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Abstract

Many applications in computer vision and pattern recog-
nition involve drawing inferences on certain manifold-
valued parameters. In order to develop accurate inference
algorithms on these manifolds we need to a) understand the
geometric structure of these manifolds b) derive appropri-
ate distance measures and c) develop probability distribu-
tion functions (pdf) and estimation techniques that are con-
sistent with the geometric structure of these manifolds. In
this paper, we consider two related manifolds - the Stiefel
manifold and the Grassmann manifold, which arise natu-
rally in several vision applications such as spatio-temporal
modeling, affine invariant shape analysis, image matching
and learning theory. We show how accurate statistical char-
acterization that reflects the geometry of these manifolds
allows us to design efficient algorithms that compare fa-
vorably to the state of the art in these very different ap-
plications. In particular, we describe appropriate distance
measures and parametric and non-parametric density esti-
mators on these manifolds. These methods are then used
to learn class conditional densities for applications such as
activity recognition, video based face recognition and shape
classification.

1. Introduction

Many applications in computer vision such as dynamic
textures [24, 9], human activity modeling and recognition
[7, 30], video based face recognition [2], shape analysis
[14, 20] involve learning and recognition of patterns from
exemplars which lie on certain manifolds. Given a database
of examples and a query, the following two questions are
usually addressed – a) what is the ‘closest’ example to the
query in the database ? b) what is the ‘most probable’ class
to which the query belongs ? A systematic solution to these
problems involves a study of the manifold on which the
data lies. The answer to the first question involves study of
the geometric properties of the manifold, which then leads
to appropriate definitions of distance metrics on the man-

ifold (geodesics etc). The answer to the second question
involves statistical modeling of inter- and intra-class varia-
tions on the manifold. The solution to the second problem
goes far beyond simply defining distance metrics. Given
several samples per class, one can derive efficient proba-
bilistic models on the manifold by exploiting the class en-
semble populations that are also consistent with the geo-
metric structure of these manifolds. This offers significant
improvements in performance over, say, a distance-based
nearest-neighbor classifier. In addition to this, statistical
models also provide us with generative capabilities via ap-
propriate sampling strategies.

In this paper, we concern ourselves with two related
manifolds that often appear in several applications in com-
puter vision – the Stiefel Manifold and the Grassmann Man-
ifold. The Stiefel manifold is the space of k orthonormal
vectors in Rm, represented by an m × k matrix Y , such
that Y T Y = Ik. The Grassmann manifold is the space of k
dimensional subspaces in Rm. While a point on the Grass-
mann manifold represents a subspace, a point on the Stiefel
manifold also specifies exactly what frame (choice of basis
vectors) is used in order to specify the subspace. The study
of these manifolds has important consequences for applica-
tions such as dynamic textures [24, 9], human activity mod-
eling and recognition [7, 30], video based face recognition
[2] and shape analysis [14, 20] where data naturally lies ei-
ther on the Stiefel or the Grassmann manifold.

The geometric properties of the Stiefel and Grassmann
manifolds are well understood and we refer the interested
reader to [13, 1] for specific details. The scope of this paper
is not restricted to the differential geometry of these mani-
folds. Instead, we are interested in statistical modeling and
inference tools on these manifolds and their applicability
in vision applications. While a meaningful distance met-
ric is an important requirement, statistical methods (such
as learning probability density functions) provide far richer
tools for pattern classification problems. In this context, we
describe the Procrustes distance measures on the Stiefel and
the Grassmann manifold [10]. Further, we describe para-
metric and non-parametric kernel based density functions
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on these manifolds and describe learning algorithms for es-
timating the distribution from data.

