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Abstract

Salient areas in natural scenes are generally regarded
as the candidates of attention focus in human eyes, which
is the key stage in object detection. In computer vision,
many models have been proposed to simulate the behav-
ior of eyes such as SaliencyToolBox (STB), Neuromorphic
Vision Toolkit (NVT) and etc., but they demand high com-
putational cost and their remarkable results mostly rely on
the choice of parameters. Recently a simple and fast ap-
proach based on Fourier transform called spectral residual
(SR) was proposed, which used SR of the amplitude spec-
trum to obtain the saliency map. The results are good, but
the reason is questionable.
In this paper, we propose it is the phase spectrum, not

the amplitude spectrum, of the Fourier transform that is the
key in obtaining the location of salient areas. We provide
some examples to show that PFT can get better results in
comparison with SR and requires less computational com-
plexity as well. Furthermore, PFT can be easily extended
from a two-dimensional Fourier transform to a Quaternion
Fourier Transform (QFT) if the value of each pixel is repre-
sented as a quaternion composed of intensity, color and mo-
tion feature. The added motion dimension allows the phase
spectrum to represent spatio-temporal saliency in order to
engage in attention selection for videos as well as images.
Extensive tests of videos, natural images and psycholog-

ical patterns show that the proposed method is more effec-
tive than other models. Moreover, it is very robust against
white-colored noise and meets the real-time requirements,
which has great potentials in engineering applications.

1. Introduction
Most traditional object detectors need training in order

to detect specific object categories [1, 2, 3], but human vi-
sion can focus on general salient objects rapidly in a clus-
tered visual scene without training because of the existence

of visual attention mechanism. So human can easily deal
with general object detection well, which is becoming an
intriguing subject for more and more researches.
What attracts people’s attention? Tresiman [4] pro-

posed a theory which describes that visual attention has two
stages. A set of basic visual features such as color, motion
and edges is processed in parallel at pre-attentive stage. And
then a limited-capacity process stage performs other more
complex operations like face recognition and etc. [5]. Dis-
tinctive features (e.g. luminous color, high velocity motion
and etc.) will ”pop out” automatically in the pre-attentive
stage, which become the object candidates.
Several computational models have been proposed to

simulate human’s visual attention. Itti et al. proposed
a bottom-up model and built a system called Neuromor-
phic Vision C++ Toolkit (NVT) [6]. After that, following
Rensink’s theory [7], Walther extended this model to attend
to proto object regions and created SaliencyToolBox (STB)
[8]. He also applied it to the object recognition tasks [9].
However, the high computational cost and variable param-
eters are still the weaknesses of these models. Recently,
Spectral Residual (SR) approach based on Fourier Trans-
form was proposed by [10], which does not rely on the pa-
rameters and can detect salient objects rapidly. In this ap-
proach, the difference (SR) between the original signal and
a smooth one in the log amplitude spectrum is calculated,
and the saliency map is then obtained by transforming SR
to spatial domain. All these models mentioned above, how-
ever, only consider static images. Incorporating motion into
these models is a challenging task that motivates us to de-
velop a novel method to generate spatio-temporal saliency
map.
After careful analysis, we find that SR of the ampli-

tude spectrum is not essential to obtain the saliency map
in [10]; however, the saliency map can be calculated by
the image’s Phase spectrum of Fourier Transform (PFT)
alone. Moreover, this discovery of PFT provides an easy
way to extend our work to Quaternion Fourier Transform
(QFT) [11]. Each pixel of the image is represented by a
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quaternion that consists of color, intensity and motion fea-
ture. The Phase spectrum of QFT (PQFT) is used to obtain
the spatio-temporal saliency map, which considers not only
salient spatial features like color, orientation and etc. in a
single frame but also temporal feature between frames like
motion.
In section 2, we propose PFT and discuss the relation-

ship between PFT and SR. In section 3, we introduce the
quaternion representation of an image and propose PQFT
to obtain spatio-temporal saliency map. Many experimen-
tal results of comparing our methods with others are shown
in section 4, and the conclusions and discussions are given
thereafter.

