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Abstract

Actions in real world applications typically take place
in cluttered environments with large variations in the ori-
entation and scale of the actor. We present an approach to
simultaneously track and recognize known actions that is
robust to such variations, starting from a person detection
in the standing pose. In our approach we first render syn-
thetic poses from multiple viewpoints using Mocap data for
known actions and represent them in a Conditional Random
Field(CRF) whose observation potentials are computed us-
ing shape similarity and the transition potentials are com-
puted using optical flow. We enhance these basic potentials
with terms to represent spatial and temporal constraints
and call our enhanced model the Shape,Flow,Duration-
Conditional Random Field(SFD-CRF). We find the best se-
quence of actions using Viterbi search in the SFD-CRF. We
demonstrate our approach on videos from multiple view-
points and in the presence of background clutter.

1. Introduction

Recognition of human actions from video sequences is
important for a number of tasks including video monitoring,
video indexing and human-compuer interaction. There has
been significant amount of research in activity recogntion
in recent years; however, the ability of the current systems
remains limited. One of the key limitations comes from the
assumption of accurate low-level tracking, as in ([4]) or ex-
traction of clean silhouettes as in ([15][11][17]); this is not
always possible under realistic operating conditions. There
are also methods that avoid the step of body or limb track-
ing, such as ([14, 10]); however, these methods are typically
not invariant to viewpoint and scale variations.

We present a method that combines the steps of tracking
and event recognition. We use a graphical representation to
represent multiple events, with each event being described

by a pose sequence. To accomodate variations in appear-
ance due to viewpoint, the model includes appearances at
different viewing angles. Our observations include multiple
low-level features such as a pedestrian detector, matches of
image edges with model silhouettes and motion flow fea-
tures. This results in a system that is robust to variations in
viewpoint, imaging conditions and the background environ-
ment.

Our focus has been on single human activities such as
sitdown, standup, pickup, point, etc. where the human’s
location is relatively fixed. We believe that the method is
not limited to the actions described and can also be gener-
alized to actions involving locomotion and multiple people.

1.1. Related Work

Approaches to activity recognition can be classified as
being in two broad threads - the first starts with image level
features (like shape or optical flow) and recognizes events
by comparing the image features to a set of event templates,
while the second focuses on modeling the high-level struc-
ture of events with graphical models

Template based approaches focus on extracting low-level
image features which are then compared to features that
are pre-extracted from a set of event templates for recog-
nition. [1] introduced motion energy images for correlating
view-based action templates with foreground images. [4]
describes recognition of actions at a distance by correlating
optical flow templates with track windows of a stabilized
human figure. [14] presents an approach to compare two
space-time intensity patterns without explicitly computing
the optical flow. In contrast to these flow based templates,
[5] used shape based templates, and applied them for recog-
nizing arm gestures. In recent work, [10] uses a combina-
tion of shape and flow features to show encouraging results
for event detection in several cluttered scenes. While these
approaches offer a direct way to model high-level events in
terms of image features, they are also highly viewpoint and
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scale dependent.
Graphical models on the other hand provide a natu-

ral framework to represent state transitions in events and
also the spatio-temporal constraints between the actors and
events. Hidden Markov models (HMM) and their exten-
sions have been widely used in various domains success-
fully. [3] introduced the switching hidden semi-Markov
model (S-HSMM) to simultaneously model both the natural
hierarchical structure as well as durations of events. [11] in-
troduced ActionNets that uses keyposes of actions rendered
from multiple viewpoints for view-invariant action recogn-
tion. Discriminative models like conditional random fields
(CRF) are becoming increasingly popular due to their flex-
ibility and improved performance. [15] applied CRFs for
contextual motion recognition and showed encouraging re-
sults. [12] introduced a 2-layer extension (LDCRF) to the
basic CRF framework and applied it for continuous gesture
recognition. While each of these models provide a frame-
work for modeling different aspects of actions, there is a
large gap between most activity models and image data.
This gap is typically bridged by using fairly accurate tracks
from an intermediate module ([2, 3, 12]) or by extracting
features from clean silhouettes ([15, 11]).

