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Abstract

This paper presents a method for recognizing human
actions based on pose primitives. In learning mode, the
parameters representing poses and activities are estimated
from videos. In run mode, the method can be used both for
videos or still images. For recognizing pose primitives, we
extend a Histogram of Oriented Gradient (HOG) based de-
scriptor to better cope with articulated poses and cluttered
background. Action classes are represented by histograms
of poses primitives. For sequences, we incorporate the lo-
cal temporal context by means of n-gram expressions. Ac-
tion recognition is based on a simple histogram compari-
son. Unlike the mainstream video surveillance approaches,
the proposed method does not rely on background subtrac-
tion or dynamic features and thus allows for action recog-
nition in still images.

1. Introduction
Human action recognition aims at automatically telling

the activity of a person, i.e. to identify if someone is walk-

ing, dancing, or performing other types of activities. It is

a crucial prerequisite for a number of applications, includ-

ing surveillance, content-based image retrieval, or human-

robot interaction. The task is challenging due to changes in

the appearance of persons, articulation in poses, changing

backgrounds, and camera movements.

In this work, we concentrate on pose based activity

recognition. We infer action classes based on a single recog-

nized pose primitive, or based on a sequence of recognized

poses. The action classes considered are often referred to as

primitive actions, whereas more complex activities can be

understood as a sequencing of these primitive actions. Ide-

ally, we would be able to assign a suitable action class label

to arbitrary long or short sequences. In contrast to other

contributions, we do not use dynamic features. While ig-

noring dynamic features makes the task of behavior recog-

nition more demanding, it allows for action recognition in

still images which we find too important to be left out.
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Figure 1. Given an image or an image sequence (left picture), we

detect a person, match the detection to a pose prototype, and finally

classify the corresponding activity.

For pose based action recognition we have to target three

disjoint problems. We have to (a) detect a person in the im-

age, (b) recognize the expressed pose, and (c) assign the

pose to a suitable action category, see Figure 1 for an illus-

trative example. While we target all three problems in this

work, the focus is on (b) and (c).

The contribution of this paper is threefold: (i) we present

a complete approach for recognizing activities from single

images and image sequences, (ii) we extend a Histogram of
Oriented Gradient (HOG) [5] based pedestrian descriptor

to account for articulated poses in cluttered images, (iii) we

develop a histogram based action recognition approach that

incorporates a weighting scheme for more distinctive poses.

The paper is organized as follows. Related work will

be discussed in Section 2. In Section 3 we describe the

concept of pose primitives. In Section 4, we introduce a

pose based action recognition method. Finally, we present

experimental results in Section 5.

2. Related work
The topic of action recognition from image sequences

and still images gained increasing interest throughout the

last years. Since it is beyond the scope of this paper to give a

complete overview, we focus in (a) on contributions related

to the idea of view/pose based action recognition. Besides,
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we briefly summarize contributions related to the proposed

pose representation/estimation in (b).
(a) Having a closer look at the underlying features repre-

senting activities, we can spot two main classes, dynamic
features [4, 11, 10, 15, 16] and static pose based fea-
tures [6, 9, 14, 23, 20]. For image sequences, dynamic fea-

tures are arguably more successful. Unfortunately, they can

not be extracted from still images.

Regarding dynamic features, Blank et al. [4] use three di-

mensional space-time shapes extracted from silhouette im-

ages of humans for classifying activities. In [11], shape and

motion cues are used for action recognition of two different

actions in the movie ”Coffee and Cigarettes”. [10] intro-

duces a biologically inspired action recognition approach

which uses hierarchically ordered spatio-temporal feature

detectors. Niebles et al. [15, 16] extend the bag-of-features
concept to account for activity recognition. In [16] human

action-categories are represented and learned using space-

time interest points, in [15] a hierarchical bag of features

approach is applied to image sequences.

Besides motion features, we can find static pose based

representations where poses are often described by silhou-

ettes [6, 9]. In [9], a bag-of-rectangles method is used

for action recognition, effectively modeling human poses

for individual frames and thereby recognizing various ac-

tion categories. Goldenberg et al. [6] use Principal Com-
ponent Analysis (PCA) to extract eigenshapes from silhou-

ette images for behavior classification. Since silhouettes

usually require background subtraction and are therefore

rather restrictive, other static pose descriptors were sug-

gested [14, 23, 20]. Lu et al. [14] represent actions of

hockey players as PCA-HOG descriptors, action recogni-

tion is based on a set of predefined poses. Zhang et al. [23]

recognize different actions by finding articulated poses in

infrared images. They cluster a set of primitive poses based

on HOG descriptors. In [20], we introduced a first approach

towards action recognition using histograms of clustered

HOG-descriptors of human poses.