2. From Phase spectrum of Fourier Transform
to the Saliency Map
It was discovered that an image’s SR of the log ampli-

tude spectrum represented its innovation. By using the ex-
ponential of SR instead of the original amplitude spectrum
and keeping the phase spectrum, the reconstruction of the
image results in the saliency map [10]. However, we find
that this saliency map can be calculated by PFT regardless
of the amplitude spectrum value, which motivates us to ex-
plore the role of PFT in obtaining the saliency map.

2.1. What does the phase spectrum represent?

What can be detected from the reconstruction that is cal-
culated only by the phase spectrum of the input signal? In
order to show its underlying principle, we give three one-
dimensional waveforms shown in Fig.1 (left) and hope to
find some intrinsic rules from their reconstructions of PFT.
Note for the following examples in Fig.1, the reconstruc-

tion is obtained by the phase spectrum alone. When the
waveform is a positive or negative pulse, its reconstruction
contains the largest spikes at the jump edge of the input
pulse. This is because many varying sinusoidal components
locate there. In contrast, when the input is a single sinu-
soidal component of constant frequency, there is no distinct
spike in the reconstruction. Less periodicity or less homo-
geneity of a location, in comparison with its entire wave-
form, creates more ”pop out”.
The same rule can be applied to two-dimension signals

like images as well. [12] pointed out that the amplitude
spectrum specifies how much of each sinusoidal component
is present and the phase information specifies where each
of the sinusoidal components resides within the image. The
location with less periodicity or less homogeneity in vertical
or horizonal orientation creates the ”pop out” proto objects
in the reconstruction of the image, which indicates where
the object candidates are located.
Please note that we do not take the borders of the signals

or images into consideration because of their discontinuity.

Figure 1. One dimension data examples. (left) Original data (right)
Reconstructions only by the phase spectrum.

2.2. The steps of PFT approach
According to discovery above, we propose the PFT ap-

proach to calculate the saliency map. The steps (Eq.1-3) can
be summarized as follows:
Given an image I(x, y),

f(x, y) = F (I(x, y)) (1)

p(x, y) = P (f(x, y)) (2)

sM(x, y) = g(x, y) ∗ ‖F−1[ei·p(x,y)]‖2 (3)

where F and F−1 denote the Fourier Transform and In-
verse Fourier Transform, respectively. P (f) represents the
phase spectrum of the image. g(x, y) is a 2D gaussian fil-
ter (σ = 8), which is the same with SR [10]. The value of
the saliency map at location (x, y) is obtained by Eq.3. In
SR approach, there needs to add spectral residual of the log
amplitude spectrum to the square bracket of Eq. 3.
We use the intensity of the image as the input to PFT and

SR in the following experiments.

2.3. Comparison between PFT and SR
It is obvious that PFT omits the computation of SR in the

amplitude spectrum, which saves about 1/3 computational
cost (see Section 4.2 and 4.3 for details). How different
are the saliency maps? In this subsection, we analyze the
saliency maps computed from PFT and SR and give some
results.
We use the database of [10] as the test images. The

database contains 62 natural images with resolution of
around 800 × 600.
Define the saliency map of image i from PFT as sM1

i

and that from SR as sM2
i . Fig.2 shows the results of three

natural images, in which sM1
i and sM2

i look the same. In
order to evaluate the similarity between these saliency maps



Figure 2. Test results from three input images. (left) Input images,
(middle) Saliency maps from PFT, (right) Saliency maps from SR.

Scales Max MPD Min MPD Average MPD
64 × 64 0.0342 0.0048 0.0123

128 × 128 0.0433 0.0061 0.0200
256 × 256 0.0477 0.0081 0.0217
512 × 512 0.0379 0.0040 0.0181

Table 1. The Maximum, Minimum and Average MPD of the
saliency maps from PFT and SR in different resolutions.

in quantity, we introduce the Maximum Pixel Difference
(MPDi) of the image i as:

MPDi = max
x=1→w
y=1→h

|sM1
i (x, y) − sM2

i (x, y)| (4)

where (x, y) is the location of each pixel in the image. w
and h are the image’s width and height, respectively.
Table 1 shows that Maximum, Minimum and Average

MPD of the entire database in four different resolutions are
negligible (The maxium pixel value is 1). Thus we can de-
duce that SR contributes very little to the saliency map and
PFT is enough to obtain the saliency map. Their slight dif-
ference in performance will be discussed in section 4.