1.2. Overview of our Approach

In our work, we combine ideas from the graphical model
and template based threads and demonstrate our approach
on videos with large variations in viewpoints and scale and
also in the presence of background clutter. Similar to [11]
we first render Mocap data of various events in multiple
viewpoints using Poser. We then embed these templates
into a 2 layer graph model similar to [12, 3]. The nodes
in the top layer correspond to events in each viewpoint and
the lower layer corresponds to each pose in the event. At
each frame we compute the observation probability based
on shape similarity using the scaled-Hausdroff distance and
the transition probability based on flow similarity using fea-
tures similar to [4]. We augment the similarity score with a
duration term to account for events taking place at different
speeds, and a spatial term that provides a Kalman filter like
framework for tracking the person. We recognize events us-
ing Viterbi search on the graphical model. Our approach for
simultaneously tracking and recognizing actions also builds
on the tracking-as-recognition approach in [19].

The rest of the paper is organized as follows - First we
give an overview of our setup to generate the multiview
templates and the high level constraints for representing ac-
tions, in section 3 we describe our graphical model for in-
ferring the event and pose sequence and in sections 4 we de-
scribe our shape and flow similarity measures respectively.
Finally we present results of our system in section 5 and
conclude in section 6.

Figure 1. Transition Constraints - a) Graph model for a single event
b) 2-layer model for a simple 2-event recognizer at the first two pan
angles (0o,30o)

2. Action Representation

Human actions involve both spatial (represented by the
pose) and temporal (corresponding to the evolution of body
pose over time) components in their representation. Further,
the actual appearance of the spatio-temporal volume varies
significantly with scale and viewpoint. In order to make our
representation invariant to viewpoint, we first render poses
of synthetic human figures from motion capture data (ob-
tained from [6]) of various actions in multiple viewpoints
using POSER 1. We cover 90o of camera tilt angle at 15o

intervals and 360o of pan at 30o intervals. We render our
poses with a large resolution (900×600 pixels) and use a
scale invariant distance measure to make our approach ro-
bust to variations in scale. Further, we include body poses
in all frames of the action template instead of just the key
poses as in [11]. This is because we use flow based mea-
sures besides shape, and hence using key poses with a large
pose difference would make the flow matching very inaccu-
rate.

We embed the poses in a 2-layer graphical model illus-
trated in Figure 1. Each node in the top layer corresponds
to an action in a particular viewpoint and the lower layer
corresponds to the individual poses. We restrict transitions
at the event layer based on the similarity between the low
level poses at the transition point. For example, we can
transition to the standup only after a sitdown event since
the final pose in sitdown is very similar to the start pose in
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Figure 2. Pose intialization starting with an initial detection window (Green Box in Istart)

standup, while we can transition to several events from the
stand action (with a single stand pose at the lower layer).
Further, at the lower layer we restrict pose transitions based
on the expected speed of the top layer event. Thus, for the
sitdown event one cannot transition directly from the start-
ing stand pose to the last sitting pose, but must go through
the intermediate poses. To reduce the complexity of infer-
ence, we assume that the approximate tilt angle is known
and we need to only consider different pan angles. This is
reasonable in most applications where the tilt is fixed and
only the relative pan of the actor to the camera varies.

We compute the similarity between the image sequence
and the event templates by embedding shape and flow sim-
ilarity scores and also the transition constraints in Figure
1 into the observation and transition potentials of a CRF.
Since our model includes shape and flow features and also
models event durations, we call it the Shape,Flow,Duration-
CRF(SFD-CRF). CRF is a generalization of HMM that al-
lows observation and transition potentials to be arbitrary
functions that can vary with position in the sequence. Fur-
ther, the observation and transition potentials need not have
a probabilistic interpretation making it ideally suited for
embedding our shape and flow similarity measures. We de-
scribe the details of the SFD-CRF in the next section.

