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Abstract

In this paper, we present a solution to the novel prob-
lem of recognizing primitive actor-object interactions from
videos. Here, we introduce the concept of actor-object
states. Our method is based on the observation that at
the moment of physical contact, both the motion and the
appearance of actors are constrained by the target object.
We propose a probabilistic framework that automatically
learns models in such constrained states. We use joint prob-
ability distributions to represent both actor and object ap-
pearances as well as their intrinsic spatio-temporal config-
urations. Finally, we demonstrate the applicability of our
approach on series of human-object interaction classifica-
tion experiments.

1. Introduction

In this paper, we focus on the problem of recogniz-
ing human-object interactions. Experimental evidence sug-
gests that motion information alone may not be sufficient to
achieve higher-level reasoning about activities that involve
interactions with objects. Indeed, approaches for recogniz-
ing human actor-object interactions usually rely on addi-
tional contextual information provided in the form of pre-
defined labels or landmark points [13, 4], or a number of
electronic sensors [19]. Moreover, actions in such cases
are usually strongly constrained and described with a pre-
defined set of semantic entities [16]. As an illustration of
the main problem addressed in this paper, let us consider
the “grasp a cup” activity in Figure 1. In the figure, the
hands approach cups at different speeds and having differ-
ent spatial properties (e.g., clutched, in the first sequence,
and slightly open, in the second). The motion of different
actors performing the same interaction activity may differ
considerably. However, at the instant of physical contact,
actors’ motions, appearances, and actor-object spatial con-

figurations become constrained by the target object. These
constrained motion and spatial configurations are descrip-
tive of the specific actor-object interaction.

Figure 1. Constrained actor-object states.

The literature on activity recognition is extensive. In
general, activity analysis methods focus on high-level anal-
ysis of activities. The analysis is usually semantic-based
and aims at recognizing complex activities such as “greet-
ing” or “preparing a french toast”. Semantic level descrip-
tion can be accomplished by means of context-free gram-
mars [18], language-based models [16], and graphical mod-
els [13, 12, 19, 3, 14]. An overview of efforts made in the
area of actions and interactions recognition from a high-
level perspective can be found in [1].

However, the recognition of primitive human-object in-
teractions is still an open and relatively unexplored prob-
lem. An effort in this direction was made by Gupta and
Davis [10]. They presented a Bayesian approach that simul-
taneously estimates object type, location, movement seg-
ments, and the effect of movements on objects. However,
interactions here are limited to a predefined sequence of mo-
tions (i.e. reaching, trajectory-like manipulation, and object
reaction). Peursum et al. [17] suggest the importance of
action understanding in object recognition tasks. They use
human activity to infer both the location and identity of ob-
jects. This idea was consistent with the results obtained by
Gupta and Davis [10].

Our actor-object interaction recognition method is in-
spired by recent developments of probabilistic constella-
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tion models [15, 9]. We propose a probabilistic graphical
model of primitive actor-object interactions that combines
information about the interaction’s dynamics, and actor-
object static appearances and spatial configurations. We
term these appearances and joint actor-object configurations
as “actor-object states”. In our method, a spatio-temporal
part-based model of interaction’s dynamics guides the pro-
cess of discovering consistent actor-object states. Selected
actor-object states are subsequently modeled within a static
part-based framework. No manual input of object or con-
textual information are required. Video sequences of prim-
itive interactions are the only input to the program. To
the best of our knowledge, this is the first general vision-
only method for learning primitive human-object interac-
tions without manual input of object information.