3. From PQFT to Spatio-temporal Saliency
Map
As mentioned above, PFT provides a simpler, faster way

to obtain saliency map than SR. Moreover, it motivates us
to develop PQFT to obtain spatio-temporal saliency map
easily. Compared with the saliency maps in [6, 8, 10],
our PQFT considers the motion features between sequent
frames.
Our method can be divided into two stages. First, the

image should be represented as a quaternion image which
consists of four features. Second, PQFT needs to be calcu-
lated in order to obtain the spatio-temporal saliency map.

3.1. Create a quaternion image
Define the input image captured at time t as F (t), t =

1 · · ·N , where N is the total frame number. r(t), g(t), b(t)

are the red, green and blue channel of F (t). Four broadly-
tuned color tunnels are created by Eq.5 - 8 [6]:

R(t) = r(t) − (g(t) + b(t))/2 (5)

G(t) = g(t) − (r(t) + b(t))/2 (6)

B(t) = b(t) − (r(t) + g(t))/2 (7)

Y (t) = (r(t) + g(t))/2 − |r(t) − g(t)|/2 − b(t) (8)

In human brain, there exists a ’color opponent-component’
system. In the center of receptive fields, neurons which are
excited by one color (eg. Red) are inhibited by another color
(eg. Green). Red/green, green/red, blue/yellow and yel-
low/blue are color pairs which exists in human visual cortex
[13]. Thus the color channels are obtained as follows:

RG(t) = R(t) − G(t) (9)

BY (t) = B(t) − Y (t) (10)

The intensity channel and motion channel are calculated by
Eq.11 and 12.

I(t) = (r(t) + g(t) + b(t))/3 (11)

M(t) = |I(t) − I(t − τ)| (12)

where τ is the latency coefficient. Usually we set τ = 3.
In sum, we obtain four channels of the image: two color

channels, one intensity channel and one motion channel. So
the image can be represented as a quaternion image q(t)
shown as follows (Eq.13):

q(t) = M(t) + RG(t)μ1 + BY (t)μ2 + I(t)μ3 (13)

where μi, i = 1, 2, 3 satisfies μ2
i = −1, μ1 ⊥ μ2, μ2 ⊥ μ3,

μ1 ⊥ μ3, μ3 = μ1μ2.
We represent q(t) in symplectic form:

q(t) = f1(t) + f2(t)μ2 (14)

f1(t) = M(t) + RG(t)μ1 (15)

f2(t) = BY (t) + I(t)μ1 (16)

3.2. Obtain Spatio-temporal Saliency Map by
Quaternion Fourier Transform

Quaternion Fourier Transform (QFT) was first applied
to color images by Ell and Sangwine [11]. The QFT of a
quaternion image q(n,m, t) can be written as:

Q[u, v] = F1[u, v] + F2[u, v]μ2 (17)

Fi[u, v] =
1√
MN

M−1∑

m=0

N−1∑

n=0

e−μ12π((mv/M)+(nu/N))fi(n,m)

(18)



where (n,m) and (u, v) are the locations of each pixel in
time and frequency domain, respectively. N and M are
the image’s height and width. fi, i ∈ {1, 2} is obtained
by Eq.14 - 16. t is omitted for simplicity.
The inverse form of Eq.18 is obtained by changing the

sign of the exponential and summing over u and v, instead
of n and m. The inverse quaternion Fourier transform can
be described as follows:

fi(n,m) =
1√
MN

M−1∑

v=0

N−1∑

u=0

eμ12π((mv/M)+(nu/N))Fi[u, v]

(19)
We use Eq.14 - 18 to obtain frequency domain represen-

tation Q(t) of q(t). Q(t) can be represented in polar form
as:

