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Abstract

A novel and automated technique for learning human
perspective context (HPC) from a scene is proposed in this
paper. It is found that two models are required to describe
HPC for camera tilt angle ranging from 0◦ to 50◦. From
a scene, the tilt angle can be inferred from the observed
human shapes and head/foot positions. Afterward, a novel
ME-DT (Model Estimation - Data Tuning) algorithm is pro-
posed to learn human perspective context from live data
of various degrees of uncertainties. The uncertainties may
come from the variations of human individual heights and
poses, and segmentation/recognition errors. ME-DT not
only estimates the model parameters from the training data
but also tunes the data to achieve a better head-foot corre-
lation. The human perspective context provides a feasible
constraint on the scales, positions, and orientations of hu-
mans in the scene. Applying this constraint to the HOG
human detection, great reduction of the detection windows
and improved performances have been obtained compared
to conventional methods.

1. Introduction

In video surveillance, a scene is usually monitored by a
stationary camera from a high position with an oblique an-
gle to the ground plane. The objects of interest, e.g. humans
and vehicles, move on the ground surface. The perspective
projection transformation determines the appearances of the
target objects in the scene. The knowledge of the perspec-
tive about the target objects on the ground plane can not
only provide the hints about positions, scales, orientations,
and shapes of the target objects in the image but also specify
the mapping between the image measurements and physical
measurements for the target objects. Hence, the perspec-
tive context of a scene is much helpful for object detection,
tracking, and event understanding [16, 6].

In principle, the perspective projection of a scene is pre-
cisely described by the camera parameters and 3D world ge-

ometry of the scene. The approaches to establish the camera
parameters are known as camera calibration. The standard
methods assume that a special calibration object, long paral-
lel lines, or measurements of enough 3D points in the scene
are available [5, 15, 1, 2]. Unfortunately, such manual tech-
niques are not adequate for automated video surveillance
systems with widespread deployed cameras.

Recently, a few self-calibration methods from pedestri-
ans have been proposed. These methods were originated
from [1] which showed that the vanishing points of parallel
lines in the scene can be used to recover camera parame-
ters. Lv et al. [10] proposed to use a tracking approach to
select samples from a walking person. Linking the points
of head and foot for a pair of human samples, two par-
allel lines in the scene are obtained. From these samples,
the vertical vanishing point and vanishing horizon line can
be estimated, which are in turn used to calculate the cam-
era parameters. Since both horizontal and vertical vanish-
ing points could be obtained from a pair of samples of a
tracked person, in [7], two harmonic homologies were intro-
duced to derive linear equations for the focal length of the
camera. Outliers are removed by using Rayleigh quotient.
Considering that tracking persons over various occlusions
in natural scenes is still a very challenging problem, the
methods depending on tracking normally need training se-
quences which contain a single person walking in the scene.
They can be considered as semi-automatic methods. Krahn-
stoever and Mendonca [8] proposed a fully automatic self-
calibration method from detected humans. Foot-to-head ho-
mology is first estimated and then decomposed to extract
the vanishing point and horizon for calibration. The camera
parameters are obtained from a MAP (maximum a poste-
riori) estimation under the Bayesian framework. Metropo-
lis sampling for random optimization is used to solve the
MAP problem. Prior knowledge about camera parameters
and sample distributions are needed. Stochastic optimiza-
tion is robust to noisy data, but it requires not only intensive
computations but also good initial estimates.

While camera parameters are usually used in the for-
mal description of perspective projection, it is difficult to
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Method Learning Assump. Angle Estimation Measurement Tracking Robustness
Lv [10] semi-auto yes 5◦-30◦ non-linear real yes weak
Junejo [7] semi-auto yes 10◦-25◦ linear real yes strong
Krahustoever [8] auto yes 9◦-20◦ non-linear real no strong
Ours auto no 0◦-50◦ linear scale no very strong

Table 1. The comparison of our method with existing self-calibration methods from captured standing and walking humans.