Prior Work: Statistical methods on manifolds have
been studied for several years in the statistics community
[5, 21, 22]. A compilation of research results on statisti-
cal analysis on the Stiefel and Grassmann manifolds can
be found in [10]. Their utility in practical applications has
not yet been fully explored. Theoretical foundations for
manifolds based shape analysis were described in [14, 20].
The Grassmann manifold structure of the affine shape space
is exploited in [4] to perform affine invariant clustering of
shapes. [26] exploited the geometry of the Grassmann man-
ifold for subspace tracking in array signal processing ap-
plications. Statistical learning of shape classes using non-
linear shape manifolds was presented in [27] where statis-
tics are learnt on the manifold’s tangent space. Classifica-
tion on Riemannian manifolds have also been explored in
the vision community such as in [28, 29].

Organization of the paper: In section 2, we present
motivating examples where Stiefel and Grassmann mani-
folds arise naturally in vision applications. In section 3,
a brief review of statistical modeling theory on the Stiefel
and Grassmann manifolds is presented. In section 4, we
demonstrate the strength of the framework on several ex-
ample applications including view invariant activity recog-
nition, video based face recognition, shape matching and
retrieval. Finally, section 5 presents some concluding re-
marks.

2. Motivating Examples

1. Spatio-temporal dynamical models: A wide va-
riety of spatio-temporal data in computer vision are
modeled as realizations of dynamical models. Exam-
ples include Dynamic textures [24], human joint an-
gle trajectories [7] and silhouette sequences [30]. One
popular dynamical model for such time-series data
is the autoregressive and moving average (ARMA)
model. For the ARMA model closed form solutions
for learning the model parameters have been proposed
in [19, 24] and are widely used. The parameters of the
model are known to lie on the Stiefel manifold as noted
in [23]. Given several instances, current approaches
involve computing the distance between them using
well-known distance measures [11] followed by near-
est neighbor classification. Instead, given several in-
stances of each class we can learn compact class con-
ditional probability density functions over the parame-
ter space – the Stiefel manifold in this case. Maximum
likelihood and maximum a posteriori estimation can
then be performed in order to solve problems such as
video classification, clustering and retrieval.

2. Shape Analysis: Representations and recognition

of shapes is a well understood field [15, 12]. The shape
observed in an image is a perspective projection of the
original shape. In order to account for this, shape the-
ory studies the equivalent class of all configurations
that can be obtained by a specific class of transforma-
tion (e.g. linear, affine, projective) on a single basis
shape. It can be shown that affine and linear shape
spaces for specific configurations can be identified by
points on the Grassmann manifold [20]. Given several
exemplar shapes belonging to a few known classes, we
are interested in estimating a probability distribution
over the shape space for each of the classes. These can
then be used for problems such as retrieval, classifi-
cation or even to learn a generative model for shapes.
The theory developed here may also impact several re-
lated problems such as video stabilization and image
registration which amounts to finding the best warping
based on mean affine shapes of a few landmark points.

3. On-line Visual Learning via Subspace Tracking:
Applications involving dynamic environments and au-
tonomous agents such as a mobile robot navigating
through an unknown space cannot be represented by
static models. In such applications it is important to
adapt models, that have been learnt offline, accord-
ing to new observations in an online fashion. One ap-
proach is to perform incremental PCA to dynamically
learn a better representational model as the appearance
of the target dynamically changes as in [3]. Incremen-
tal PCA has also been used to recognize abnormalities
in the visual field of a robot as in [18]. In an unre-
lated domain, the theory of subspace tracking on the
Grassmann manifold [26] has been developed for ar-
ray signal processing applications. Since PCA basis
vectors represent a subspace which is identified by a
point on the Grassmann manifold, subspace tracking
lends itself readily to statistical analysis for online vi-
sual learning applications.

3. Statistics on Manifolds

In this section, we discuss the problem of pattern recog-
nition on Stiefel and Grassmann manifolds. Specifically,
parametric and non-parametric distributions and parame-
ter estimation are reviewed. Procrustes analysis and cor-
responding distance metrics on the manifolds is also pre-
sented. The discussion will focus mainly on the Stiefel
manifold. Similar results extend to the Grassmann mani-
fold [10].