Q(t) = ‖Q(t)‖eμΦ(t) (20)
where Φ(t) is the phase spectrum of Q(t) and μ is a unit
pure quaternion.
Set ‖Q(t)‖ = 1, and then Q(t) only contains the phase

spectrum in frequency domain. Then we use Eq.19 to cal-
culate the reconstruction of Q(t) as q′(t), which can be ex-
pressed as follows:

q′(t) = a(t) + b(t)μ1 + c(t)μ2 + d(t)μ3 (21)

Our spatio-temporal saliency map is obtained by Eq.22.

sM(t) = g ∗ ‖q′(t)‖2 (22)

where g is a 2D gaussian filter (σ = 8).
The spatio-temporal saliency map using PQFT considers

the features such as motion, color, intensity and orientation
mentioned in literature. These features are represented as a
quaternion image, which means that they are processed in a
parallel way. Thus, it saves a lot of computational costs and
is fast enough to meet real-time requirements. We can show
in Section 4 that PQFT is better in performance than other
models. Moreover, PQFT is independent of parameters and
prior knowledge like PFT and SR.
The spatio-temporal saliency map can also deal with

static natural images by setting motion channel M(t) to
zero.

4. Experimental Results
To evaluate the performance of our approach, four kinds

of experiments are designed to compare our PQFT and PFT
with SR, NVT and STB.
We set the saliency maps’ resolution of PQFT, PFT and

SR to 64×64 in all the experiments. The resolution of NVT
and STB’s saliency maps is adjusted by the programs them-
selves. For NVT and STB, we use the default parameters.
All the tests were run at MATLAB 2007a on Linux plat-

form. The PC is equipped with P4 3G and 1G Memory.
Please note that NVT is a C implementation and all the oth-
ers are implemented by MATLAB.

4.1. How to evaluate the saliency maps?

Two aspects should be considered to evaluate the perfor-
mance of saliency maps. One aspect is the computational
cost. The other is the number of the correct objects de-
tected in the images or videos, because saliency maps pro-
vide the locations of salient object candidates. Many ap-
proaches have been introduced to extract the objects or fo-
cus on the objects by the saliency map [6, 8, 10]. In order
to give a fair result, let NVT and STB use their mechanisms
to find the objects. As for PQFT, PFT and SR, the first
n largest output in the saliency map is denoted as Omax

i ,
where i = 1 · · ·n and (xi, yi) is the location of the ith Fo-
cus of Attention (FoA). The ith object candidate area can
be obtained by Eq.23 and 24:

Maski = {(x, y)|α · Omax
i ≤ O(x, y) ≤ Omax

i } (23)

Rgni = findArea(Maski, (xi, yi)) (24)

where α is the threshold to affect the size of region. The
smaller the α is, the coarser the selected area is. In all the
experiments of this paper, we set α = 0.75. The findArea
function is to find the 8-connected neighborhood of (xi, yi)
inMaski.
The candidates of correct objects are taken from a vot-

ing strategy in test videos and images labeled by unaffili-
ated volunteers (Here we use 4 persons). Only those labels
that the majority agrees on are considered to be ”correct
objects”. In the experiments, every model is allowed to se-
lect the first five fixations in the input image. If the model
finds the objects which agree with the ”correct objects”, it
is considered as a successful search. Otherwise, it will be
considered as a failure. The number of correct objects de-
tected is not the only criterion to evaluate the quality of the
saliency map. The selection order is another important as-
pect, which can distinguish the quality of the saliency maps
if they find the same number of objects. The less fixations a
saliency map needs, the better it is.

4.2. Video Sequences

We use a video (988 images in total) captured at 15f/s
with the resolution of 640 × 480 to test the performance of
each methods. Fig.3 shows the selection results and orders
of five methods in six frames. PQFT will select the salient
people in the center of the frame at first, while other meth-
ods paid attention to the less salient trees or buildings. The
test results of all frames are shown in Table 2 (Fig.4 is the
bar view of Table 2). The performance of PQFT is the best
because it can detect 2.52 objects per frame and can always
select the salient objects in the frames within the first four
fixations (see Table 2).
Table 3 shows the average time to calculate the saliency

map per frame for the five methods. PFT approach is the



Figure 3. Selection results of five models in the test video.