2. Integrating Actor-Object Static States and
Interaction Dynamics

We commence by defining the main components of our
model. An interaction sequence V can be considered to be
the temporal variation of a specific actor-object static state.
Let S = {S1, . . . ,SK} be a set of K discrete static states
sampled from the space of all representative static states of
an interaction class. Let M be the spatio-temporal infor-
mation extracted from the video. In this paper, this infor-
mation is obtained using spatio-temporal features [7, 11].
Let X represent simultaneously a particular spatio-temporal
configuration of static states and interaction dynamics. The
term “actor-object states” will represent the specific joint
appearance and spatial configuration of an actor and object
in an video frame. Let p(V |X ) be the likelihood of observ-
ing a particular video sequence given that an interaction is
at some spatio-temporal location. From Bayes’ theorem:

p(X |V) ∝ p(V |X ) p(X )
∝ p(S|X )︸ ︷︷ ︸ p(M|X )︸ ︷︷ ︸ p(X )︸ ︷︷ ︸ (1)

static states’

appearance

dynamics’

appearance

spatio-temporal

configuration

The appearance of both static states and dynamics are as-
sumed to be statistically independent. As a result, the like-
lihood term in (1) can be factorized into two components.
Following the part-based object factorization suggested by
Crandall and Huttenlocher [5], we assume that the parts’
spatio-temporal arrangement can be encoded into the prior
probability distribution while the likelihood function en-
codes their appearance.

Spatio-Temporal Prior Model. We begin by assuming
that a static-state Si ∈ S can be subdivided into a
number of non-overlapping subregions such that Si =

{(a(i)
1 ,x(i)

1 ), . . . , (a(i)
NSi

,x(i)
NSi

)}, where the pair (a(i)
j ,x(i)

j )
consists of the appearance a and the spatio-temporal lo-
cation x of the subregion j for the model of static-state
Si, respectively. Here, NSi

is the total number of sub-
regions for the static-state Si. The temporal position of
the static-state in the video sequence serves as the tempo-
ral coordinate of the parts’ locations. Similarly, the dy-
namic information required by our model is represented by
a sparse set of NM spatio-temporal features [7, 11] given by
M = {(a(M)

1 ,x(M)
1 ), . . . , (a(M)

NM
,x(M)

NM
)}. For simplicity,

we model both static-state and dynamic information using
directed acyclic star graphs. This is similar to the part-based
object model suggested by Fergus et al. [8]. Here, a particu-
lar vertex is assigned to be a landmark vertex (a(i)

r ,x(i)
r ) for

the static-state Si. A similar landmark vertex assignment is
done for the dynamics model, (a(M)

r ,x(M)
r ). The remain-

ing vertices within each partial model are conditioned on
the corresponding landmark vertex. Figure 2(b) shows an
example of part-based models for two static states of the
“grasp a cup” interaction. Finally, we obtain a multi-layered
tree-structured actor-object interaction model by condition-
ing the landmark vertices of the static-state model graphs
on the landmark vertex of the dynamics model graph. An
example of the interaction model is shown in Figures 2(a,c).
Graph arrows indicate vertices’ conditional dependences.
The joint distribution of the spatial interaction configuration
can be derived from the graphical model in Figure 2(c):

p(X ) = p(x(M))
∏
Si∈S

p(x(i)|x(M)) (2)

where x(i) is the spatio-temporal configuration of the
static-state Si, and x(M) is the spatio-temporal con-
figuration of the dynamics model. The probability
distributions that compose Equation 2 are: p(x(M))
= p(x(M)

r )
∏

j 6=r p(x(M)
j |x(M)

r ) and p(x(i)|x(M)) =

p(x(i)
r |x(M)

r )
∏

j 6=r p(x(i)
j |x(i)

r ). The partial models depen-
dence is based solely on their spatio-temporal configuration
within the global model (i.e., partial models appearances are
statistically independent).

Appearance Model. Under the appearance independence
assumption, the appearance likelihood of the static-state Si

can be written as p(Si|X ) =
∏NSi

j p(a(i)
j |x(i)

j ). Similarly,
the dynamics model appearance likelihood is p(M|X ) =∏NM

j p(a(M)
j |x(M)

j ). The likelihood term in (1) becomes:

p(V |X ) =
K∏
i

NSi∏
j

p(a(i)
j |x(i)

j )×
NM∏

j

p(a(M)
j |x(M)

j ) (3)



Figure 2. (a) Spatio-temporal part-based model of interaction. (b) Static states part-based models; (c) Interaction model graph.