(b) Regarding pose estimation, the methods mostly re-

lated to the presented paper are [23, 3, 1]. In [23], individual

object detectors are trained for a number of poses. For deal-

ing with varying backgrounds, a pixel weighting weights

foreground (pose) and background pixels during training.

Bissacco et al. [3] use a Latent Dirichlet Allocation (LDA)

based segmentation of human poses represented by HOG

descriptors. Agarwal et al. [1] estimate 3D human poses us-

ing a local basis representation extracted by means of non-
negative matrix factorization (NMF). Similar to this paper,

they apply NMF to a set of clean (no background clutter)

human poses, and use the NMF weights to reconstruct novel

poses. In contrast to [1], we include a set of background

bases to further alleviate the influence of background clut-

ter for pose estimation.
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Figure 2. We extract a set of NMF bases W from clean pose images

and background images. Novel images are reconstructed by these

bases.

3. Pose representations

For pose based action recognition, a reliable representa-

tion and recognition of individual poses is crucial. Most

difficulties in pose matching arise from cluttered back-

ground and pose articulations. Often, background objects

are falsely recognized as limbs or parts of a pose. Following

previously introduced ideas [14, 23], we recognize poses by

matching them to a set of learned pose primitives. In the fol-

lowing, we will denote an individual pose primitive by ai,

and a sequence of pose primitives by A = [a1, . . . ,an].
As a basic feature for describing poses we use HOG

descriptors [5]. HOG descriptors are locally normalized

gradient histograms that showed to be a robust descrip-

tor for pedestrian detection. Recent contributions also

showed applicability for recognition of more articulated

poses [3, 23]. Taking into account the mentioned problems

for pose matching, we extend a standard HOG based pose

descriptor to better cope with background clutter and artic-

ulated poses by exploiting a NMF basis representation of

gradient histograms.

3.1. A NMF basis pose representation

Following [1], we learn a set of basis representations

from human pose images with clean background by appli-

cation of non-negative matrix factorization. See Figure 2

for examples of the training data and for an overview of

the proposed pose representation. Applying NMF to a non-

negative data matrix V (in our case the HOG descriptors for

a set of training poses or backgrounds) leads to a factoriza-

tion V ≈ WH where both W and H are constrained to be

non-negative. In the following, we interpret W as a set of



Figure 3. Visualization of basis vectors as the outcome of non-negative matrix factorization. The first seven images correspond to weights

learned from human poses, the remaining 3 were learned from background images.

basis vectors and H as coefficients. Consequently, the origi-

nal data matrix V can be reconstructed using W and H. For

image processing, unlike PCA or similar techniques, NMF

can result in part based representations of objects. For ex-

ample, in [12] face images were decomposed into a set of

meaningful parts, i.e. ears, eyes, etc. Note that NMF will

not always result in part-based representations. While this

was not an issue in the presented work, future work might

as well include the recently introduced NMF with sparse-

ness constraint that is able to enforce part-based represen-

tations [8].To find an approximate factorization V ≈ WH
we use the standard multiplicative update rule [13].

In contrast to [1], we aim at finding a larger variety

of articulated poses. If reconstructing a gradient image

solely from pose bases Wpose, we found that also back-

ground clutter would often be reconstructed which is ob-

viously not intended. Therefore, we apply two modifica-

tions: we compute the bases W for the whole image con-

taining the pose, and we add a second set of bases Wbg

that is computed from background images as well (see

also Figure 2). This leads to the following reconstruction

V = [WposeWbg][HposeHbg].
During training, pose (Wpose,Hpose) and background

(Wbg,Hbg) parameters are learned independently of each

other. Figure 3 visualizes some resulting bases. It can be

seen that the Wpose represent meaningful parts of a pose.

We found 40 − 80 basis vectors sufficient for achieving re-

liable pose matching and accurate activity recognition.

