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Abstract

Visual recognition of human actions in video clips has

been an active field of research in recent years. However,

most published methods either analyse an entire video and

assign it a single action label, or use relatively large look-

ahead to classify each frame. Contrary to these strategies,

human vision proves that simple actions can be recognised

almost instantaneously. In this paper, we present a system

for action recognition from very short sequences (“snip-

pets”) of 1–10 frames, and systematically evaluate it on

standard data sets. It turns out that even local shape and

optic flow for a single frame are enough to achieve ≈ 90%

correct recognitions, and snippets of 5-7 frames (0.3-0.5

seconds of video) are enough to achieve a performance sim-

ilar to the one obtainable with the entire video sequence.

1. Introduction

Recognising human actions in monocular video is an im-

portant scene understanding capability for applications such

as surveillance, content-based video search, and human-

computer interaction.

Past research in this domain can be roughly classified

into two approaches: one that extracts a global feature set

from a video [1, 9, 18, 27], and aims to assign a single la-

bel to the entire video, using these features. This paradigm

obviously requires that the observed action does not change

during the duration of the video.

The other approach extracts a feature set locally for a

frame (or a small set of frames), and assigns an individual

action label to each frame [3, 10, 17, 19]. If required, a

global label for the sequence is usually obtained by simple

voting mechanisms. The features are obtained by analysing

a temporal window centred at the current frame, therefore

the classification lags behind the observation, because a

frame can only be classified after all frames in the temporal

window have been observed.

Both approaches have achieved remarkable results, but

human recognition performance suggests that they might

bee using more information than required: we can correctly

recognise actions from very short sequences (often even

from single frames), and without temporal look-ahead.

1.1. Contributions

The question we seek to answer in this paper is how

many frames are required to perform action recognition?

As far as we know, this is an unresolved issue, which has

not yet been systematically investigated (in fact, there is a

related discussion in the cognitive sciences, see section 3).

However, its answer has wide-ranging implications. There-

fore, our goal is to establish a baseline, how long we need to

observe a basic action, such as walking or jumping, in order

to recognise it, if we try to use all available information.

We will operate not on entire video sequences, but on

very short sub-sequences, which we call snippets. In the

extreme case a snippet can have length 1 frame, but we will

also look at snippets of up to 10 frames. Note that in many

cases a single frame is sufficient, as can be easily verified by

looking at the images displayed in Figure 1. The main mes-

sage of our study is that very short snippets (1-7 frames),

are sufficient for basic action recognition, with rapidly di-

minishing returns, as more frames are added.

This finding has important implications for practical sce-

narios, where decisions have to be taken online. Short snip-

pets greatly alleviate the problem of temporal segmentation:

if a person’s behaviour changes from one action to another,

sequences containing the transition are potentially problem-

atic, because they violate the assumption that a single label

can be applied. When using short snippets, only few such

sequences exist.

Figure 1. Examples of actions from databases WEIZMANN (top)

and KTH (bottom). Note that even a single frame is often sufficient

to recognise what a person is doing.
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Furthermore, short snippets enable shorter processing

times and rapid attention switching, in order to deal with

further subjects or additional visual tasks, before they be-

come obsolete.

We present a causal action recognition method which

uses only information from few past frames. The method

densely extracts form (local edges) and motion (optic flow)

from a snippet, and separately compares the form and mo-

tion channels to learnt templates. The similarity scores are

concatenated to a single feature vector and passed on to a

classifier.

As far as we know, this is also the first practical im-

plementation of a “biologically inspired” system, which is

complete in the sense that it has a form as well as a motion

pathway. The strategy to process form and motion inde-

pendently, but with a similar sequence of operations, was

inspired by the seminal work of Giese and Poggio [16]. In

their paper, they describe the only other simulation of both

pathways, however their proof-of-concept implementation

is only designed for simple, schematic stimuli.

In detailed experiments on two standard data sets, we

evaluate the effect of changing the snippet length, and the

influence of form and motion features. We also compare

to other methods, both at the level of snippets and whole

sequences, and obtain results on par with or better than the

state of the art.