estimate them from automatically selected observations in
natural scenes. In addition, the assumptions on camera pa-
rameters for self-calibration might introduce errors for real
cameras and scenes. In this paper, we propose to learn and
use human perspective context (HPC) of a scene (up to a
scale factor of the average human height) to describe human
appearances in the scene. It is found that two linear models,
i.e. foot�head homologies and scale�position mappings,
are required to describe HPC for camera tilt angles from
0◦ to 50◦ to the ground plane. We propose to classify the
camera tilt angles into three categories, i.e. large, small and
zero angles. When the camera tilt angle varies from large to
small, the vertical range of human head positions in the im-
age shrinks faster then that of the foot. An approach is pro-
posed to estimate tilt angle from the statistics of observed
human shapes and head/foot positions in images. Human
samples are then selected based on the human shape model
for the tilt angle. The automatically selected samples can be
noisy and uncertain due to the variations of human individ-
ual heights and poses, and errors of foreground segmenta-
tion and shape recognition. A ME-DT (model estimation -
data tuning) algorithm is proposed to learn HPC from such
training data. The ME-DT algorithm can not only estimate
the model parameters from the training data but also tune
the data to achieve a good head-foot correlation. Mathe-
matic evaluation on synthetic data shows that ME-DT al-
gorithm is much more robust than the strategy of simply
removing outliers in [7, 8]. The algorithm is implemented
for the cases of three tilt angles. The ME-DT algorithm can
generate good estimation of HPC from the data set while
the conventional linear estimation fails. The comparison of
our method to the existing methods for self-calibration from
humans is illustrated in Table 1.

The learned HPC is then applied for human detection in
the scene. A scene-adaptive grid is generated according to
the HPC. At each grid position, the HOG detection window
of corresponding scale and orientation determined by the
HPC is applied. It is observed that less than 1% of detection
windows is required as compared with conventional human
detection methods.

The main contribution of this paper is the investigation of
a novel and practical approach to learn human perspective
context automatically. It includes: (1) a novel approach to
estimate camera tilt angle from observed human shapes and
distributions of head and foot positions; (2) a new system-

atic modeling of HPC in surveillance; (3) a ME-DT (model
estimation - data tuning) algorithm to estimate HPC from
uncertain and noisy data; (4) an efficient method for human
detection using HPC. They are described in Sections 2 to 5
in the remaining of the paper. Experiments and conclusions
are given in Sections 6 and 7.

2. Camera Tilt Angle Estimation

The scenes observed from three typical tilt angles are il-
lustrated in Figure 1. When observed from a large tilt angle
at a high position, the vertical ranges of both head and foot
positions of a person in the image are large if the person
moves from close to far away positions in the scene. Mean-
while, the body orientations near the left and right margins
of the image differ obviously due to the effect of perspec-
tive. These visual clues can be observed easily even from
noisy samples. On the other hand, when the camera is low-
ered and have a small tilt angle to the scene, the vertical
range of head positions in the image becomes much less
than that of the corresponding foot positions while the vari-
ations of body orientations caused by the effect of perspec-
tive becomes indistinguishable.

According to these observations, in this paper, the cam-
era tilt angles are classified into three categories, i.e.large,
small, and zero angles, as depicted in Figure 1. The an-
gular ranges are set empirically as [50◦,25◦], [25◦,8◦], and
[8◦,0◦], respectively. Two related sets of visual clues are
exploited to estimate the camera tilt angle. One is from the
shapes of the observed human individuals while the other is
from the vertical distributions of head and foot positions of
humans in images.

2.1. Visual Clues from Shape

When observed from different camera tilt angles, the sil-
houettes of a standing and walking person are different, es-
pecially in aspect ratios. On the other hand, when observed
from a fixed camera tilt angle, the human silhouettes may
vary due to the view angles to the body (e.g. front view
or side view). To estimate the camera tilt angle from the
silhouettes of observed humans, the shape feature needs to
distinguish human shape variations caused by the change of
the camera tilt angle from those caused by the variations of
human poses and view angles to the bodies. Existing human
shape descriptors are designed to distinguish humans from
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Figure 1. The images from left to right illustrate the cases for large, small, and nearly zero tilt angles of the camera to the scene.

non-human objects. Hence, they cannot be applied.
In this work, three shape features are employed. Firstly,

the moment-based descriptor can capture the shape features
of standing and walking persons [12]. The head-shoulder
width ratio can then be used to distinguish side view from
front view. In a front view, the head-shoulder width ratio is
small (≈ 1/3), but it becomes large (≈ 1) for a side view
image. Lastly, the aspect ratio of an observed human can
reflect the camera tilt angles.