For estimating the pose from a novel image Vnew, we

first compute the coefficient Hnew corresponding to W =
[WbgWpose]. For this, we use the standard iterative al-

gorithm while holding W fixed. Thereby, the weights are

combined so that they give the best possible explanation for

Vnew under the usage of Wbg and Wpose.

Due to the strictly additive combination of weights in

NMF, we usually have either a usage of background weights

Wbg or pose weights Wpose for certain descriptor parts.

The outcome are the coefficients Hnew composed of sepa-

rate coefficients for pose and background weights Hnew =
[Hnew

bg Hnew
pose]. Effectively, we decouple the background

appearance from the foreground by means of NMF basis

reconstruction.

Note that the proposed extraction of background bases

Wbg can not result in accurate modeling of arbitrary back-

ground appearances, due to a lack of training samples and

insufficient number of bases. However, including Wbg

considerably reduces the effect of falsely combining pose

bases Wpose for modeling the background. While the

background bases Wbg can only result in an approxi-

mate modeling of background appearances, the pose bases

Wpose are sufficient for providing an accurate modeling of

poses.

The resulting coefficients Hpose can now be compared

against example poses or pose primitives. Pose primitives

are extracted from a set of training sequences and their cor-

responding coefficients Hpose. For clustering, we use the

Euclidean distance and a standard agglomerative clustering

method [22]. Usually, 30 − 80 pose primitives lead to suf-

ficient action recognition results, see also Section 5 for de-

tails on parameter selection. Finally, we get an index for

the best matching pose primitive according to the minimum

Euclidean distance, i.e. we express a novel image using the

most similar training pose.

3.2. Human detection

In the following, we introduce a generative method for

human detection. Since the focus of this paper is on ac-

tion recognition, we by no means intend to compete with

recent discriminative approaches for human detection (see

e.g. [5]). However, it is still interesting to explore how the

proposed NMF basis representation is usable for human de-

tection. Note that the later presented experiments make use

of the following method.

For detection we use a standard sliding window ap-

proach, i.e. we move a sliding window across the whole im-

age and decide for each location whether it shows a human.

In order to cope with scale changes we varied the detector

window size and combined individual detector results. The

NMF bases [WposeWbg] represent two alternative models

for reconstructing a gradient image. Thus, similar to [3], we

can base human detection on the following likelihood ratio:

L =
P (I|bg)

P (I|pose)
, (1)



Figure 4. Action recognition using histograms of pose primitives.

where P (I|pose) and P (I|bg) denote the likelihood of I
being modeled by Wpose or Wbg respectively. NMF re-

construction of I is given by I ≈ WH, for the combined

bases W = [WposeWbg], where H decomposes into H =
[HposeHbg], thus V = Vpose + Vbg = WposeHpose +
WbgHbg. Since Vpose,Vbg ≤ V, and Vbg + Vpose =
V, we have |V−Vbg|/|V|, |V−Vpose|/|V| ∈ [0, 1] and

|V−Vbg|/|V|+ |V−Vpose|/|V| = 1. Thus, we can ex-

press Equation (1) by the estimated coefficients VposeVbg

L =
P (I|bg)

P (I|pose)
∼ 1 − |V − Vpose|/|V|

1 − |V − Vbg|/|V| . (2)

The basic assumption for detecting humans via this likeli-

hood ratio is that, in case there is a human in the image,

the model accounting for human poses is contributing more

to the overall reconstructed gradient image than the back-

ground model. Obviously, every image that contains a hu-

man also contains background. Setting a threshold of 1
which implies that the gradient image is equally constructed

by pose and background bases worked surprisingly well in

our experiments.

4. Action recognition
The task for action recognition is to infer an action class

based on a single recognized pose primitive, or a sequence

of recognized poses. For this, we propose a histogram based

action recognition approach inspired by [7]. In contrast

to [7], we focus on more primitive actions and consider

clustered poses instead of predefined events. The underly-

ing assumption is that we can construct arbitrarily complex

actions by sequencing pose primitives. Besides this basic

idea, we found that it is important to account for the degree

of information per pose (some poses might contain more in-

formation about the underlying behavior than others), and

to incorporate the local temporal context of pose primitives

by providing a sub-sequencing of primitives by means of

n-grams.