3. Learning Interactions

The factorization in (2) and (3) allows for a modular
learning procedure given a set of unsegmented training
videos {V1, . . . ,VL}. The learning steps are the follow-
ing (Figure 3).

Learning Step 1 - Learning the Dynamics Model. We
begin by modeling the probabilities of subregion locations
in p(x(M)) from (2). Conditional distributions relating in-
dependent Gaussian distributions are also Gaussian [2]. As
a result, the conditional densities in the components of (2)
take a particularly simple form [2]. We extract a set of
spatio-temporal interest points [7], and associate a spatio-
temporal location with every extracted subregion. We adopt
the learning process described by [5] to obtain an initial
spatio-temporal model and the optimal number of parts. An
Expectation-Maximization (EM)-based procedure is used
to simultaneously refine the initial estimates of the appear-
ances and the spatial parameters.

Figure 3. Interaction learning process.

Learning Step 2 - Creating Initial Static-State Models.
The input to this step are interest subregions extracted from
all frames of the training sequences. Subregion locations
are given by the x- and y-coordinates of the subregion in
the frame image, and the additional temporal t-coordinate
(i.e., frame-position). However, some subregions may have
similar appearance across various frames (e.g., the appear-
ance of the toy car remains unchanged during the “push a
toy car” interaction). Hence, simply clustering appearances
would make indistinguishable some similar parts belong-
ing to different static states. Secondly, parts of a specific
static-state model must have zero temporal variance as they
naturally belong to the same frame. We address this initial-
ization problem by using the model of interaction dynamics
to restrict the space of input subregions. For every training
sequence, we obtain MAP locations of the dynamics model:

x̂(M) = arg max
x

p(M|x(M))p(x(M)) (4)

For every sequence, the maximization in (4) results in the
location (x̂, ŷ, t̂) of the model’s landmark part. A set of ini-
tial samples t0 = {t1, t2, ..., tK} of temporal displacements
is created, where ti is the static-state Si temporal displace-
ment with respect to the dynamics model’s landmark node.
For a given static-state Si, we select subregions for which
temporal displacements are between (ti − ∆t, ti + ∆t),
where the constant ∆t defines the frame range containing
the corresponding static state. These subregions are subse-
quently used to obtain the candidate parts and initial param-
eters of the static-state Si models. Candidate parts selection
is performed as in Step 1. We cluster pose subregions to
form initial parts of the underlying pose, and discard parts
with low descriptiveness power with respect to their appear-
ance. We use the descriptiveness evaluation procedure de-



scribed in [5]. Learned pose parts are organized into a star-
graph structure with the most descriptive part as the land-
mark node. Initial spatio-temporal parameters are estimated
from the parts’ maximum likelihood locations as follows:

x̂(i) = arg max
x

p(Si|x(i)) (5)

Figure 4. Initial static-state model. Dynamics model temporal lo-
cation t̂ is estimated for each sequence. 2D interest subregions are
extracted from frames in the temporal neighborhood t̂+ ti. Subre-
gions are clustered to form an initial static-state model for the first
state. Subsequent static-state models are similarly determined.

Learning Step 3 - Creating the Global Model. In this
step, the initial static-state models are combined with the
model of interaction dynamics into the global model of
interaction as in Figure 5(a). The initial parameters of
the conditional distributions p(x(i)

r |x(M)
r ) that contribute to

p(x(i)|x(M)) in Equation 2 are estimated from the MAP
localizations of the static states in the training sequences.
However, not only the initial static-state models contain
noisy parts, but the parameters of the conditional distri-
butions p(x(i)

r |x(M)
r ) are very inaccurate. We revise the

parameters of the global model with the EM algorithm.
The EM algorithm reestimates all model parameters in-
cluding those of the dynamics model. Our EM algo-
rithm’s Expectation-step MAP estimation considers only
those model configurations where static-state parts belong
to the same frame. (See Section 4 for details). However,
while the revised conditional distributions become better
defined, the updated model still contains overlapping parts.
Overlapping parts are removed and parameters revised with
the EM algorithm once again. Figure 5(b) shows an exam-
ple model with overlapping parts removed.