The 2nd-order moments which is invariant to translation
and scaling [9] are employed to describe the shapes of iso-
lated standing and walking persons. Given a silhouette re-
gion R(x) with x = [x, y]τ being a pixel in the image, a set
of central moments are computed as

µjk =
∑
(x,y)

(x − x̄)j(y − ȳ)kR(x, y) (1)

where [x̄, ȳ]τ is the gravity center of the shape. Using (1),
the normalized 2nd-order central moments are defined as
φ1 =

√|µ11|/|R|, φ2 =
√

µ20/|R|, φ3 =
√

µ02/|R|,
where |R| is the size of the region.

The aspect ratio and head-shoulder width ratio are ob-
tained from the horizontal and vertical projections of the
human silhouette. From the projection of R on the horizon-
tal axis, we can obtain the left and right ends xl and xr, and
from the projection on the vertical axis, we can get the top
and bottom ends yt and yb. To be robust to noise and shape
details, the tails on both sides of a histogram are cut at 10%
of the peak height. The aspect ratio of the 2D shape is com-
puted as ra = (xr − xl)/(yu − yl). For a standing person,
the neck position is usually at 81% location of the height
from the foot [4]. The average widths of head and shoulder
(wh and ws) can be computed from the silhouette parts over
and below the neck position. Then the head-shoulder width
ratio is obtained as rhs = wh/ws. The feature vector from
an individual shape is defined as v = [ra, rhs, φ1, φ2, φ3]τ .

In this investigation, it is found that the shape features
are similar for humans observed from small camera tilt an-
gles of categories 2 and 3. The measurements from cat-
egory 1, however, are significantly different. Hence, hu-
man shapes are firstly categorized into two classes corre-

sponding to large and small (including zero) camera tilt
angles divided at about 25◦. A multivariate Gaussian is
used for each class. The multivariate Gaussian models (i.e.
Ni(v̄i,Σi), i = 1, 2) can be obtained from offline training,
where v̄i is the mean vector and Σi is the covariance matrix.
They are then used for online tasks. For a human silhouette
R represented by feature vector v, the likelihood of R being
observed from a camera tilt angle of the ith class is

Pi(v) ∝ 1
|Σi|1/2

exp
[
−1

2
(v − v̄i)τΣ−1

i (v − v̄i)
]

(2)

The shape features may be affected by camera aspect ra-
tio. Evaluation on sequences from different cameras shows
that, with a high threshold, correct classification rates are
over 73% and mis-classification rates are below 19% for
both models. This result is good enough for the classifica-
tion based on voting from a large number of samples.

2.2. Visual Clues from Head/Foot Positions

As illustrated in Figure 1, in a scene observed from a
large camera tilt angle, the vertical positions of both head
and foot vary greatly in the images when a person moves
from close to far away positions. However, when the cam-
era tilt angle decreases with the drop of camera position,
the vertical extent of head positions shrinks quickly. The
comparison between vertical extents of head and foot posi-
tions from a large number of observed humans provides a
global-level clue about the camera tilt angle.

When a large number of isolated humans around the
scene have been observed, the 1D histograms of vertical
head and foot positions can be generated. Truncating the
10% tails of a histogram on both sides, the vertical ranges
of the head and foot positions can be obtained as dh and
df , respectively. The ratio of them is rhf = dh/df . In this
paper, the linear fuzzy membership is employed to describe
the likelihood of camera tilt angle from the ratio value rhf .
The membership functions for the 3 tilt angle categories,
i.e. Qj , j = 1, 2, 3 for large, small, and zero camera tilt
angles, are depicted in Figure 2, where the parameters are
determined empirically.
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Figure 2. Left: Fuzzy membership functions for the likelihoods of
camera tilt angle categories from the ratio rhf . Right: Perspective
scene observed from a tilt angle close to 0◦.