4.1. Pose histogram classification

Instead of directly analyzing the sequential ordering of

pose primitives, we concentrate on the number of occur-

rences of specific poses, i.e. we classify by means of his-

togram comparison. Given a normalized histogram φ(A)
for a sequence of pose primitives A, we classify based on

the minimum Kullback-Leibler (KL) divergence to a set of

normalized training histograms φ(Ti) of pose primitive se-

quences Ti.

j = argmin
i

DKL(φ(A) || φ(Ti)), (3)

where i = 1, . . . , n and

DKL(φ(A) || φ(Ti)) =
∑

k

aklog

(
ak

aTi

k

)
. (4)

The histograms φ(Ti) are acquired during training where

each histogram corresponds to one specific activity per-

formed by one subject. Due to a limited supply of training

histograms we usually used a simple 1-NN classifier. How-

ever, for future research and larger amounts of training data

we might as well consider histogram aggregations [18].

For histogram comparison, the KL-divergence does not

penalize zero bins of the query histogram [18]. This is im-

portant for the recognition of variable length pose primitive

sequences. Here, each histogram bin corresponds to one

recognized pose of a complete image sequence. Interest-

ingly, the KL-divergence intuitively extends to the recog-

nition of action classes from still images. For still images,

the sequence A reduces to A = [al] where l denotes the

recognized pose primitive index, thus

j = argmin
i

DKL(φ(A) || φ(Ti)) = argmin
i

log
1

aTi

l

, (5)

where aTi

l corresponds to the histogram entry for pose

primitive al in the training histogram Ti. Effectively, the

same simple framework can be used for action recognition

in still images as well as image sequences. Figure 4 sum-

marizes the idea of histogram based activity recognition.

4.2. Pose primitive weightings

Intuitively, certain poses contain more information about

the underlying behavior than others. For example, seeing a



person in a simple upright position could indicate almost

any behavior, whereas we can immediately spot the distinc-

tive poses of someone waving his arm.

In [21], classification of faces in a bag of features ap-

proach could been improved by weighting more informative

fragment features. Since pose primitives are fragment fea-

tures of a complete behavior, an adaption of that approach

is straightforward. We reweight occurrences of pose primi-

tives ai in a histogram φ(A) of an action primitive sequence

A = [a1, . . . ,an] by the summed likelihood ratio R of pose

primitive ai found in a specific behavior class B, where

R(ai) =
P (ai|B)
P (ai|B)

, (6)

where Bk corresponds to the combined histogram of all

training sequences of a certain behavior k, and Bk corre-

sponds to the combined histogram of all training behavior

histograms except Bk. As a weight wi for the bin corre-

sponding to ai, we use

wi = log

(∑
k

R(ai)Bk

)
= log

(∑
k

P (ai|Bk)
P (ai|Bk)

)
. (7)

The weights are directly applied to pose primitive his-

tograms

φ(A) = wφ(A) = [w1a1, . . . , wnan]. (8)

Reweighting individual bins results in an intuitive relevance

weighting for pose primitive histograms.

4.3. Local temporal context

Activities are generally not defined by their content

alone [7]. Ordering of events or specific poses allow to

introduce context. An activity description solely based on

unordered poses (or in our case histograms of poses) might

lead to the wrong conclusion about the underlying behav-

ior. Therefore, we found it beneficial to include the local

temporal context, i.e. instead of having a look at individual

pose primitives, we provide a subsequencing by means of

n-gram expressions (see also [7] for a more comprehensive

introduction to n-grams in the context of activity recogni-

tion).

n-grams are a common technique known from text min-

ing or speech recognition. Essentially, they provide a sub-

sequencing of length n, where the subsequences are, in

our case, overlapping. For example, the bi-gram (n =
2) expression of a sequence of pose primitives A =
[a1,a2, . . . ,an] could be simply written as Abi−gram =
[{a1a2}, {a2a3}, . . . , {an−1an}]. The maximum number

of instances corresponding to all possible combinations of

pose primitives is kn, where k denotes to the number of

JumpWave 1 Skip Side

BendJack Walk

PJumpRun Wave 2

Figure 5. The Weizmann action-recognition data set includes 10

different behaviors performed by 9 subjects.