Finally, from the set of all learned static-state models
we retain only those that are temporally well-defined. This
is done by pruning the static-state model subgraphs whose

landmark nodes have the largest temporal variance when
conditioned on the dynamics model. Also, when two in-
tervals (ti −∆t, ti + ∆t) and (tj −∆t, tj + ∆t) overlap,
several instances of same static state may be learned. There-
fore, we greedily select a subset of static-state models such
that when conditioned on the landmark node of the dynam-
ics model x(M)

r , the mean locations of their landmark nodes
x(i)

r are separated by a predefined distance (e.g., one frame).

4. Classification and Inference

Interaction recognition can then be posed as a detection
problem. We seek for the spatio-temporal location in the
video sequence that maximizes the posterior probability of
the interaction’s location:

X̂ = arg max
X

p(X |V) (6)

We expect that parts representing the same static-state
belong to the same video frame. As a result, the global
model MAP search space can be significantly reduced. Our
exact inference algorithm is as follows: (i) Consider all
states of the variable x(M)

r ; (ii) Consider all states of x(M)
j ;

(iii) Consider all states of x(i)
r . For every state x

(i)
r of x(i)

r ,
consider only those states of x(i)

j that have the same tempo-

ral coordinate as x
(i)
r . Obtain the maximizing configuration.

5. Experimental Results

Interactions Dataset. We acquired our own dataset of
videos with primitive interactions. Vision-based human-
object interaction recognition is a novel problem with no
widely available datasets. Complex scenarios were delib-
erately chosen to motivate future improvements of human-
object interaction methods. Example frames from our inter-
action dataset are shown in Figure 6. The dataset consists of
videos of eight different actor-object interaction types per-
formed by ten individuals in two different scenarios. The in-
teractions are “grasp a cup”, “grasp a fork”, “touch a fork”,
“grasp a spoon”, “touch a spoon”, “grasp a toy car”, “touch
a toy car” and “push a toy car”. Every individual performed
interactions with a unique set of objects (e.g., different cups
were used by different individuals in a “grasp a cup” in-
teraction). Sequences had clean and cluttered background,
respectively. In the “cluttered background” scenario, the
background was changed for every individual and every in-
teraction type. Any two interaction types from our dataset
differ in one of the following three aspects: (1) different ob-
jects and different motions (i.e., “grasp a cup” vs. “touch a
fork”); (2) similar objects and different motions (i.e., “grasp
a fork” vs. “touch a fork”); and (3) different objects and
similar motions (i.e., “grasp a fork” vs. “grasp a spoon”).



Figure 5. (a) Initial global model; (b) Nodes corresponding to overlapping parts are pruned and only temporally well-defined static states
are retained.

Therefore, we believe that this dataset is suitable for eval-
uating our method’s validity. The above choice of inter-
actions was inspired by experiments using functional neu-
roimaging in humans [6]. These experiments revealed re-
gions of the parietal lobes that are specialized for particular
visuomotor actions such as reaching and grasping. Videos
were acquired with a CCD camera at thirty frames per sec-
ond. Frames were downsized to 144×180 pixels.

(a) clean background

(b) cluttered background

Figure 6. Sample frames from our interaction dataset.

Video Data Preparation. In our implementation, we be-
gan by obtaining a set of Gaussian smoothed edge-maps of
square patches centered at the previously detected interest
points. Interest point locations were detected using a Harris

operator. The edge maps were used to create the static-state
models. Features required to create the dynamics model
were obtained using the spatio-temporal interest point de-
tector described in [7]. In all cases, the data dimensionality
was reduced using principal component analysis (PCA).