2.3. Tilt Angle Estimation

Fusing the visual clues from human shapes and head/foot
positions, the camera tilt angle can be inferred online. When
a surveillance camera is installed, the moving foreground
objects can be detected continually from the stream of in-
coming images using background subtraction. Employing
the human shape model, we can select samples of isolated
standing and walking persons from these foreground ob-
jects. Let Rj

t (x) be the jth foreground object detected at
time t and vj be its shape feature vector. If it is recog-
nized as a standing or walking person for one of the two
categories of camera tilt angles, i.e. ∃i, Pi(vj) ≥ Tp, it is
selected as one sample of human objects. A large threshold
Tp can be used to get good samples since abundant samples
are available from a scene.

When enough number (e.g. M ) of human samples have
been collected, the likelihood for the jth category of camera
tilt angles from visual clue of human shapes is calculated as
Lj = 1

M

∑
m Pj(vm), where j = 1, 2, 3 and P3() = P2().

The likelihood for the jth category of camera tilt angles
from visual clue of head/foot positions of the M samples
can be obtained as Qj . Then, the category of the camera tilt
angle is estimated as

a = arg max
j∈[1,2,3]

{Lj + Qj} (3)

With the estimated camera tilt angle, the set of M sam-
ples are further refined, i.e. only the samples with Pa(vj) ≥
Tp are remained. The rest N (N ≤ M ) samples are used to
learn human perspective context of the scene.

3. Human Perspective Context

Human perspective context (HPC) is the knowledge of
perspective projection of humans in the scene. It determines
the scales and orientations of humans at different positions
in the image. In principle, the perspective projection deter-
mines the transformation from a world coordinate system
to the image coordinate frame. Using homogeneous coor-
dinates, let X̃ = [X,Y,Z, 1]τ be a point in a real world co-
ordinate system. The projection transformation is described
as x̃ = HX̃, where x̃ = [x̃, ỹ, z]τ . The image position is
obtained as x = x̃/z and y = ỹ/z.

Let the XY plane be the ground surface. The foot po-
sition of a person can be denoted as Xf = [X,Y, 0]τ .
Since Z = 0, one can remove the 3rd column in H . The
perspective projection becomes x̃f = HfX̃f with X̃f =
[X,Y, 1]τ . Similar, if the XY plane is translated upwards
to the head plane, there is x̃h = HhX̃h. Both Hf and Hh

are 3 × 3 matrixes. For a standing person, the foot location
on the ground plane corresponds to exactly one location in
the head plane, hence we have X̃f = X̃h and

x̃h = Hhf x̃f and x̃f = Hfhx̃h (4)

where Hhf = HhH−1
f and Hfh = HfH−1

h . They are
3 × 3 matrixes and HhfHfh = HfhHhf = I . The linear
mapping Hhf or Hfh is called the homology between two
parallel planes in real world [11]. The homology can also
be derived from the plane vanishing horizon, the vertical
vanishing point, and the physical distance between the two
planes in the scene [2].

In principle, the foot�head homologies exist except
when the camera is placed at the height of head plane. In
this case, the head plane is projected into the vanishing hori-
zon so that Hh becomes singular. Since both Hhf and Hfh

involve Hh, the foot�head homologies become invalid. In
practice, when the tilt angle is close to 0◦, it is difficult to
obtain a valid homology from noisy data since it is nearly
singular. Unfortunately, this case happens frequently when
a camera is installed almost horizontally in order to have a
large depth coverage. In this case, a simple linear model
of scale-position mapping can be used instead. When the
camera tilt angle is close to 0◦ (e.g. below 10◦), the upright
humans are nearly parallel to the image plane, as illustrated
in the right of Figure 2. Let y0 be the vertical location of the
vanishing horizon, and s1 and s2 be the heights of a person
standing at positions y1

f and y2
f in the image. The corre-

sponding head positions are y1
h and y2

h. According to the
relations for similar triangles �y0y

1
fy1

h and �y0y
2
fy2

h, one
can obtain yf = kss + y0, where s is the scale (height) and
yf is the corresponding vertical foot position in the image.
The scale�position mappings can be expressed as

s = msf ỹf and yf = mfss̃ (5)

where s̃ = [s, 1]τ and ỹf = [yf , 1]τ .
The two models, i.e. foot�head homologies (4) and

scale�position mappings (5), are the sought HPC for tilt
angles varying from 0◦ to 50◦ in surveillance.