3.1. Definitions

The Stiefel Manifold Vk,m [10]: The Stiefel manifold
Vk,m is the space whose points are k-frames in Rm, where
a set of k orthonormal vectors in Rm is called a k-frame in



Rm(k <= m). Each point on the Stiefel manifold Vk,m can
be represented as a m×k matrices X such that XT X = Ik,
where Ik is the k × k identity matrix.

The Grassmann Manifold Gk,m−k [10]: The Grass-
mann manifold Gk,m−k is the space whose points are k-
planes or k-dimensional hyperplanes (containing the origin)
in Rm. An equivalent definition of the Grassmann manifold
is as follows. To each k-plane ν in Gk,m−k corresponds a
unique m × m orthogonal projection matrix P idempotent
of rank k onto ν. If the columns of an m×k matrix Y spans
ν, then, Y Y T = P .

For the case of k = 1, the Stiefel manifold reduces to the
unit hypersphere in m-dimensions. Each point on the man-
ifold represents a vector of unit length. Similarly, for k = 1
the Grassmann manifold reduces to the real projective space
which consists of all lines through the origin.

3.2. Statistical Modeling

Two of the most studied functional probability density
forms are the Matrix Langevin and Matrix Bingham distri-
butions.

The Matrix Langevin Distribution [10]: The matrix
Langevin Distribution on Vk,m, denoted by L(m, k;F ) is
given by

1

0H1( 1
2m; 1

4FT F )
exp(tr(FT X)) (1)

where tr() is the matrix trace. F is an m × k matrix which
represents the parameters of the distribution. The normaliz-
ing factor 0H1() is a hyper-geometric function. The matrix
Langevin distribution is of the exponential form. It reduces
to the uniform distribution on Vk,m for F = 0.

The Matrix Bingham Distribution [10]: The matrix
Bingham Distribution on Vk,m, denoted by B(m, k;A) is
given by

1

1H1( 1
2k; 1

2m;A)
exp(tr(XT AX)) (2)

where tr() is the matrix trace. A is an m × m symmetric
matrix. The Bingham distribution is closely related to the
matrix normal distribution [10] and reduces to the uniform
distribution on Vk,m for A = 0.

Parameter Estimation In pattern classification prob-
lems, one is interested in estimating parameters of class
conditional distributions from sample populations for each
class. Let the singular value decomposition of the Langevin
distribution parameter F of known rank p <= k be given
by F = ΓΛΘT . Let (X1,X2, . . . Xn) be n samples from
the matrix Langevin distribution. Let X = 1

n

∑
Xi, be the

arithmetic mean of the samples. Let X = UXSXV T
X be the

reduced rank (rank = p) singular value decomposition of X .
The maximum likelihood estimators for Γ̂, Θ̂ are given by
Γ̂ = UX , Θ̂ = VX . Solving for the parameter Λ̂ is non-
trivial. For the large sample asymptotic case, i.e. when n is
large and m >> k, Λ̂ = mSX . We refer the reader to [10]
for detailed derivations and proofs for the asymptotic and
non-asymptotic cases. Corresponding results for the Bing-
ham distribution can also be found in [10].

3.3. Distance Metrics on Vk,m

The Stiefel and Grassmann manifolds are endowed with
a Riemannian structure that lends itself to computation of
distances between points on the manifold via geodesics
[13, 1]. Instead of geodesic computations, we adopt the Pro-
crustes distance metric proposed in [10] which is defined in
the ambient euclidean space. As will be discussed shortly,
this choice results in efficient computation of the distance
metrics and the class conditional probability density esti-
mators on the manifolds.

Procrustes representations and corresponding distance
metrics are defined to be invariant to specific classes of
transformations depending on the problem domain. Exam-
ples include Procrustes representations for landmark points
which are invariant to uniform scaling and rotation of the
shape [15]. We seek similar representations on the Stiefel
manifold. Two representations of points on the Stiefel man-
ifold can be defined [10].