1.2. Defining “Action”

In the previous section, we have used the term basic ac-

tion, to describe the units, into which human behaviour shall

be classified. The reason for this terminology is that there

is another unresolved issue looming behind our question,

namely the definition of what constitutes an action. Ob-

viously, the amount of information which needs to be ac-

cumulated, and also the number of relevant classes for a

given application, both depend on the complexity of the ac-

tion (e.g., recognising a high-jump takes longer than sep-

arately recognising the three components running, jump-

ing, and falling on the back). This leads to the problem

of action decomposition: can, and should, complex actions

be decomposed into sequences of simpler “atomic actions”,

which again can be recognised quickly?

The decomposition problem, which appears to be

application-dependent, is not the topic of this study. We

assume that a relatively small set of basic actions, such as

walking or waving, form the set of possible action labels,

and that the labels are relatively unambiguous (the most

subtle difference we take into account is between running

and jogging). These assumptions have been made implic-

itly in most of the published work on action recognition, as

can be seen from the standard databases (the ones also used

in this paper).

1.3. Action Snippets

The aim of the present work is not only to introduce yet

another action classification method, but also to systemati-

cally investigate, how much information needs to be accu-

mulated over time to enable action classification. In a setup

with discrete time steps, this boils down to the question,

how many frames are required.

Very short snippets provide less data to base a decision

on, hence it becomes important to extract as much informa-

tion as possible. We will therefore collect both shape infor-

mation from every frame, and optic flow. In real video with

discrete time steps, optic flow has to be computed between

neighbouring frames. By convention, we will regard the op-

tic flow computed between consecutive frames (t−1) and t
as a feature of frame t. Hence, when we refer to a snippet of

length 1, or a single frame, this flow field is included. In the

same way, a snippet of length, say, L= 7 comprises seven

images and seven flow fields (not six).

As will be demonstrated in section 4, using both shape

and flow yields a marked improvement in recognition per-

formance, compared to shape alone, or flow alone.

2. Related Work

Early attempts at human action recognition used the

tracks of a person’s body parts as input features [11, 22, 28].

This representation is an obvious choice, because physically

the articulated motion is what defines an action. However,

it depends on correct tracking of either an articulated hu-

man model, or many separate regions, both difficult tasks,

especially in monocular video.

Carlsson and Sullivan cast action recognition as a shape

matching problem [4]. An action is represented by a sin-

gle unique pose, and recognition is performed by compar-

ing poses, described by edge maps. This demonstrated the

importance of shape, while later research focused on the

dynamic aspect of human actions. In this work we will use

both pieces of information.

A drawback of early approaches was that tracking, as

well as contour detection, become unreliable under realis-

tic imaging conditions. Following a general trend in com-

puter vision, researchers therefore moved away from the

high-level representation of the human body, and replaced

it by a collection of low-level features, which are less com-

pact and less intuitive, but can be extracted more reliably.

Efros et al. [10] apply optic flow filters to a window cen-

tred at the human, and use the filter responses as input to

an exemplar-based classifier. Their method is probably the

first one to aim for classification at the frame level from

flow alone; however, although they individually label each

frame, a large temporal window (up to 25 past and 25 future

frames) is employed to estimate its flow.

Jhuang et al. [17] have extended the static scene recog-
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Figure 2. Overview of the recognition system. From a snippet, features are extracted in two parallel processing streams. In the form

pathway (top), Gabor filters at multiple orientations and scales are applied. The motion pathway (bottom) extracts optic flow at different

scales, directions, and speeds. In both pathways, the filter responses are MAX-pooled, and compared to a set of learnt templates. The

similarities from both pathways are concatenated to a feature vector, and classified with a bank of linear classifiers.

nition model [25], by replacing form features with motion

features. Like [10], they extract dense local motion infor-

mation with a set of flow filters. The responses are pooled

locally, and converted to higher-level responses by compar-

ing to more complex templates learnt from examples. These

are pooled again, and fed into a discriminative classifier.

This approach is the most similar in spirit to our work.

Niebles and Li [19] also classify at the frame level. They

represent a frame by sparse sets of local appearance descrip-

tors extracted at spatial interest points, and a similar set of

local motion descriptors extracted from a sub-sequence cen-

tred at the current frame, with the method of [9]. A constel-

lation model for the features is learnt, and used to train a

discriminative classifier.