4. Learning Human Perspective Context

To obtain human perspective context (HPC) for a scene,
we will estimate model (4) or (5) for the average height of
standing humans from observed human individuals in the
scene. However, we may not be able to obtain a good model
directly from the sample data since the measurements are



inaccurate and uncertain due to: (a) the variations of indi-
viduals heights, (b) the variations of body poses, (c) the er-
rors in human shape segmentation and recognition, and (d)
the spatial unbalance of samples from image space. In this
paper, we propose a novel and robust method to estimate
HPC from a set of inaccurate sample data.

4.1. ME-DT Algorithm

The basic idea behind the ME-DT algorithm is to em-
ploy data refinement into the process of model estimation.
The proposed approach is an iterative process comprising
two steps in each iteration: model estimation (ME) and data
tuning (DT). The first step generates a linear HPC model
from the updated sample data by using the least-square es-
timation (LSE), while the second step predicts and updates
the sample data according to the obtained model. When the
iterative process converges, we obtain the HPC model from
the predicted virtual ideal sample data. In the following, the
general description of the ME-DT algorithm is presented
first and then the implementations for different categories
of camera tilt angles are described.

Let (µ, ν) be a pair of observed data. For the foot�head
homologies, (µ, ν) is (xf ,xh), and for the scale�position
mappings, (µ, ν) is (yb, h). Furthermore, let the pair of the
mappings between the observed data be H1 and H2, i.e.
ν = H1µ and µ = H2ν. For foot�head homologies, there
are H1 = Hhf and H2 = Hfh, and for scale�position
mappings, there are H1 = msf and H2 = mfs. Suppose
the sample dataset is {µi, νi}, i = 1, · · · , N . For initializa-
tion, let the dataset be {µj

i , ν
j
i }N

i=1 with j = 0 (i.e. the first
iteration), and a weight w0 to control the data tuning. Then
the following two steps can be performed repeatedly:
(a). Model Estimation (ME): The linear transformations Ĥj

1

and Ĥj
2 are generated from the dataset {µj

i , ν
j
i }N

i=1 by using
the least-square estimation (LSE).
(b). Data Tuning (DT): From the new models of transfor-
mation, the ideal data can be predicted as ν̂j

i = Ĥj
1µ

j
i and

µ̂j
i = Ĥ2ν

j
i . Combining the original and predicted data, the

virtual ideal positions are estimated as

µj+1
i = (1 − wj)µ̂

j
i + wjµ

0
i

νj+1
i = (1 − wj)ν̂

j
i + wjν

0
i

(6)

In Equ. (6), the original observation (µ0
i , ν

0
i ) is used as a

dock to prevent the data moving too far away from the orig-
inal position when the transformations have not become sta-
ble. The difference of the estimated data between the latest
two iterations can be defined as

Dj =
1
N

∑
i

[
(µ̂j

i − µ̂j−1
i )2 + (ν̂j

i − ν̂j−1
i )2

]
(7)

This difference measure will drop significantly in a few it-
erations. Once it becomes stable, the best estimation should

have been reached. Here, the condition for the termination
is defined as Dj+1 ≥ Dj or j > 5. If the difference is
still dropping, the weight is updated as wj+1 = γwj with
γ < 1, and j is set as j + 1 for the next iteration. In this
work, w0 and γ are set as 0.5 and 0.7, respectively. When
ME-DT terminates, the refined samples would be close to
the virtual ideal positions (i.e. {µ∗

i , ν
∗
i } ≈ {µj

i , ν
j
i }). The

linear transformations obtained from the virtual ideal data
become the perspective model for humans in the scene (i.e.
H∗

1 ≈ Ĥj
1 and H∗

2 ≈ Ĥj
2).