• Representation Va: A point X on Vk,m is an m × k
matrix such that XT X = Ik.

• Representation Vb: A point X on Vk,m is identified
with an equivalence class of m × k matrices XR in
Rm,k, for R > 0. This is also called the Procrustes
representation of the Stiefel manifold.

Euclidean distance: The squared Euclidean distance
for two given matrices X1 and X2 on Vk,m based on repre-
sentation Va is given by

d2
Va

(X1,X2) = tr(X1 − X2)T (X1 − X2) (3)

= 2tr[Ik − 1
2
(XT

1 X2 + XT
2 X1)] (4)

Procrustes Distance: The squared Procrustes dis-
tance for two given matrices X1 and X2 on Vk,m, based
on representation Vb, is the smallest squared Euclidean dis-
tance between any pair of matrices in the corresponding
equivalence classes. Hence

d2
Vb

(X1,X2) = min
R>0

tr(X1 − X2R)T (X1 − X2R) (5)

= min
R>0

tr(RT R − 2XT
1 X2R + Ik) (6)



Lemma 3.3.1: Let A be a k × k constant matrix. Con-
sider the minimization of the quadratic function g(R) =
tr(RT R − 2AT R) of a matrix argument R.

1. If R varies over the space Rk,k of all k × k matrices,
the minimum is attained at R = A.

2. If R varies over the space of all k × k positive semi-
definite matrices, the minimum is attained at R = B+,
where B+ is the positive semi-definite part of B =
1
2 (A + AT ).

3. If R varies over the orthogonal group O(k), the min-
imum is attained at R = H1H

T
2 = A(AT A)−1/2,

where A = H1DHT
2 is the singular value decompo-

sition of A.

The proof of this follows easily using the method of La-
grange multipliers. We refer the reader to [10] for alternate
proofs. Thus, for the case of the first constraint, where R
varies over the space Rk,k of all k × k matrices, the dis-
tance is given by d2

Vb
(X1,X2) = tr(Ik − AT A), where

A = XT
1 X2. We have used this metric in all our experi-

ments. A closer inspection reveals that these distance mea-
sures are not symmetric in their arguments, hence are not
true distance metrics. This can be trivially solved by defin-
ing a new distance metric as the average of the distance
between the 2 points taken in both forward and backward
directions.

Note that the Procrustes representation defines an equiv-
alence class of points on the Stiefel manifold which are re-
lated by a right transformation. This directly relates to the
interpretation of the Grassmann manifold as the orbit-space
of the Stiefel manifold. All points on the Stiefel manifold
related by a right transformation map to a single point on the
Grassmann manifold. Thus, for comparing two subspaces
represented by two orthonormal matrices, say Y1 and Y2, we
compute their Procrustes distance on the Stiefel manifold.
We do not explicitly use the representation of points on the
Grassmann manifold as m × m idempotent projection ma-
trices (section 3.1). Instead, the corresponding Procrustes
representation on the Stiefel manifold is an equivalent one.
This representational choice also leads to methods that are
more computationally efficient as opposed to working with
large m × m matrices.

3.4. Kernel density functions

Kernel methods for estimating probability densities have
proved extremely popular in several pattern recognition
problems in recent years [6] driven by improvements in
computational power. Kernel methods provide a better fit
to the available data than simpler parametric forms.

Given several examples from a class (X1,X2, . . . , Xn)
on the manifold Vk,m, the class conditional density can be

estimated using an appropriate kernel function. We first as-
sume that an appropriate choice of a divergence or distance
measure on the manifold has been made (section 3.3). For
the Procrustes distance metric d2

Vb
the density estimate is

given by [10] as

f̂(X; M) =
1

n
C(M)

n∑

i=1

K[M−1/2(Ik − XT
i XXT Xi)M

−1/2]

(7)

where K(T ) is the kernel function, M is a k×k positive
definite matrix which plays the role of the kernel width or a
smoothing parameter. C(M) is a normalizing factor chosen
so that the estimated density integrates to unity. The matrix
valued kernel function K(T ) can be chosen in several ways.
We have used K(T ) = exp(−tr(T )) in all the experiments
reported in this paper.