Model 1st 2nd 3rd 4th 5th ANODF
PQFT 921 704 405 274 182 2.52
PFT 132 349 283 260 262 1.30
SR 142 208 229 234 218 1.04
NVT 24 56 70 91 75 0.32
STB 138 58 58 58 63 0.38

Table 2. The number of correct objects detected at each fixation in
the test video. Note that ANODF represents the Average Number
of Object Detected per Frame.

fastest and PQFT ranks third in speed among the five meth-
ods, but it can surely meet real-time requirements.
Please note that this experiment is designed only to show

the advantage of our PQFT approach to extract salient ob-
jects in the video because it considers motion feature be-
tween frames. Other models do not have such capacity.

4.3. Natural Images

To fairly test the five methods, 100 natural images with
resolution around 800×600 are used as a test set, which are
also used in [6, 10]. Fig.6 and Table 4 show the number of
correct objects detected within the first five fixations by five
methods respectively, and it is obvious that our PQFT can
select more salient objects in these images and use fewer

Figure 4. Number of correct objects detected within the first five
fixations in the test video.

Model Average Time Cost (s)
PQFT 0.0565
PFT 0.0106
SR 0.0141
NVT 0.4313
STB 3.5337

Table 3. Average time cost per frame in the test video.

Figure 5. Selection results of five models in four natural images.

fixations than the other methods. Fig.5 gives the selec-
tion results and orders of five models in four natural im-
ages, which shows that our spatio-temporal saliency map
can detect the salient animals, people and castle at the first
fixation and find more interesting objects in each scene than
other models. However, other models can only find a part of
these objects and need more fixations to detect. Please note
that PFT performs a little better than SR but saves about
1/3 computational cost, which suggests that SR may not be
necessary to calculate the saliency map (Table 4 and 5).



Model 1st 2nd 3rd 4th 5th Total
PQFT 88 55 30 23 11 207
PFT 79 49 27 19 22 196
SR 73 43 32 21 18 187
NVT 81 43 23 19 10 176
STB 70 48 27 9 10 164

Table 4. The number of correct objects detected at each fixation in
the database of 100 natural images.

Figure 6. Number of correct objects detected within the first five
fixations in the database of 100 natural images.

Model Average Time Cost (s)
PQFT 0.0597
PFT 0.0099
SR 0.0159
NVT 0.7440
STB 4.7395

Table 5. Average time cost per image in the database of 100 natural
images.

4.4. Natural Images with White-colored Noises

In this experiment, we hope to test the performance of
five models when the images are stained by white-colored
noise. We use the image [6], in which two people stand in
front of a snow-covered mountain (as shown in the last row
of Fig.5). Two kinds of noise patches (3 × 3 and 5 × 5)
are randomly put into the test image with the intensity σ
ranging from 0.1 to 0.8. Fig. 7 only gives the results when
the 5 × 5 noise patch’s intensity σ ranges from 0.1 to 0.4.
Fig 8 shows the number of steps needed by PQFT, NVT
and STB to attend to the salient people in all these noisy
images. PFT and SR are not shown because they are very
sensitive to the noise and cannot attend to the salient people
at all (see Fig.7 for details). PQFT works best because it
needs only one fixation to focus on the salient object under
any circumstance. Other models need more fixations and
even meet failures in some cases. The results show that our
PQFT is very robust against noise when properties of the
noise (such as color) do not conflict with the main feature
of the target.

Figure 7. Selection results of the test Image with 5×5 noise patch
whose density σ ranges from 0.1 to 0.4.

Figure 8. The number of steps to attend to salient people in the
image with 3 × 3 (up) and 5 × 5 (down) noise patch. Step = −1

means the failure to attend the object within the first five fixations.