The performance of the ME-DT algorithm on synthetic
data with various levels of noise has been evaluated. Let
one ideal linear mapping be µ = k∗

νν + b∗ν and ν =
k∗

µµ + b∗µ with k∗
ν = k∗

µ = −1 and b∗ν = b∗µ = 100.
In each test, 100 samples of {µi, νi} are randomly gener-
ated from even distribution within [0,100] and corrupted
by additive Gaussian N (0, σ), where the variance σ rep-
resents the noise level. Let the estimated parameters be
[k̂ν , b̂ν ] and [k̂µ, b̂µ], the normalized error of the estima-

tion can be computed as ε = 1
4

∑
m,n

|âmn−a∗
mn|

a∗
mn

with
[a11, a12, a21, a22] = [kν , bν , kµ, bµ]. At each noise level,
the test is repeated 100 times randomly. The average of
the normalized estimation errors with respect to the corre-
sponding noise level can be obtained as ε̄(σ). The plot of
ε̄(σ) with respect to noise levels from 5 to 40 is shown as
the red curve in the left picture of Figure 3. For compari-
son, the average errors by the standard least-square fitting,
i.e. the first step of the ME-DT algorithm, as well as the
errors by removing 10% outliers according to the first esti-
mation as used in [8, 7] are also plotted in blue and green
colors. It can be seen that the ME-DT algorithm is much
more robust to the noisy training data. To show the con-
vergence of the ME-DT algorithm with respect to excessive
noise, the example results with σ = 30 are displayed in Fig-
ure 3, where the 5 pictures from the 2nd to the right are the
results of the 5 iterative steps of ME-DT algorithm. In the
pictures, the red ‘+’ marks a training data, the green line is
the ideal model, the blue and black lines are the estimated
mappings. The plots indicate that, by tuning the inaccurate
data according to the previous estimation, ME-DT can con-
verge to the ideal model quickly even on data with excessive
noise. The most significant difference of the ME-DT to ex-
isting robust estimation methods (e.g. ME, RANSAC, and
LMS) is that it tunes the training data to guess the ideal data
from the inaccurate data.

4.2. Estimate HPC Using ME-DT Algorithm

For a scene observed from a large camera tilt angle,
the head and foot positions of human samples can be di-
rectly used to estimate the foot�head homologies. Let
xh = (xh, yh) and xf = (xf , yf ) be the head and foot
points of a sample located along the principal axis of the
silhouette, and Hhf = [amn]3×3 be the foot→head homol-
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Figure 3. The evaluation of the ME-DT algorithm on synthetic data.

ogy. Since Hhf is a mapping between homogeneous coor-
dinates, we can assume a33 = 1. Then, the left equation
in (4) can be rewritten as
[

xf yf 1 0 0 0 −xfxh − yfxh

0 0 0 xf yf 1 −xfyh − yfyh

]
a =

[
xh

yh

]

(8)
where a = [a11 a12 a13 a21 a22 a23 a31 a32]τ are the rest
elements of Hhf . From (8), the least-square estimation Ĥhf

can be obtained from a set of N samples {xhi,xfi}N
i=1.

Similarly, Ĥfh can be obtained. Using such least-square
estimations in the Model Estimation step in the ME-DT al-
gorithm, the robust estimation of the foot�head homolo-
gies can be obtained.

For a scene observed from a small camera tilt angle, the
foot�head homologies are still used to describe the human
perspective context, but there are two differences in the im-
plementation of ME-DT algorithm to estimate the homolo-
gies. First, the x-position of the center is used for both the
foot and the head, i.e. xf =xh=xc. This is because for a
small tilt angle, the principal axis of an upright human any-
where in an image is close to a vertical line. The biases
of the head’s and foot’s x-positions to the center point are
caused by the variations of poses and segmentation errors.
They often causes the failure in homology estimation. Sec-
ond, only the foot→head homology estimate Ĥj

hf is gen-
erated from the sample data using the least-square fitting.
Since in vertical direction, the head→foot homology is a
linear mapping from a narrow range to a wide range. It is
easy to lead to large divergence from the true model when
noisy and inaccurate sample data is used. The head→foot
homology is obtained as Ĥj

fh = (Ĥj
hf )−1.

In the case of zero camera tilt angle, the scale�position
mappings in (5) are used to describe HPC. The sample data
is a pair of foot position and the height of the body, i.e.
(µi, νi) = (ybi, hi). In Model Estimation step, the standard
least-square fitting is used to estimate m̂j

fs and m̂j
sf .