4. Applications and Experiments

In this section we present a few application areas and ex-
periments that demonstrate the usefulness of statistical anal-
ysis on the manifolds.

4.1. Dynamical Models

Algorithmic Details: Linear dynamical systems rep-
resent a class of parametric models for time-series. For
high-dimensional time-series data (dynamic textures etc),
the most common approach is to first learn a lower-
dimensional embedding of the observations via PCA, and
learn temporal dynamics in the lower-dimensional space.
The PCA basis vectors form the model parameters for the
corresponding time-series. Thus, the estimated model pa-
rameters lie on the Stiefel Manifold. For comparison of two
models we use the Procrustes distance on the Stiefel mani-
fold. Moreover, we can also use kernel density methods to
learn class conditional distributions for the model parame-
ters.

4.1.1 ARMA model

A wide variety of time series data such as dynamic tex-
tures, human joint angle trajectories, shape sequences,
video based face recognition etc are frequently modeled
as autoregressive and moving average (ARMA) models
[24, 7, 30, 2]. The ARMA model equations are given by

f(t) = Cz(t) + w(t) w(t) ∼ N(0, R) (8)

z(t + 1) = Az(t) + v(t) v(t) ∼ N(0, Q) (9)

where, z is the hidden state vector, A the transition ma-
trix and C the measurement matrix. f represents the ob-
served features while w and v are noise components mod-
eled as normal with 0 mean and covariance R and Q respec-



tively. Closed form solutions for learning the model param-
eters (A,C) from the feature sequence (f1:T ) are widely
used in the computer vision community [24]. Let obser-
vations f(1), f(2), . . . f(τ), represent the features for the
time indices 1, 2, ...τ . Let [f(1), f(2), . . . f(τ)] = UΣV T

be the singular value decomposition of the data. Then
Ĉ = U, Â = ΣV T D1V (V T D2V )−1Σ−1, where D1 = [0
0;Iτ−1 0] and D2 = [Iτ−1 0;0 0].

The model parameters (A,C) learned as above do not
lie on a linear space. The transition matrix A is only con-
strained to be stable with eigenvalues inside the unit cir-
cle. The observation matrix C is constrained to be an or-
thonormal matrix. Thus, the C matrix lies on the Stiefel
manifold. For comparison of models, the most commonly
used distance metric is based on subspace angles between
columns spaces of the observability matrices [11] (denoted
as Subspace Angles). The extended observability matrix for
a model (A,C) is given by

OT
∞ =

[
CT , (CA)T , (CA2)T , . . . (CAn)T . . .

]
(10)

Thus, a linear dynamical system can be alternately iden-
tified as a point on the Grassmann manifold corresponding
to the column space of the observability matrix. In experi-
mental implementations, we approximate the extended ob-
servability matrix by the finite observability matrix as is
commonly done [23].

OT
n =

[
CT , (CA)T , (CA2)T , . . . (CAn)T

]
(11)

As already discussed in section 3.3, comparison of two
points on the Grassmann manifold can be performed by
using the Procrustes distance metric on the Stiefel mani-
fold (denoted as NN-Pro-Stiefel) without explicitly using
the projection matrix representation of points on the Grass-
mann manifold. Moreover, if several observation sequences
are available for each class, then one can learn the class con-
ditional distributions on the Stiefel manifold using kernel
density methods. Maximum likelihood classification can be
performed for each test instance using these class condi-
tional distributions (denoted as Kernel-Stiefel).