Laptev and Lindeberg [18] represent an entire video se-

quence as a sparse set of spatio-temporal interest points,

which are found with a 3D version of the Harris corner de-

tector. Different descriptors are proposed for the space-time

window around an interest point: histograms of gradients,

histograms of optic flow, PCA projection of gradients, or

PCA projection of optic flow. Classification is done at se-

quence level, either by nearest-neighbour matching [18], or

with a SVM [24].

Dollar et al. [9] present a different spatio-temporal in-

terest point detector based on 1D Gabor filters, essentially

searching for regions with sudden, or periodic, intensity

changes in time. Optic flow is computed as descriptor for

each 3D interest region. The set of descriptors is quantised

to a fixed set of 3D visual words, and a new sequence is

classified by nearest-neighbour matching of its histogram

of visual words. The method was extended to unsupervised

learning with pLSA by [20].

Blank et al. [3] extract the human silhouette from each

frame, and represent the sequence as a set of “space-time

shapes” defined by (overlapping) 10-frame sequences of sil-

houettes. Local properties of such a 3D shape are extracted

from the solution of its Poisson equation, and classified with

an exemplar-based nearest-neighbour classifier.

Wang and Suter also use silhouettes to classify at the

sequence level [27]. They extract features from the se-

quence of silhouettes by non-linear dimensionality reduc-

tion with Kernel PCA, and train a Factorial Conditional

Random Field to classify new sequences.

Ali et al. [1] return to an articulated model, but follow

only the main joints to make tracking more robust. Skele-

tonization is applied to silhouettes to obtain 2D stick fig-

ures, and their main joints are connected to joint trajecto-

ries. A sequence is represented by a set of chaotic invariants

of these trajectories, and classified based on exemplars with

a kNN-classifier.

3. Recognition Method

In order to make the best use of the available informa-

tion, we explicitly extract both the object shape in each

frame, and the optic flow between frames. Dense form

(shape) and motion (flow) features are processed in what

is sometimes called a “biologically inspired” manner, due

to the similarity with the ventral and dorsal pathways of the

visual cortex [12, 16]: the two types of information are pro-



cessed separately to yield two sets of high-level features,

which are then merged before the final classification stage.

Figure 2 illustrates the complete processing pipeline.

Using both types of features for motion perception is in

line with the predominant view in neuro-science, e.g. [5],

but some researchers are of the opinion, that only form in-

formation from a number of key-frames is required, e.g. [2].

The key-frame paradigm has also been explored in machine

vision [4]. Our experiments support the first view: using

form and motion features consistently improves recognition

performance, at least with our system architecture.

3.1. Input Data

Similar to [10, 17], we use a primitive attention mecha-

nism: our input is a sequence of fixed-size image windows,

centred at the person of interest. No foreground segmenta-

tion (silhouette) is required. Note that there is a subtle dif-

ference to [10]: they are interested in windows, for which

the background can be considered uniform, so that only the

relative articulations of the body are extracted. Although we

(and also [17]) use a person-centred coordinate frame, too,

our method does “see” a persons motion through the global

image coordinate frame, by observing the inverse flow of

the background within the stabilised window.

Compared to silhouette-based approaches, bounding

boxes are more general. In particular, reliable silhouette

extraction in practice requires a static background. On the

contrary, bounding boxes are naturally obtained from per-

son detectors based on sliding windows, e.g. [7], and/or

trackers based on rectangular windows, e.g. [6].

3.2. Feature Extraction

Form features. Local shape is extracted from each

frame separately. As descriptor, we use the responses of

orientation filters, computed densely at every pixel. Specif-

ically, we use a bank of log-Gabor filters, which allow a

better coverage of the spectrum than standard (linear) Ga-

bor filters with fewer scales [13]. The response g at position

(x,y) and spatial frequency w is

gw(x, y) =
1

µ
e−

log(w(x,y)/µ)
2 log σ , (1)

with µ the preferred frequency of the filter, and σ a con-

stant, which is set to achieve even coverage of the spectrum.