3. Pose Tracking and Recognition

During recognition, we start with a human detec-
tion window obtained with a state-of-the-art pedestrian
detector([18]) and use the edge map within the window as
our basic observation. The detector does not precisely seg-
ment the human form and also does not give orientation in-
formation. So we first refine the detection by matching tem-
plates of the standing pose in multiple orientations, within
the detection window at different scales (in our experiments,
we looked at 3 scales below the height of the detection win-
dow at steps of 1.1). Figure 2 illustrates the pose initial-
ization process described. We then track and recognize the

events by traversing the graph model in Figure 1 starting
from the initial set of poses.

Let I = {I1,I2,...,IT } denote the sequence of frames
in the video, e = {e1,e2,...,eT } denote the sequence of
[event, viewpoint] tuples through the top layer of the
graphical model in Figure (1) (since we input the tilt an-
gle the viewpoint corresponds to the possible pan angles),
p = {p1,p2,...,pT } denote the sequence of pose templates
through the lower level and let w = {w1,w2,...,wT } denote
the sequence of track windows for the actor through the
video. The state θt of the person at frame t is denoted by the
tuple [et,pt,wt]. Then, the probability of the state sequence
θ = {θ1,θ2,...,θT } given the observation sequence I is given
by the standard CRF formulation-

P (θ|I) =
1
Z
φ(θ1, I1)

T∏

t=2

[ψ(θt−1, θt, It−1, It)φ(θt, It)] (1)

where, φ(θt, It) is the observation potential,
ψ(θt, θt−1, It, It−1) is the transition potential and
Z=

∑
θ P (θ|I) is an observation dependent normaliza-

tion factor. Equation 1 is very similar to the Conditional
Random People(CRP) formulation presented in [16] for
tracking people using a set of pose templates. Our approach
differs from [16] in 3 ways - first, we simultaneously
recognize and track the actions. Hence the pose transitions
depend not only on their similarity but also on the spatio-
temporal constraints imposed by the action. Second, since
we are interested in recognition our pose tracking is coarse
and does not include the Grid Filtering done in [16]. Third,
our similarity features are scale invariant while they assume
that silhouette is scaled and centered apriori.

Since we start with a person detection in the first frame,
p1 corresponds to the standing pose. The observation
potential φ(θt, It) is measured using the shape similarity
measure defined later in equation (14) within the current
track window. As the shape similarity measure depends
only on the pose template pt and the track window wt, we



Figure 3. Unrolled Graphical Model of the SFD-CRF for Pose Tracking and Recognition

have-

φ(θt, It) = φ([pt, wt], It) (2)

We define the transition potential ψ(θt, θt−1, It, It−1) as
the product-

ψ(pt, pt−1, It, It−1) = ψtrans([et−1, pt−1], [et, pt])
ψflow([pt−1, wt−1], [pt, wt], It−1, It) (3)

where ψtrans([et−1, pt−1], [et, pt]) corresponds to the
transition constraints imposed by the high level graph
model similar to the one shown in Figure 1 and
ψflow([pt−1, wt−1], [pt, wt], It−1,It

) is defined using the
flow similarity defined later in equation (15) which can be
computed given the track windows and the pose templates.

There are two key issues with these basic potentials -
first, since there are typically several noisy edges in the im-
age besides the person, one can match on some background
edges and stay in a specific pose. Second, in any action the
actor tends to move around and hence we must allow for
some motion of the track window. However, such moves
can accumulate over time and the track window can wander
off by matching on the background edges.

We address the first problem by augmenting the state
at each frame with a duration node and adding a tempo-
ral penalty term to the observation potential in equation (2)
that models speed at which an action takes place. Thus the
state θt corresponds to the tuple [et,pt,wt, dt] where dt is
the duration for which the actor has been performing action
et. We model the speed of action with a Gaussian whose pa-
rameters can be learned from the Mocap data. If pt is the ith

pose under event et, the temporal penalty φtime(et, pt, dt)
is given by:

φtime(et, pt, dt) =
1

σt

√
2π
e
− (i/dt−µt)

2

2σ2
t (4)

where, µt is the mean speed and σt is the standard deviation
for the action et. These can be learned by finding the mean
and standard deviation of the lengths of action segments in
the Mocap data. For example, if the sitdown action tem-
plate that we use consists of a sequence of 74 pose templates
and the average length of the sitdown action in the Mocap
data is ≈60 frames, then the µt for sitdown is 74/60=1.23.
φtime(et, pt, dt) effectively limits the possible poses pt for
any given [et,dt] preventing the action from getting stuck at
any pose. This term also plays a role similar to the ”Blurry
I” kernel used in [4] to allow actions to occur at different
rates.

