantee the convergence of the error ratio, Poisson
sampling is chosen which has the distribution for the sam-
pling time ¢, as:

)\ktkflefz\t
(k—1)!

The nth moment of ¢; can be expressed as:

fte) = (38)

o0 )\ktn+kf 1 67>\t

B :/0 e

(n+k—1)!
= — 39
An(k —1)! (39)
Property 2: A = O(N) should be chosen for Poisson sam-
pling to guarantee the convergence of 7, where N is the total



number of samples.
Property 3: 7 converges in mean sense given A = O(N).
Specifically, for A = T

_32 ak—|—b;¢ ’ (40)
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where k is the index for Taylor series and for ay and by, if k
is odd,
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Property 4: If the trajectories are sampled with A = O(N),
the variance of the error ratio converges to zero, namely,

lim Var(t)=0. (45)

N—o0

Remark: Property 3 can be proved by showing that

1= 1
lim — E{th) = —. 46
NLTOONJZ:;) ) =51 (46)

In our framework, the density A corresponds to the average

. L _ N
number of samples per unit-length; i.e. A = 7.

4. Simulation Results

In this section, we first demonstrate the superiority of the
performance by Poisson sampling over uniform sampling in
terms of the error ratio for different trajectories. Then we
show the performance of the SNR with uniform sampling
outperforms the one with Poisson sampling. Moreover, we
evaluate the performance of our system for retrieval and
classification of motion trajectories with both perfect data
and noisy data relying on principal component null space
analysis (PCNSA) [3] from the Context Aware Vision using
Image-based Active Recognition (CAVIAR) data setin [1].

4.1. Evaluation of the error ratio and SNR

For numerical examples, we extract the true trajectory
from Fig 1 and evaluate the performance of 7 over N = 60

-4~ lamda=N
- --lamda=N/2
—t+—lamda=N/3

the error ratio

*
T

-
T
0 10 20 30 40 50 60
the number of samples

Figure 2. the ratio of the error vs the number of samples for the
motion trajectories at Fig.1 when A = N, N/2, N/3 and N = 60
respectively with Poisson sampling in the convergence case.

samples with A = N, N/2, N/3 respectively. Shown in
Fig.2, for the three cases, Poisson sampling works well and
among them, the case of A = IV gives the best performance.
Let’s define SNR(dB) = 10log10(Asnr). The perturbed
trajectories are chosen with zero mean and the variance 0.5
additive Gaussian noise to evaluate the performance of SNR
by uniform sampling over 30 samples with the sampling pe-
riod T=1s from Fig.1. It can be seen from the simulation
results in Fig.3 that (1) the general trend is that SNR de-
creases when the number of samples N increases; (2) the
convergence of SNR is very fast. Theoretically, there is no
closed form for the mean of the SNR with Poisson sam-
pling. We also provide the comparison of the performance
of SNR with uniform sampling and Poisson sampling for
the same trajectories we extracted in Fig.3. In Fig.3 the per-
formance of SNR with uniform sampling is superior to the
performances with Poisson sampling for A = N/4, N/5 re-
spectively.

4.2. Trajectory retrieval and classification

Since in the real world, the trajectories in a class usually
have different lengths, we normalize the length by taking
Fourier Transform and choosing the largest 32 coefficients
and then taking Inverse Fourier Transform so that all the
trajectories are of size 32. Based on NSI, the N x (N — 3)
matrix Q is converted into n(n-3) column vector Y which is
considered as data samples. We perform Principal Compo-
nent Null Space Analysis (PCNSA) with the discriminant
function D(X;,Y) = [|[Wnsa,:i(X: — 2)|,
query trajectory. The PR curve for motion trajectory re-
trieval is shown in Fig.4. The visual illustration of the query
and the three most similar retrieval are shown in Fig.5. In
Fig.6, we use 20 different classes as different types of mo-
tions in the data set. Each class has 50 trajectories recorded
at different instances. Based on PCNSA, We plot the PR
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Figure 3. SNR(dB) comparison vs the number of samples with
Poisson sampling A = N/4, N/5 and uniform sampling for the
motion trajectories in Fig.1.
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Figure 4. Precision-Recall Curve for indexing and retrieval with
20 classes with true and noisy trajectories.

Curve for the classification of perturbed trajectories with
the noise which has zero mean and the variance 0.2 and 0.5
respectively. Simulation results in Fig.6 demonstrate the ro-
bustness and effectiveness of our system.

5. Conclusion

In this paper, We propose a novel robust system to apply
the null space invariants to computer vision and other re-
lated fields. We demonstrated the enormous potential of the
NSI operator as a powerful view-invariant representation for
recognition and retrieval. The computational complexity of
NSI is very low and it preserves information of the original
data when computing invariants. We derive the perturbed
null operators with the first order perturbation theory and
analyze the sensitivity of the systems in terms of the er-
ror ratio and the SNR. In view of the perturbation, optimal
sampling are purposed to minimize the corresponding sen-

Rank1

Rank2 Rank3

Figure 5. Visual illustration for retrieval results with 20 classes
with motion trajectories.
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Figure 6. Precision-Recall Curve for classification with 40 classes
with true and noisy trajectories.

sitivity. Computer simulation demonstrates the effective-
ness and robustness of our approach in indexing, retrieval
and classification of both perfect and noisy motion trajecto-
ries.
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