(a) “dynamics only” (b) dynamics several-static states

(c) “dynamics only” (d) dynamics several-static states

Figure 7. Confusion matrices. (a) clean scenario (30.0% correct
classification); (b) clean scenario (70.0% correct classification);
(c) cluttered scenario (23.0% correct classification); (d) cluttered
scenario (54.0% correct classification).

Classification. We performed four experiments. For each
scenario, we first learned a dynamics model of an interac-
tion. We show classification results obtained for each sce-
nario using dynamics information only as well as the com-
bination of dynamics information and static-state informa-
tion. A leave-one-out evaluation scheme was used for clas-
sification. Labeling decisions were made based only on best



(a) (b) (c) (d) (e)

Figure 8. Learned models of interactions superimposed at the detected locations. The plots represent time-axis cross-sections of the
“dynamics-static state” conditional distributions. White borders indicate static-state parts. Grayed rectangles indicate slices of the landmark
spatio-temporal subregion in the corresponding frames. Dark border highlights the temporal coordinate of the spatio-temporal feature
corresponding to the landmark node of dynamics.

model match. The “dynamics only” model (i.e., no static-
state information included) achieved only 30% and 23%
correct recognition for the clean and cluttered scenarios, re-
spectively. Confusion matrices for these results are shown
in Figure 7(a,c). Results suggest that motion alone was not
sufficient to perform accurate classification, and would have
to be reinforced with the static-state models.

Next, static-state information was included into the
framework. The initial static-state models were obtained us-
ing t0 = {t1, t2, ..., tK} as initial temporal displacements
(Learning Step 2). The number of initial static-state models
was set to five, and we selected t0 = {−14,−7, 0, 7, 14}
and ∆t = 4 frames. In our approach, the parameter that
indirectly governs the number of static-state models is the



threshold on the temporal distance between any two static
states. This threshold was set to one frame. Consequently,
starting from the static-state with the lowest temporal vari-
ance, we greedily retained static-state models while meet-
ing the temporal threshold. Confusion matrices generated
by these classification results are shown in Figure 7(b,d).
The figure also displays (in parentheses along side the in-
teraction types) the average number of static-state models
retained in the global model for a given interaction. Overall
recognition performance in these experiments was 70.0%
for the clean background scenario and 54.0% for the clut-
tered background scenario. This was significantly higher
than the results obtained by the dynamics-only model. Im-
provements are still needed for cluttered scenarios. Weak
recognition results for highly noisy and ambiguous inter-
actions were expected. Figure 8 shows qualitative results
for some interaction models from the latter experiments.
In the figure, models of several interactions are superim-
posed on test sequences at the detected locations. The plots
represent the time-axis cross-sections of “dynamics-static
state” conditional distributions. Static-state parts are rep-
resented with the white border. Grayed rectangles repre-
sent slices of corresponding landmark spatio-temporal sub-
region. The model parts’ appearances shown in the Figure
were obtained using the closest vectors indices in the PCA-
reduced feature space. Dark border highlights the temporal
coordinate of the spatio-temporal feature corresponding to
the landmark node of dynamics.

6. Conclusions

We presented a solution to a novel problem of recog-
nizing primitive actor-object interactions. The concept of
actor-object states was introduced using a probabilistic
framework. The proposed recognition method combines
static-states information with the video’s motion dynamics
to form a global actor-object interaction model. Addi-
tionally, we introduced a dataset of primitive actor-object
interactions and showed that our approach is effective
for human-object interaction classification. Our current
method is view-dependent. However, single-view camera
setup is a common scenario for many surveillance appli-
cations. In these scenarios, direction of motion can be
quite similar (e.g., motion direction when opening a fridge
is similar across different agents). Also, our approach is
independent of the type of interest features. Candidate parts
could be extracted by sampling the video’s spatio-temporal
subregions, and any existing interest feature extraction
method would work. Finally, our approach is not limited
to gesture-specific interactions, and should work well with
full-body interactions. Future directions of investigation
include a study and use of alternative appearance models.
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