We address the second problem by scanning a region
around the previous template position and choosing the lo-
cation with the best shape similarity score. In order to pre-
vent the track window from wandering off, we augment the
shape similarity score with a multi-variate Gaussian based
on the distances moved in the x and y directions by the track
window wt:

φspace(et, wt) =
1

2πσxσy
e−∆x2/σ2

xe−∆y2/σ2
y (5)

In our experiments, we set σx and σy to be 20% of the
scaled template width and height respectively. The use of
Gaussians to define φspace(et, wt) effectively provides a
Kalman filter like mechanism for choosing the track win-
dow wt. While we consider only actions occuring in place
in this paper, this potential can be extended to allow ac-
tions involving large translations of the actor by estimating
the difference between the expected position of the window
and the actual position.

Combining equations (2), (4) and (5) we can define the
augmented observation potential φ̂(θt, It) as-

φ̂(θt, It) = φ([pt, wt], It)φtime(et, pt, dt)φspace(et, wt) (6)



Figure 3 illustrates the unrolled graphical structure of our
model with the temporal and spatial nodes. Each maximal
clique in figure 3 corresponds to a potential defined in equa-
tions (2)-(6).

With these potentials, the best state sequence can be in-
ferred by computing the maximum probability path-

p∗ = argmax
θ
P (θ|I) (7)

Equation (7) can be solved using Viterbi-like search. How-
ever, since we render ≈ 13000 poses and the track window
can potentially be at any location in the image (captured at
740 × 480 pixels resolution) the state space is huge mak-
ing the computation time impractical. But, given the transi-
tion and spatial constraints imposed by the graphical model,
only a very small number of these states have significant
probability. In our experiments we considered only the top
P = 10 [pt,wt] tuples for each et. Since we use templates
for 6 actions rendered in 12 possible pan angles, we need
to consider only 6*12*10=720 states at each frame to find
the best state sequence. Also, since we are only interested
in finding the best path through the SFD-CRF, we can ig-
nore the normalization factor Z(I) in equation 1 since it is
constant for a given video segment.

4. Shape and Flow Potentials

We now describe the two key potentials in the SFD-CRF.
Shape Matching: The Hausdorff measure[7] has been pop-
ular for matching images due to its simplicity and exten-
sions that are invariant to translation, scale and rotation. For
two sets of points A and B, the directed Hausdorff distance
from A to B is:

h(A,B) = max
a∈A

min
b∈B

‖ a− b ‖ (8)

where ‖ . ‖ is any norm (L1 in our case). In order make
the distance robust to outliers, we typically take the partial
distance as in [7]-

h(A,B) = Kth max
a∈A

min
b∈B

‖ a− b ‖ (9)

where Kth max refers to the Kth largest value of ‖ a −
b ‖. Typically, we wish to match a set of template edge
points B to edges in image A at various image locations
and independent x and y scales. Let the quadruple t =
(tx, ty, sx, sy) denote a model transformation t(B). Then
[8] presents a scaled Hausdorff distance at t as-

h(A, t(B)) =
Kth max

a∈A
min
b∈B

‖ a− (sxbx + tx, syby + ty) ‖ (10)

While, the Hausdroff score can be used to measure the sim-
ilarity of particular set of image points to the model, it does

not directly give a probability for the match between A and
B. In previous work, two probabilisic formulations have
been used. The first is the Hausdorff fraction which counts
the fraction of model points that are at a distance less than
a threshold:

hK(A,B) ≤ δ (11)

While this is a straight forward generalization of the partial
Hausdorff distance in equation (9), it is quite sensitive to the
threshold δ. [13] presents an alternative formulation based
on the distance of each model point to the nearest image
point as follows-