4.1.2 Activity Recognition

We performed a recognition experiment on the publicly
available INRIA dataset [31]. The dataset consists of 10
actors performing 11 actions, each action executed 3 times
at varying rates while freely changing orientation. We used
the view-invariant representation and features as proposed
in [31]. Specifically, we used the 16× 16× 16 circular FFT
features proposed by [31]. Each activity was modeled as
a linear dynamical system. Testing was performed using a
round-robin experiment where activity models were learnt

Activity Dim.
Red.
[31]
163

volume

Best
Dim.
Red.
[31]
643

volume

Subspace
Angles
163

volume

NN-Pro-
Stiefel
163

volume

Kernel-
Stiefel
163

volume

Check Watch 76.67 86.66 93.33 90 100
Cross Arms 100 100 100 96.67 100
Scratch Head 80 93.33 76.67 90 96.67
Sit Down 96.67 93.33 93.33 93.33 93.33
Get Up 93.33 93.33 86.67 80 96.67
Turn Around 96.67 96.67 100 100 100
Walk 100 100 100 100 100
Wave Hand 73.33 80 93.33 90 100
Punch 83.33 96.66 93.33 83.33 100
Kick 90 96.66 100 100 100
Pick Up 86.67 90 96.67 96.67 100
Average 88.78 93.33 93.93 92.72 98.78

Table 1. Comparison of view invariant recognition of activities in
the INRIA dataset using a) Best DimRed [31] on 16 × 16 × 16
features, b) Best Dim. Red. [31] on 64 × 64 × 64 features c)
Nearest Neighbor using Procrustes distance on the Stiefel mani-
fold (16× 16× 16 features), d) Maximum likelihood using kernel
density methods on the Stiefel manifold (16 × 16 × 16 features)

using 9 actors and tested on 1 actor. For the kernel method,
all available training instances per class were used to learn
a class-conditional kernel density as described in section
3.4. In table 1, we show the recognition results obtained
using four methods. The first column shows the results ob-
tained using dimensionality reduction approaches of [31] on
16 × 16 × 16 features. [31] reports recognition results us-
ing a variety of dimensionality reduction techniques (PCA,
LDA, Mahalanobis) and here we choose the row-wise best
performance from their experiments (denoted ‘Best Dim.
Red.’) which were obtained using 64 × 64 × 64 circular
FFT features. The third column corresponds to the method
of using subspace angles based distance between dynam-
ical models [11]. Column 4 shows the nearest-neighbor
classifier performance using Procrustes distance measure on
the Stiefel manifold (16 × 16 × 16 features). We see that
the manifold Procrustes distance performs as well as sys-
tem distance. But, statistical modeling of class conditional
densities for each activity using kernel density methods on
the Stiefel manifold, leads to a significant improvement in
recognition performance. Note that even though the mani-
fold approaches presented here use only 16 × 16 × 16 fea-
tures they outperform other approaches that use higher reso-
lution (64×64×64 features) as shown in table 1. Moreover,
computational complexity of the manifold Procrustes dis-
tance is extremely low since it involves computing a small
k×k matrix R, whereas subspace angles [11] requires solv-
ing a high-dimensional discrete time Lyapunov equation.

4.1.3 Video-Based Face Recognition

Video-based face recognition (FR) by modeling the
‘cropped video’ either as dynamical models ([2]) or as a
collection of PCA subspaces [16] have recently gained pop-
ularity because of their ability to recognize faces from low