The filter gain is proportional to the frequency, to compen-

sate for the frequency spectrum of natural images, and give

all scales equal importance. Our filter bank has 6 equally

spaced orientations φ ∈ {0◦, 30◦, 60◦, 90◦, 120◦, 150◦},

and 4 scales µ ∈ {2, 4, 8, 16} pixels. Only the magnitude

‖gw(x, y)‖ is used as shape descriptor, while the phase is

discarded.

To increase robustness to translations and obtain a more

compact representation, each orientation map is down-

sampled by MAX-pooling (sometimes called “winner-takes-

all”). This operation was originally introduced in [14, 23],

and has been shown to yield better translation invariance

and feature preservation than linear averaging [14, 25]. The

response at location (x, y) is given by

h(x, y) = max
(i,j)∈G(x,y)

[

g(i, j)
]

, (2)

where G(x, y) denotes the neighbourhood (receptive field)

of the pixel (x, y). We sample the original maps at every 5th

pixel, with a window of size (9×9). This size – determined

experimentally – agrees with the findings of [17, 26]. Other

than these works, we currently do not pool over scales.

In a last step, the orientation patterns are compared to a

set of complex form templates learnt from examples (sim-

ilar to [15, 17]), to yield a vector qf of similarity scores.

To learn an informative set of templates, the pooled orien-

tation maps from training snippets are rearranged into one

vector h per snippet, and simple linear PCA is applied. A

fixed number of basis vectors {bi, i = 1 . . . N} are directly

viewed as templates for relevant visual features.

To compute the similarity with the templates, the incom-

ing vector h from a new image is scaled to norm 1 (a sim-

ple form of normalising the signal “energy”). In this way

its projection qf,i = 〈h,bi〉 = cos(∠bi

h
) onto template bi

can be directly interpreted as a measure of similarity, where

1 means that the two are perfectly equal, and 0 means that

they are maximally dissimilar. In our implementation, we

use 500 templates (covering ≈40-50 % of the spectral en-

ergy, depending on the data set).

Note that when a snippet is more than one frame long,

the features from all its frames are re-arranged into one sin-

gle vector h, implicitly using the frame ordering. A snippet

of length L is therefore more informative than an unordered

bag of L frames.

Motion features. Dense optic flow at every frame

is computed by direct template matching to the previous

frame, using the L1-norm (sum of absolute differences).

Although optic flow is notoriously noisy, we prefer not to

apply any smoothing, for the following reasons: spatial

smoothing blurs the flow field at discontinuities, where the

motion information is important, especially if no figure-

ground segmentation is available; smoothing over time

is incompatible with the concept of independent snippets

without temporal look-ahead.

To obtain a representation consistent with the log-Gabor

maps for form, the optic flow is converted to a set of re-

sponse maps for different “flow filters”, each with differ-

ent preferred flow direction and speed. A filter’s response

is maximal, if the direction and speed at a certain location

exactly match the preferred values, and decreases linearly,

as the direction and/or speed changes. The filter responses

are computed at 2 spatial scales (window size ψ ∈ {8, 16}
pixels), 4 equally spaced directions (half-wave rectified,



φ ∈ {0◦, 90◦, 180◦, 270◦}), and 3 scale-dependent veloc-

ities (0, ψ/4, ψ/2).

The rest of the motion pathway works similarly to the

form pathway, i.e. local flow maps are MAX-pooled, and

all maps from a snippet are converted to a vector qm of

similarity values, by comparing to a set of complex flow

templates learnt with PCA. Note that although we use un-

smoothed optic flow as low-level feature, the templates are

smooth due to the built-in denoising capabilities of PCA.

The same parameters are used in the form and flow path-

ways (down-sampling factor F = 5, pooling size W = 9,

number of templates T =500).

3.3. Classifier

The feature vectors for form and motion are merged by

simple concatenation, q = [(1−λ)qf , λqm], resulting in

a vector of dimension 1000. The optimal weighting fac-

tor λ ∈ [0..1] has been determined experimentally, and has

proved to be stable across different data sets and snippet

lengths, see section 4.