P (A|t(B)) =
|B|∏

i=1

p(Di) (12)

where p(Di) is a probability distribution function for the
distance of each model point to the nearest image point and
is defined as-

p(Di) = ci +
1

σ
√

2π
e−D2

i /2σ2
(13)

This formulation was used in [5] to match shape templates
using the chamfer distance, for gesture recognition. In our
case, since we render the pose templates at a high resolu-
tion, the model typically has ≈ 1000 points. Hence the
RHS in equation (4) tends to zero even for well matched
templates. Instead we first compute the scaled Hausdorff
distance for the entire template using equation (10) and then
embed it in a normal distribution, to define our shape simi-
larity potential φ([pt, wt], It):

φ([pt, wt], It) = P (A|t(B)) =
1

σ
√

2π
e−h(A,t(B))2/2σ2

(14)

In our experiments we set σ = 15 though the results are
fairly robust to the actual value of σ.

Flow Similarity: We measure flow similarity between
the event templates and the video based on pixel-wise opti-
cal flow, similar to [4]. However, our approach differs from
[4] in two crucial aspects - 1) [4] assumes that the actor
in the action is already tracked and stablized, while we ex-
plore a set of possible windows at each time step and thus
simultaneously do tracking and recognition 2) There is a
large difference in scale between the templates and the ac-
tor in the image. Hence we cannot precompute the template
flows. We will discuss how we address the first problem in
the next section. Here we will focus on computing a flow
similarity given two templates T1, T2 and two image win-
dows in consective frames It−1, It at frames t and t− 1.

In order to compute the optical flow between two tem-
plates, we first scale them based on the image windows and



Figure 4. Matching optical flow in image with template optical flow

then compute optical flow using the Lucas-Kanade [9] algo-
rithm. Then, similar to [4], we split the optical flow vector
field F into two scalar fields Fx and Fy corresponding the
x and y components, then half-wave rectify them into four
non-negative channels F+

x , F−
x , F+

y , F−
y and finally blur

and normalize them with a Gaussian to obtain the final set
of features ˆFb+x , ˆFb−x , ˆFb+y , ˆFb−y . We extract a similar set
of features from the image windows and compute the flow
similarity as-

ψflow(T1, T2, It−1, It) =
1
4

4∑

c=1

∑
x,y∈I ac(x, y)bc(x, y)

|ac||bc| (15)

where I refers to the spatial extent of the flow descriptor, the
bc’s refer to the features extracted from the templates and
the ac’s refer to the image features. Note that equation (15)
is normalized to be in the range [0,1]. Figure 4 illustrates
the computation of the flow similarity described.

5. Experiments

We tested our approach on videos of 6 actions - sit-on-
ground(SG), standup-from-ground(StG), sit-on-chair(SC),
standup-from-chair(StC), pickup(PK), point(P). We col-
lected instances of these actions around 4 different tilt an-
gles - 0o, 15o, 30o, 45o. We did not precisely calibrate the
camera at each tilt and typically had a tilt error of ≈ 5o. At
each tilt we collected instances of actions at 4 different pan
angles - typically, around 0o, 45o, 90o, 270o, 315o though
the actual pan was not measured precisely. We collected
one instance of each action for each [tilt,pan] combination
from four different actors for a total of 16 instances of each
action at each tilt. Further for tilt=0o, we collected videos
under 6 widely varying backgrounds including indoors in

office environments and outdoors in front of moving vehi-
cles for a total of 24 instances of each action at that tilt. In
all we had 400 instances of all actions across all tilts and
pans. We also varied the zoom of the camera and hence the
actual size of the person varied between ≈80-300 pixels in
740 × 480 resolution videos. The pose templates were ren-
dered so that the standing pose is ≈ 600 pixels tall. Figure
5 illustrates some of the conditions under which we tested
our approach.

To process the videos, we first apply a pedestrian detec-
tor similar to [18]. As the detector is trained only for the
standing pose, it fails when the pose of the actor changes
during an action. Thus the detections provide an approx-
imate segmentation of the event boundaries in the video
sequence. We tested our algorithm by running our recog-
nizer between two detections and then comparing the high-
est probability event sequence in the intervening frames to
the ground truth.