Test condition System
Dis-
tance

Procrustes Kernel
density

1 Gallery1,Probe2 81.25 93.75 93.75
2 Gallery2,Probe1 68.75 81.25 93.75
3 Average 75% 87.5% 93.75%

Table 2. Comparison of video based face recognition approaches
a) ARMA system distance, b) Stiefel Procrustes distance, c) Man-
ifold kernel density

resolution videos. However, in this case, we focus only on
the C matrix of the ARMA model or PCA subspace as the
distinguishing model parameter. This is because the C ma-
trix encodes the appearance of the face, whereas the A ma-
trix encodes the dynamic information. For video-based FR,
only the facial appearance is important and not the facial dy-
namics. The C matrices are orthonormal, hence points on
the Stiefel manifold. But, for recognition applications, the
important information is encoded in the subspace spanned
by the C matrix. Hence, we identify the model parameters
(C’s) as points on the Grassmann Manifold. Therefore, both
Procrustes distance and Kernel density methods are directly
applicable. We tested our method on the dataset used in [2].
The dataset consists of face videos for 16 subjects with 2 se-
quences per subject. Subjects arbitrarily change head orien-
tation and expressions. The illumination conditions differed
widely for the 2 sequences of each subject. For each sub-
ject, one sequence was used as the gallery while the other
formed the probe. The experiment was repeated by swap-
ping the gallery and the probe data. The recognition results
are reported in table 2. For kernel density estimation, the
available gallery sequence for each actor was split into three
distinct sequences. As seen in the last column, the kernel-
based method outperforms the other approaches.

4.2. Affine Shape Analysis

Algorithmic Details: The representation and analysis
of shapes has important applications in object recognition,
gait recognition and image registration. Landmark based
shape analysis is one of the most widely used approaches
for representing shapes. A shape is represented by a set of
landmark points on its contour. A shape is represented by
a m × 2 matrix S = [(x1, y1); (x2, y2); . . . ; (xm, ym)], of
the set of m landmarks of the centered scaled shape. The
shape space of a base shape is the set of equivalent config-
urations that are obtained by transforming the base shape
by an appropriate spatial transformation. For example, the
set of all affine transformations of a base shape forms the
affine shape space of that base shape. More rigorously, let
χ = (x1, x2, . . . , xm) be a configuration of m points where
each xi ∈ R2. Let γ be a transformation on R2. For exam-
ple, γ could belong to the affine group, linear group, projec-

Algorithm Rank 1 Rank 2 Rank 3 Rank 4
SC [17] 20/40 10/40 11/40 5/40
IDSC [17] 40/40 34/40 35/40 27/40
Hashing [8] 40/40 38/40 33/40 20/40
Grassmann Pro-
crustes

38/40 30/40 23/40 17/40

Table 3. Retrieval experiment on articulation dataset. Last row is
the results obtained using Grassmann manifold Procrustes repre-
sentation. No articulation invariant descriptors were used.

tive group etc. Let

A(γ, (x1, . . . , xm)) = (γ(x1), . . . , γ(xm)) (12)

be the action of γ on the point configuration.
In particular, the affine shape space [14] [25] is very im-

portant because the effect of the camera location and ori-
entation can be approximated as affine transformations on
the original base shape. The affine transforms of the shape
can be derived from the base shape simply by multiplying
the shape matrix S by a 2 × 2 full rank matrix on the right
(translations are removed by centering). Multiplication by
a full-rank matrix on the right preserves the column-space
of the matrix S. Thus, all affine deformations of the same
base shape, map to the same point on the Grassmann man-
ifold [25]. Therefore, a systematic study of affine shape
space essentially boils down to a study of the points on the
Grassmann manifold. We can use both Procrustes distance
and kernel density methods described earlier for several ap-
plications of affine invariant shape analysis such as shape
retrieval and recognition.

4.2.1 Articulation Database

We conducted a retrieval experiment on the articulated
shape database from [17]. We use the same test scheme pro-
posed in [17]. The database consists of 8 object classes with
5 examples for each class. For each shape, 4 top matches are
selected and the number of correct hits for ranks 1, 2, 3, 4
are reported. Table 3 summarizes the results obtained on
this dataset. The proposed approach compares well with
other approaches. It should be noted however, that this is
not a fair comparison, as we do not use any articulation-
invariant descriptors such as the ones used in [17] and [8].
In spite of this, manifold-based distance metrics perform
very well.