As classifier for K action classes, we train a bank of K
linear one-vs-all SVMs, each with weights W =(K−1) for

positive samples, and W = 1 for negative ones, to account

for the uneven sample numbers. We purposely keep the

classification part simple. One alternative would be to use

a non-linear kernel for the SVM. However, this yield very

little, if any, improvement (probably due to the high dimen-

sion of the data), while introducing additional parameters.

Alternative multi-class extensions are the all-pairs strategy,

or bitwise learning of error-correcting output codes [8]. In

practice, all three strategies give similar results, with the

one-vs-all method needing the smallest number of classi-

fiers. Note also that it has the most obvious interpretation

in terms of biological vision systems, with each binary clas-

sifier corresponding to a neural unit, which is activated by

actions of a certain class.

3.4. Relation to existing methods

Since recent methods for action recognition, including

the present one, are quite related, this section analyses some

important similarities and differences.

In terms of the required preprocessing, our method uses

a very crude attention model, namely a fixed-size bounding

box centred at the person, like [10, 17]. These three meth-

ods are less demanding than [1, 3, 27], which require a seg-

mented silhouette, but more demanding than interest-point

based methods [18, 19], which at least conceptually oper-

ate on the whole image – although in practice the amount

of clutter must be limited, to ensure a significant number of

interest points fall onto the person. No method has yet been

tested in cluttered environments with many distractors.

In terms of features used, [10, 17] extract only optic flow,

[3, 27] only silhouette shape, and [18] have used either form

or motion, while our work, as well as [19], extract both cues

independently.

More generally, our method belongs to a school, which

favours densely sampled features over sparse interest points

for recognition problems, e.g. [7, 21]. It can also be con-

sidered a biologically inspired model, with parallels to the

“standard model” of the visual cortex [23]: a layer of simple

neurons sensitive to local orientation and local flow, a layer

of pooling neurons with larger receptive fields to increase

invariance and reduce the amount of data, a layer of neu-

rons, which each compare the incoming signal to a learnt

complex pattern, and a small layer of category-sensitive

neurons, each firing when presented with features of a cer-

tain action class.

The other model, which intentionally follows a biologi-

cally inspired architecture [17], currently only implements

the motion pathway. Other than our model, it uses some

temporal look-ahead to compute motion features. Further-

more, its complex templates are smaller (ours have the same

size as the image), and are learnt by random sampling, while

we apply PCA to find a template set, which is in some sense

optimal, albeit less biologically plausible.

4. Experimental Evaluation

We use two data sets for our evaluation, which have be-

come the de-facto standards for human action recognition.

The WEIZMANN set was originally recorded for [3], and

consists of 9 subjects performing a set of 9 different ac-

tions: bending down, jumping jack, jumping, jumping in

place, galloping sideways, running, walking, waving one

hand, waving both hands. To avoid evaluation biases due to

varying sequence length, we trim all sequences to 28 frames

(the length of the shortest sequence). Due to the periodic

nature of the actions, this gives sufficient training data, and

makes sure all actions have the same influence on overall re-

sults. All evaluations on this data set were done with leave-

one-out cross-validation: 8 subjects are used for training,

the remaining one for testing; the procedure is repeated for

all 9 permutations, and the results are averaged.

The KTH set was recorded for [18, 24], and consists of

25 subjects performing 6 different actions: boxing, hand-

clapping, jogging, running, walking, hand-waving. The

complete set of actions was recorded under 4 different con-

ditions: outdoors (S1), outdoors with scale variations (S2),

outdoors with different clothes (S3), and indoors (S4). Jog-

ging, running, and walking are performed multiple times in

each video, separated by large numbers of frames, where

the subject is outside the field of view. These parts are ob-

viously meaningless in an evaluation at snippet level, so we

use only one pass of each action. Again, all sequences are

trimmed to the length of the shortest, in this case 18 frames.