To measure the relative importance of shape features,
flow features and durationmodeling we compare our sys-
tem (shape + flow + duration) with using only shape,
only flow and shape + flow potentials in the CRF. Ta-
ble 1 summarizes the accuracy at different tilt angles. Note
that using only flow features is very similar to [4] except
that we don’t start with track windows that are centered and
scaled. All the speed numbers reported are for the entire
system including detection, tracking and recognition and
were obtained by running C++ Windows programs on a sin-
gle 2GHz Pentium IV CPU.

As can be seen, combining shape with flow features
produces a significant improvement over using either of
these alone. The result is further improved by modeling
event durations. Also note that including duration models



Figure 5. Sample Background, Viewpoint and Scale variations tested - (a)Indoor office environment,tilt=15o,pan=0o (b)Indoor office
environment,tilt=0o,pan=30o (c)Indoor library,tilt=0o,pan=90o (d)Indoor office,tilt=0o,pan=315o (e)Indoor office,tilt=0o,pan=0o (f)Indoor
library,tilt=0o,pan=270o (g)Outdoor with moving cars,tilt=0o,pan=0o (h)Outdoor,tilt=30o,pan=30o (i)Outdoor,small scale,tilt=45o,pan=0o

0o 15o 30o 45o Overall Speed(fps)

shape+ flow + duration 77.35 82.98 81.25 65.63 78.86 0.37
shape+ flow 70.68 76.67 77.42 62.5 72.37 0.34
flow 63.79 56.67 61.29 53.12 59.12 0.41
shape 56.82 59.01 75.76 56.25 61.18 1.7

Table 1. Comparison of accuracy and speed with shape, flow, shape + flow, shape + flow + duration features at different tilt angles

improves the speed too since they restrict the set of possi-
ble poses to consider. However,the cost of computing flow
features is high. Since the scale of the actor is unknown,
these cannot be pre-computed apriori unlike in approaches
which assume a known fixed scale. We alleviate this cost
partly by storing the N = 1500 most recent template flows
computed. At each frame, we first check if a particular tem-
plate flow is already in the stored set and compute the flow
only if it is not present.

Another observation from Table 1 is that the accuracy
can vary with tilt angles. At higher tilts the sit-on-ground
and pickup actions look very similar causing a large confu-
sion. Variation in pan angles at a given tilt however does
not significantly affect the performance since the actions
have very distinct signatures at different pan angles. Table
2 shows the overall confusion matrix across all viewpoints.

6. Summary and Future Work

We have presented a robust approach for simultaneous
tracking and event recognition that embeds low-level shape
and optical flow features into a high-level graphical model
representation of the actions. We have presented good re-

SG SC PK P StG StC

SG 75.56 4.44 20.0 0.0 0.0 0.0
SC 11.54 76.92 11.54 0.0 0.0 0.0
PK 15.9 0.0 86.1 0.0 0.0 0.0
P 2.56 0.0 10.26 87.18 0.0 0.0
StG 0.0 0.0 20.0 0.0 75.56 4.44
StC 0.0 0.0 11.54 0.0 11.54 76.92

Table 2. Overall Confusion Matrix

sults under several challenging variations in background,
scale and viewpoint. We also show that combining the low-
level features produces a significant performance improve-
ment over using either of them alone. Duration models fur-
ther improve the accuracy and marginally reduce computa-
tion time.

The spatial potential φspace(et, wt) can be extended to
handle actions involving large translations of the actor like
(walk, run etc) by using a velocity model. Such an exten-
sion would consider the difference between the current track
window position and the expected position to chose the next
set of windows. While we have focused on single person
actions occuring in place, our method can be extended to



Figure 6. Sample recognition results - green boxes correspond to tracks under consideration, yellow is the best event,pose at that instant
and white corresponds to the best event,pose after Viterbi search

a multi-person scenario by detecting each person and then
running our recognizer on each detection window. Such an
extension would also require explicit occlusion analysis in
case of interacting people.
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