4.5. Psychological Patterns

Psychological patterns are widely used in attention ex-
periments not only to explore the mechanism of visual
search but also to test the effectiveness of saliency map
[4, 5]. We used 13 patterns to test the models and the re-
sults are shown in Fig.9,10, 11 and 12.
In Fig.9, the first image is a salient color pattern. Our

PQFT successfully find the red bar at the first fixation, but
other models fails to find the target. The second and third
image are salient orientation patterns, PQFT, PFT and SR
find the targets immediately, NVT finds them but needs
three fixations to attend to the horizonal pattern. STB fails



to find them all. The fourth and fifth images are the patterns
that are both salient in color and orientation, which should
be the easiest task. PQFT and NVT can find the targets by
only one fixation. PFT and STB both find the salient red
vertical bar but fail to detect the salient red horizonal bar.
SR fails to find any of the salient targets above.
In Fig.10, NVT and STB can find all the patterns within

five fixations. Please note that they are capable of finding
the target in closure pattern because of the denser intensity
of the enclosed pieces, but not because of enclosure. PQFT,
PFT and SR fail in the closure search, which is one common
limitation of these methods.
Our PQFT and PFT can attend to the missing vertical

black bar at the first fixation in Fig. 11, which agrees with
human behavior. However, other methods fail in this test.
Please note that the saliency maps by PFT and SR are quite
different in this case although they look very similar in other
tests.
Fig.12 shows that all the models cannot perform con-

junction search effectively because it is believed that con-
junction search needs thinking and prior knowledge (top-
down) and all these models only considers bottom-up infor-
mation.
In sum, our PQFT method performs best because it en-

counters only three detection failures (one in closure pattern
and two in conjunction search) and needs only one fixation
to detect the targets among all the other patterns, which
shows that our spatio-temporal saliency map provides ef-
fective information to detect salient visual patterns.

5. Conclusions and Discussions
We proposed a method called PQFT to calculate spatio-

temporal saliency maps which is used to detect salient ob-
jects in both natural images and videos. [10] discovered SR
and used it to detect proto objects; however, our work indi-
cates that the saliency map can be easily obtained when the
amplitude spectrum of the image is at any nonzero constant
value. Thus the phase spectrum is critical to the saliency
map and the experimental results show that PFT is better
and faster than SR, especially in the test of psychological
patterns (Fig.11). As SR still preserves the phase spectrum,
we doubt whether SR is a necessary step or not.
The effect of the phase spectrum provides us with a very

easy way to extend PFT to PQFT which considers not only
color, orientation and intensity but also the motion feature
between frames. We incorporate these features as a quater-
nion image and process them in parallel, which is better
than processing each feature separately, because some fea-
tures can not ”pop out” if they are projected into each di-
mension. As a result, the spatio-temporal saliency map that
PQFT produces can deal with videos, natural images and
psychological patterns better than the other state-of-the-art
models, which shows that PQFT is an effective saliency de-

Figure 9. Search results of salient color or orientation patterns.

tection method. In addition, it is very robust against white-
colored noise and is fast enough to meet real-time require-
ments. Our PQFT is independent of parameters and prior
knowledge as well. Considering its good performance, is it
possible that human vision system does the same function
like PQFT or PFT? We hope that more work can be done to
discover the role of phase spectrum in early human vision.
Comparing with human vision, our methods still have

some limitations. Firstly, our methods can not deal with the
closure pattern well up to now; however, human can find
these patterns in a very short time. Secondly, our experi-
mental results show the strong robustness of PQFT against
white-colored noise; however, if the noise is very simi-
lar to the salient feature of the target, our spatio-temporal
saliency map will fail to detect the target. Finally, Wang et
al. suggested that people could perform effective conjunc-
tion search [14], and our experimental results showed that
all the models including our own failed in these patterns.
We will do more work to explore these unsolved issues.
The potential of our work lies in the engineering fields,

which can be extended to the application like object recog-
nition, video coding and etc. In addition, as our model only
considers bottom-up information, it is necessary to add top-



Figure 10. Search results of salient orientation patterns.

Figure 11. Only PQFT and PFT can find the missing item.

Figure 12. Conjunction search result of five models.

down signals (e.g. visual memory) for developing an effec-
tive vision system in robot application.
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