5. Efficient Human Detection

The aim of visual surveillance is to interpret human re-
lated events in the scene. Human detection plays an impor-
tant role to achieve such a goal. Given an image I(x), detec-
tion of a human standing at xf is to compute the likelihood
P (I,xf |A), where A denotes a human appearance model.

Without any prior knowledge of the scene, the likelihood
should be evaluated over all possible scales, orientations,
and viewing angles, that is

P (I,xf |A) = arg max
{a,s,o}

P (I,xf |A(a, s, o)) (9)

With learned HPC, the scale, orientation, and appearance
with respect to the viewing angle can be determined as
Aa(sxf

, oxf
). Hence, there is

P (I,xf |A) ∝ P (I|Aa(sxf
, oxf

),xf ) (10)

This means, with learned HPC, there is no need to com-
pute the likelihood over multiple scales, orientations, and
appearances at each position. This will improve not only
the efficiency but also the accuracy for human detection.

In this paper, the HOG human detector [3] is employed.
First, two HOG human detectors for large and small camera
tilt angles are trained offline, i.e. Aa(·, ·), a = 1, 2. For
a specific scene, once the camera tilt angle is recognized
online, the corresponding HOG detector will be applied. To
adapt to great scale variations of humans in some scenes, the
detection window is divided into 4×8 cells whereas the size
of the cells varies from 4 × 4 to 20 × 20 pixels. Therefore,
we have detection windows of 17 scale levels from 16× 32
to 80×160 pixels. Each detection window consists of 3×7
blocks formed by 2 × 2 cells in a sliding fashion.

Using learned HPC, a scene-adaptive grid on the floor
which determines the scale and orientation of a human in
a position in the image can be generated as shown in Fig-
ure 4. The grid is generated row by row from the bottom
of the image. The horizontal distance between two adja-
cent grid points in the same row is the half of human width.
The vertical distance between two adjacent rows is set so
that there is just β% (e.g. 85%) vertical overlap of human
heights in the two rows. Since the grid density is determined
by the related human scales, the number of the grid points,
or detection windows, is not much related to the image size.

For a new incoming image, Human detection is per-
formed one-by-one at each grid point. Let a grid point be
the foot position of a possible person and denoted as xf .
The corresponding head position xh can then be estimated
using the learned HPC. The height ‖xf − xh‖ determines
the scale of the detection window. The orientation of the
window is θ = tan−1(xh−xf

yh−yf
). The sub-region within the



Method large small zero average
1 model 14.9% 343.2% 144.9% 105.6%
2 models 14.9% 18.7% 8.8% 14.4%
ME-DT 8.8% 5.2% 5.4% 7.4%

Table 2. The evaluation results on HPC learning.

window is rotated to the upright position and the HOG fea-
ture vector from the window can be obtained. The feature
vector is then fed to the SVM model for classification.

6. Experiments and Evaluations

The proposed method has been tested and evaluated
on more than 15 scenes from well-known banchmark
datasets and real CCTV systems. The efficient human
detection consists of two stages: automatic HPC learning
and HPC-constrained human detection. The performance
of these two parts are evaluated separately in the following.

The performance of HPC learning
Once a camera is set up, a robust method of adaptive

background subtraction is applied. Foreground regions are
extracted and shadows are suppressed. Samples of moving
persons are selected according to the human shape model
described in subsection 2.1. To evaluated the robustness for
learning HPC, three approaches are compared: (1) single
model (foot�head homology) and LSE; (2) multiple mod-
els (foot�head homology and scale�position mapping)
and LSE; (3) multiple model and ME-DT. The error rate
of the estimation is defined as

ER =
1
N

N∑
i=1

|xfi − x̂fi| + |xhi − x̂hi|
2|xfi − xhi| (11)

where (xfi,xhi) is the ith sample and (x̂fi, x̂hi) is the cor-
responding estimation. The average error rates of 3 ap-
proaches on the 15 scenes are listed in Table 2. The perfor-
mance of ME-DT is the best. The error rate is 3.6% when
manually annotated inputs are used for test. The error rate
of 3.6% is caused by variations of human heights.