4.2.2 Affine MPEG-7 Database

Since the strength of the approach lies in affine invariant
representation of shapes, we conducted a synthetic experi-
ment using the MPEG-7 database. We took one base shape
from each of the 70 object classes and created 10 random
affine warps of the shapes with varying levels of additive
noise. This new set of shapes formed the gallery for the
experiment. Sample shapes that were generated are shown



Figure 1. Synthetic data generated from the MPEG database. The
first column shows base-shapes from the original MPEG dataset
for 5 objects. The remaining columns show random affine warps
for the base shapes with increasing levels of additive noise.

in figure 1. The test set was created by randomly picking
a gallery shape and affine warping it with additive noise.
The recognition experiment was performed using the Pro-
crustes distance and the kernel density methods. For com-
parison, we used the popular shape Procrustes distance [15]
as a baseline measure. We also used the ‘arc-length’ dis-
tance metric used in [4]. The arc-length distance metric is
the Frobenius norm of the angle between two subspaces. In
all cases, the experiments were repeated with 100 Monte-
Carlo trials for each noise level in order to robustly evaluate
the performance. The performance of the methods is com-
pared in Figure 2 as a function of noise to signal ratio. It
can be seen that manifold-based methods perform signif-
icantly better than straightforward shape Procrustes mea-
sures. Among the manifold methods, the kernel density
method outperforms both the Procrustes and the arc-length
distance measures. Since the Grassmann manifold based
methods accurately account for the affine variations found
in the shape, they outperform simple methods that do not
account for affine invariance. Moreover, since the kernel
methods learn a probability density function for the shapes
on the Grassmann manifold, it outperforms distance based
nearest neighbor classifiers using Grassmann arc-length and
Grassmann Procrustes.

4.2.3 Sampling from Distributions

Generative capabilities of parametric probability densities
can be exploited via appropriate sampling strategies. Once
the distribution is learnt, one can synthesize samples from
the distribution in a two step process. We first generate
a sample from a proposal distribution (we used a matrix-
variate normal centered around the class mean), then we
use an accept-reject strategy to generate the final shape [10].
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Figure 2. Comparison of recognition performance on MPEG-7
database. For comparison we used the shape Procrustes mea-
sure [15] and the Grassmann arc-length distance [4]. Manifold
based methods perform significantly better than direct application
of shape Procrustes measure. Among the manifold methods, sta-
tistical modeling via kernel methods outperforms the others.

Figure 3. Samples generated from estimated class conditional den-
sities for a few classes of the MPEG dataset

We show a sampling experiment using this technique. For
this experiment, we took one shape from each of the object
classes in the MPEG-7 database and corrupted it with addi-
tive noise to generate several noisy samples for each class.
We used the Grassmann representation of points as idem-
potent projection matrices. Then, we learnt a parametric
Langevin distribution on the Grassmann manifold for each
class. Note that the distribution is learnt on the Grassmann
manifold, hence, a sample from the distribution represents
a subspace in the form of a projection matrix. To generate
an actual shape we need to first choose a 2 − frame for
the generated subspace which can be done via SVD of the
projection matrix. Once the 2 − frame is chosen, actual
shapes can be generated by choosing random coordinates in
the 2 − frame. We show sampling results in Figure 3.



5. Conclusion

In this paper we have studied statistical analysis on two
specific manifolds – Stiefel and Grassmann. Matrix opera-
tors that lie on these manifolds arise naturally in several vi-
sion applications. Multi-class and multi-exemplar recogni-
tion and classification tasks require efficient statistical mod-
els to be estimated from data. We presented approaches
from statistical literature which provide mathematically el-
egant and computationally efficient methods to perform sta-
tistical analysis. We demonstrated their utility in practi-
cal vision applications such as activity classification, video
based face recognition and shape recognition, and showed
how the same basic tools are applicable to a wide range of
problem domains.
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