All evaluations were done with 5-fold cross-validation: the

data is split into 5 folds of 5 subjects each, 4 folds are used
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BLANK [3] 99.6 % 10 / 10

NIEBLES [19] 55.0 % 1 / 12

JHUANG [17] 93.8 % 1 / 9

SNIPPET 1 93.5 % 1 / 1

SNIPPET 3 96.6 % 3 / 3

SNIPPET 7 98.5 % 7 / 7

SNIPPET 10 99.6 % 10 / 10

Table 1. Recognition results at snippet level Left, Middle: Confusion matrices for L = 1 (form and motion at a single frame); the main

confusions are walking/jogging, and running/jogging. Right: Comparison with other methods (WEIZMANN database). The last column

indicates the number of frames in a snippet (the unit for classification), and the number of frames used to compute features.

for training, 1 for testing. The results are averaged over the

5 permutations. In the literature, KTH has been treated ei-

ther as one large set with strong intra-subject variations, or

as four independent scenarios, which are trained and tested

separately (i.e., four visually dissimilar databases, which

share the same classes). We run both alternatives.

To account for the symmetry of human actions, we also

use all sequences mirrored along the vertical axis, for both

training and testing (in practice, the extracted feature maps

are mirrored to save computations). We always use all pos-

sible (overlapping) snippets of a certain length as data, both

for training and testing (so for example a video of 27 frames

yields 23 snippets of length L=5). The parameter settings

given in the previous section were kept unchanged for all

reported experiments.

4.1. Contributions of form and motion features

A main strength of the presented approach, compared to

other action recognition methods, is that it exploits dense

form and motion features. A natural question therefore is,

whether this is necessary, and how to combine the two. We

have run experiments with our system, in which we have

changed the relative weight λ of the two cues, or turned

one of them off completely. The combination of form and

motion consistently outperforms both form alone and mo-

tion alone, in all experiments we have conducted. Further-

more, the optimal relative weight turned out to be approxi-

mately the same across different data sets, and for snippets

of different length (for our system λ=0.7, but being a scale

normalisation between two independently computed feature

sets, the value depends on both the implementation and the

parameters of feature extraction).

It is also interesting to note that for some data sets, form

alone is a better cue than flow alone, while for others it is

the other way round. This makes it unlikely that a strong

bias towards one or the other pathway is introduced by our

specific implementation, and supports the claim that explic-

itly extracting both cues increases recognition performance.

See Figure 3 for details.

4.2. How many frames?

Recognition results of our method are shown in Figure 4,

and a comparison to other recognition methods operating

on single frames or snippets is given in Table 1. Note that
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Figure 4. Performance for different snippet lengths. Left: WEIZMANN database. Even L=1 achieves 93.5% correct recognitions, snippets

of ≥3 frames yield essentially perfect recognition (<1 wrong snippet per sequence). Middle: KTH by scenario. Each scenario is trained

and tested separately. Outdoor scenarios are more difficult than indoor (S4), because of extreme lighting variations. S2 performs worst,

because we have no dedicated mechanism for scale invariance. Snippets of >5 frames bring very little improvement. Right: Per-class

recognition rates for increasing snippet length L (average over all KTH scenarios). Longer snippets slightly increase performance, but the

required length is not class-specific: the same classes are “easy”, respectively “difficult”, independent of the snippet length.

there are two groups using different paradigms, which can-

not be directly compared. Our method, as well as [3], looks

at snippets as atomic units, and assigns a label to a snip-

pet. The methods [17, 19] use a temporal window to com-

pute features, but label only the central frame of the win-

dow. So for example, BLANK assigns a label to each snippet

of 10 frames, using features computed on those 10 frames,

whereas JHUANG assigns a label to every frame, using fea-

tures computed in a 9-frame window. The first approach has

the advantage that it does not require temporal look-ahead.

Note especially the high recognition rates even at snippet

length L = 1 frame. The confusions, which do occur,

make sense – miss-classifications happen mainly between

similar classes, such as jogging–walking, or handclapping–

handwaving. See confusion matrices in Table 1.

Furthermore, we compare recognition with snippets to

the available recognition results at sequence level, see Ta-

ble 2. At L = 7 frames (less than 0.3 seconds of video),

our results are comparable to the best ones obtained with

full video sequences – in several cases, they are even bet-

ter. The comparison confirms the message that short action

snippets with a handful of frames are almost as informative

as the entire video.

SNIPPET 1 SNIPPET 7 entire seq.