The performance of human detection
One benefit of applying HPC to human detection is the

great reduction of detection windows for each image. With
no knowledge of human appearance in the scene, we have
to scan the image with multi-scale detection windows, e.g.,
for an image of 320× 240 pixels, over 200,000 windows of
5 scales are used [13, 14]. Applying HPC, less than 2,000
windows are enough for 17 scale levels and orientation vari-
ations. Three examples of scene-adaptive grids for the 3 cat-
egories of camera tilt angles are shown in Figure 4, where
the red dots represents foot positions and green dots are

Figure 4. Examples of scene-adaptive grids for large, small, and
zero camera tilt angles.

the corresponding head positions. A pair of red and green
dots denotes a detection window. The average and maxi-
mum numbers of detection windows from the 15 scenes are
810 and 1826. This means, compared to the conventional
method, less than 1% detection windows is required.

Another benefit of applying HPC is the improvement on
human detection. This can be seen from the comparison
with conventional method on some examples displayed in
Figure 5, where the postprocessing of clustering is not per-
formed. Firstly, human like objects but much larger, smaller
or taller, such as the trees and the pillars in the first three ex-
amples, would not be detected. Secondly, when the camera
tilt angle is large, the leaning of body orientation for hu-
mans on both sides of the scene is significant. Extracting
HOG features from the rotated detection window accord-
ing to HPC can improve the human detection performance,
as shown in the 2nd column. Thirdly, since the proposed
method does not depend on estimation of vanishing hori-
zon, it can also be used for the scenes where the ground
surface is not parallel to the horizontal sea plane. One ex-
ample is shown in the 3rd column. Fourthly, since HPC
helps avoiding some impossible false positives, we can use
a low threshold for human detection. In this case, the par-
tial occluded humans can be detected with a HOG detector
trained with no occlusion samples. As shown in the last
two columns, the persons partially occluded by car door or
other person can be detected. In addition, human detection
under the guide of HPC also provides clues about 3D spatial
correlations of humans in the group.

The systematic evaluation of HPC-constrained human
detection is also performed. We sampled the detection re-
sults every 50 frames evenly from the 15 test sequences. In
the evaluation, each person of more than 30% being visible
is counted as a valid person. Persons of too small scales
(height<20 pixels) are not counted. For a valid person,
if the overlap of the body and a detected window is over
50%, it is accepted as detected. If less than 30% coverage
of a detected window is related to a valid person, it is la-
belled as a false positive. Cluster of overlapped detections
over the same background object is counted as one false
positive since no postprocessing is performed. The final re-
sults of the statistics and sampled images from the 15 scenes
can be found in the supplementary document. On average,



Figure 5. The examples of human detection with and without HPC constraints int the lower and upper rows.

our method achieved 91.2% detection rate with 2.05 false
positives per frame (FPPF). Existing methods can achieve
80-90% detection rate at 10−4 false positives per window
(FPPW) which corresponds to 2-3 false positives per im-
age [13, 14, 3, 17]. However, our result is obtained with
HOG detectors trained by less than 200 samples (positive
and negative samples together) and we counted small and
partially occluded persons in the evaluation. The major-
ity of false positives are detected with small windows for
humans of heights between 20 to 40 pixels, which are too
small to be detected by existing methods.

7. Conclusions

In this paper, a novel and practical way for unsupervised
learning of human perspective context (HPC) for a scene is
proposed. It contains three parts: estimation of camera tilt
angle, modeling of HPC for camera tilt angles ranging from
0◦ to 50◦, and the ME-DT algorithm for robust estimation
of HPC from automatically selected human samples. An
efficient approach for human detection constrained by HPC
is also proposed. Experiment results show the robustness
of HPC learning and the benefits of applying HPC for hu-
man detection on videos captured with large range of cam-
era tilt angles. If the camera tilt angle or focus length has
been changed, the difference between the detected and es-
timated head and foot positions will increase greatly. In
this case, the system can start to learn the HPC again. This
means the method is suitable for autonomous intelligent
video surveillance systems. In future work, we aim to apply
the learned HPC to improve scene analysis, foreground re-
finement, shadow suppression, object classification, track-
ing, and identification in automated video surveillance.
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