# pose primitives precision

30 65.6 (80.0)

50 65.3 (81.0)

70 67.0 (78.8)

90 68.2 (84.4)

110 70.4 (78.8)

130 70.3 (83.3)

Table 2. Average precision for action recognition from still images

taken from the Weizmann data set. The values in brackets denote

the average precision for a majority voting over all single frame

results for one sequence.

individual pose primitives. Since we only consider subse-

quences that were observed during training, the actual num-

ber tends to be much lower and only represents a fraction of

all possible n-gram instances.

Converting pose primitive sequences to sequences of n-

gram instances does not require any modifications to the

presented approach. Instead of computing histograms of

pose primitives, we now compute histograms of n-gram in-

stances. The underlying pose primitives as a descriptor for

each frame stay the same. Concerning the subsequencing

length, we usually got the best results for bi or tri grams,

the later presented experiments use bi-grams. Note that it

is impossible to extract n-grams from still images. There-

fore, the in the next Section presented experiments for ac-

tion recognition from still images use the conventional pose

primitive histograms.

5. Experiments
To verify the presented approach, we carried out a se-

ries of experiments. In (a) we test for action recognition

precision for image sequences and still images. In (b) we

explore how well our approach is able to deal with novel ac-

tion categories, and in (c) we exploit the limitations of the

proposed pose matching and present qualitative results. Re-

garding parameterization, for the HOG-descriptors we use a

cellwidth/cellheight of 6, a detector window size of 78× 42



Number of pose prototypes 10 30 50 70

1. NMF Clean pose images 50 (48.2) 67.7 (65.1) 72.2 (70.0) 67.7 (69.07)

2. NMF Clean pose images, relevance weighting 50 (50.7) 68.8 (67.2) 72.2 (70.0) 67.7 (68.83)

3. NMF Clean pose images & backgrounds 62.2 (58.14) 93.3 (91.23) 86.6 (88.67) 86.6 (87.16)

4. NMF Clean pose images & backgrounds, rel. weighting 61.1 (57.50) 94.4 (92.2) 87.7 (90.0) 86.6 (87.9)

5. NMF 52.2 (54.3) 86.6 (84.4) 91.1 (86.3) 83.3 (83.5)

6. NMF, relevance weighting 53.3 (55.9) 86.6 (84.6) 91.1 (86.2) 85.5 (83.6)

Table 1. The numbers correspond to the average precision for a leave one (subject) out cross validation scheme. We compared various

methods of utilizing a NMF basis representation of poses. Computing separate bases for poses (from clean images) and backgrounds

and the proposed relevance weighting gave the best performance. Interestingly, simply extracting pose primitives from the images with

cluttered background came second (no. 6). This might be due to the rather simple background in the data set used.

Methods (%) (%) still images

This paper 94.40 70.4

Niebles et al. [15] 72.8 55.0

Thurau [20] 86.66 57.45

Blank et al. [4] 99.61 -

Ikizler et al. [9] 100.00 -

Jhuang et al. [10] 98.8 -

Ali et al. [2] 89.70 -

Table 3. Comparison of different approach evaluated on the Weiz-

mann action recognition benchmark set [4]. Note that the cited

papers all use slightly different evaluation schemes with variations

in image sequence lengths and separation of test and training set.

The most common evaluation method is leave one out cross val-

idation and recognition of complete sequences. Besides [15], the

approach presented is arguably the most flexible, since it can be

applied to still images and does not require background subtrac-

tion or similar techniques.

Figure 6. Confusion matrix showing per action class recognition

results for subsequences of length 30.

pixel, and 3 × 3 cells per block where blocks are overlap-

ping. For NMF we use 40 bases, and 10 − 20 iterations

for the multiplicative update rule in run-mode. In a first ba-

sic Matlab implementation we achieve about 1 FPS (depen-

dent on the image resolution) in run-mod using integral his-

tograms [17] to speed up HOG computation (without NMF

computation this could be increased up to 5 FPS).

(a) In a first series of experiments, we used the well

known Weizmann data set [4] for benchmarking the action

Figure 7. Detailed results for classifying still images taken from

the Weizmann data set.

recognition approach. The data set contains 10 different be-

haviors performed by 9 subjects, see also Figure 5. We ex-

tracted a 78 × 42 pixel wide region around the center loca-

tion of each subject. To focus on action recognition we did

not apply the proposed human detection approach (it will be

used later on). For the training phase, we also acquired each

sequence without the background. For testing, we used the

original 78× 42 wide sequences including the background.