KTH all-in-one 88.0 % 90.9 % 81.5 % [20]

KTH S1 90.9 % 93.0 % 96.0 % [17]

KTH S2 78.1 % 81.1 % 86.1 % [17]

KTH S3 88.5 % 92.1 % 89.8 % [17]

KTH S4 92.2 % 96.7 % 94.8 % [17]

WEIZMANN 93.5 % 98.6 % 100.0 % [3]

Table 2. Comparison of results using snippets with best published

results using whole sequences. For KTH S2, note that other than

our system, [17] has a mechanism for scale invariance.

4.3. Comparison at sequence level

Most results in the literature are reported at the level of

correctly classified sequences. To put our method in con-

text, we therefore also compare it to the state of the art at

sequence level. Like other frame-based methods, we simply

run our algorithm for all frames (snippets of lengthL=1) of

a sequence, and convert their individual labels to a sequence

label through majority voting (a simplistic “bag-of-frames”

model). The results are given in Table 3.

The comparison should be taken with a grain of salt: in

the action recognition literature, there is no established test-

ing protocol, and different researchers have used varying

sizes of training and test sets, different ways of averaging

over runs, etc. We always quote the best results someone

has achieved. Still, the comparison remains indicative.

5. Conclusion

We have presented a method for human action recog-

nition, which uses both form and motion features sam-

pled densely over the image plane. The method was em-

KTH all-in-one WEIZMANN

bag-of-SNIP 1 92.7 % bag-of-SNIP 1 100.0 %

JHUANG
† [17] 91.7 % BLANK [3] 100.0 %

NIEBLES [20] 81.5 % JHUANG [17] 98.8 %

DOLLÁR [9] 81.2 % WANG [27] 97.8 %

SCHÜLDT [24] 71.7 % ALI [1] 92.6 %
†Average of scenarios s1–s4,

trained and tested separately.

DOLLÁR [17] 86.7 %

NIEBLES [19] 72.8 %

Table 3. Comparison of recognition results at sequence level.

Although our method was not designed for this application, it

achieves top performance on both data sets, with a simple “bag-

of-snippets”. This result demonstrates the power of using both

form and motion information.



ployed to experimentally investigate the question, how long

video snippets need to be, to serve as basic units for action

recognition. In a detailed experimental evaluation, we have

confirmed the advantage of explicitly extracting both form

and motion cues. Furthermore, it has been shown that the

method performs well on different databases without any

parameter changes, and that it matches the state of the art,

using fewer frames and no look-ahead. A main message

of the study is that basic actions can be recognised well

even with very short snippets of 1-7 frames (at frame rate

25 Hertz), as anticipated from the observation of biological

vision systems.

A limitation of our current system is that it does not in-

corporate mechanisms for invariance to scale, rotation, and

viewpoint (although it successfully handles scale changes

up to a factor of ≈ 2, and viewpoint changes up to ≈ 30◦,

which are present in the KTH database). Furthermore, it

remains to be investigated, how classification errors are dis-

tributed within an action class, or in other words, which

snippets within a motion sequence are particularly suitable

(or unsuitable) as “key snippets” to recognise the action.

An open research question, which needs to be addressed

before action recognition can be applied to realistic prob-

lems, is what the right “basic units” of human action are,

and how complex actions – and ultimately unscripted hu-

man behaviour – can be represented as sequential or hierar-

chical combinations of such basic units.
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[24] C. Schüldt, I. Laptev, and B. Caputo. Recognizing human

actions: a local SVM approach. In Proc ICPR, 2004.

[25] T. Serre, L. Wolf, S. Bileschi, M. Riesenhuber, and T. Pog-

gio. Object recognition with cortex-like mechanisms. IEEE

T Pattern Anal, 29(3):411–426, 2007.

[26] T. Serre, L. Wolf, and T. Poggio. Object recognition with

features inspired by visual cortex. In Proc CVPR, 2005.

[27] L. Wang and D. Suter. Recognizing human activities from

silhouettes: motion subspace and factorial discriminative

graphical model. In Proc CVPR, 2007.

[28] Y. Yacoob and M. J. Black. Parameterized modeling and

recognition of activities. Comput Vis Image Und, 72(2):232–

247, 1999.