We measured the average precision of leave one (subject)

out cross validation series.

Table 1 summarizes the results for action recognition for

image sequence for various variations in the used method.

We used subsequences of length 20 (i.e. 20 frames). Us-

ing only 20 frame long sequences allows for a continu-

ous recognition of primitive actions, which might be af-

terwards used to recognize more complex or higher level

action classes. Here, classification of a whole sequence is

based on a majority voting scheme applied to action classes

recognized for each subsequence. The best precision of

94% was achieved for 30 pose primitives (bi-grams) and

40 NMF basis vectors for poses and backgrounds. Result-

ing confusion matrices are shown in Figure 6 and Figure 7.

Interestingly, for individual activities the worst recognition

occurs for the “jumping in one place” action. This might

be due to the rather unspecific pose which simply shows a

person standing and does not change significantly. Table 2

shows the results for classifying still images from the Weiz-



handwaving

running boxing

joggingwalking

handclapping

Figure 8. Results for classifying 6 image sequences taken from the

KTH action data set against models trained on the Weizmann set.

mann data set, i.e. every single frame is separately classi-

fied. Here, we varied among the number of pose primitives

where we achieved the best recognition rates of 70% for 110
pose primitives.

Table 3 compares results of recent approaches. It can

be seen that recognition results are highly dependent on the

used features. As already mentioned in Section 2, silhou-

ettes or dynamic features usually perform best [4, 9, 9, 10].

However, our results of up to 94% come very close and ex-

ceed approaches more comparable to ours [15, 20]. For still

images, a recognition accuracy of up to 70% outperforms

previous approaches.

(b) In a second experimental setup, we tested the learned

histograms/pose primitives against the KTH data set [19].

However, we decided to randomly select 6 samples se-

quences, one for each category 1. We learned the mod-

els based on the Weizmann data set, and classified against

the unknown action categories from the KTH set. The test

videos were slightly scaled, for human detection the pro-

posed likelihood-ratio was used.

Here, we were interested in how our approach is dealing

with completely novel action categories. Again, we classi-

fied overlapping subsequences of length 20. The results are

summarized in Figure 8. Three out of six behaviors (hand-

clapping, handwaving, run) were associated with the intu-

itively best matching action class from the Weizmann set.

The remaining 3 are associated with varying classes, e.g.

jogging is confused with jumping on one leg (skip) and run-

ning. However, a closer look at the used sequences shows

a larger difference than what could be expected from the

action class labeling.

(c) In a third experimental setup, we solely concentrated

on pose matching. Here, we wanted to exploit the limits of

the proposed exemplar based human pose estimation. For

training, we used the same data as in the last experiment.

As test data we used sequences from two music clips, ”A

Road to Nowhere” (The Talking Heads) and ”Weapon of

1We picked the example sequences presented on

http://www.nada.kth.se/cvap/actions/

Choice” (Fatboy Slim). In both clips, the proposed human

detection scheme was applied. For ”A Road to Nowhere”,

due to the original image size, we cut out a region centered

around a specific interesting area which contains a running

person in front of an ever changing background.

Since the music clips provide a challenging data set, we

did not expect a perfect matching onto pose primitives. In

fact, most of the poses in the clips do not have an appropri-

ate match in the Weizmann data set. Also the backgrounds

used for extracting NMF background bases are completely

different. Interestingly, we could observe not only sufficient

human detection using the proposed approach, but also rea-

sonable matching to pose primitives. Figure 9 shows some

exemplary matches. Despite the heavily cluttered or chang-

ing backgrounds, pose estimations appear reasonable for

most cases. It also showed that the approach is limited by

the availability of pose primitives, this shows especially for

the complex dancing scene with Christopher Walken. Ef-

fectively, we can only sufficiently recognize poses that were

learned during the training phase.

6. Conclusion
We presented a pose based approach for action recogni-

tion from still images and image sequences. The approach

does not require background subtraction or a still camera,

and can be easily extended to multiple persons. Experi-

mental results on publicly available benchmark data shows

a high accuracy for action recognition.

The experiments presented indicate that the pose of a hu-

man already contains sufficient information about the un-

derlying activity. While we believe that additional infor-

mation gained by dynamic features could result in a better

precision for activity recognition, it is interesting to see that

we can neglect motion features to a certain extent.
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