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Abstract

In this paper, we present a spatio-temporal feature repre-
sentation and a probabilistic matching function to recognise
lip movements from pronounced digits. Our model (1) au-
tomatically selects spatio-temporal features extracted from
10 digit model templates and (2) matches them with probe
video sequences. Spatio-temporal features embed lip move-
ments from pronouncing digits and contain more discrim-
inative information than spatial features alone. A model
template for each digit is represented by a set of spatio-
temporal features at multiple scales. A probabilistic se-
quence matching function automatically segments a probe
video sequence and matches the most likely sequence of
digits recognised in the probe sequence. We demonstrate
the proposed approach using the CUAVE [23] database and
compare our representational scheme with three alternative
methods, based on optical flow, intensity gradient and block
matching, respectively. The evaluation shows that the pro-
posed approach outperforms the others in recognition ac-
curacy and is robust in coping with variations in probe se-
quences.

1. Introduction
For perceiving facial emotion and behaviour, humans

combine the acoustic waveform (audio information) and the
movements of the lips, tongue and other facial muscles (vi-
sual information) generated by a speaker. The McGurk
effect [19] established this bi-modal speech perception by
showing that, when conflicting audio and visual stimuli are
presented to an individual, the latter may assimilate a new
stimulus, different from the other two.
Such observations have motivated interest in developing

systems for automatic recognition of visual speech. Re-
search in this field aims to improve speech recognition sys-
tems by taking advantages of the visual modalities of a
speaker in addition to the usual audio modalities. Neverthe-
less, the performance of automatic lip-reading systems, i.e.
speech recognition systems using visual information alone,

is far from satisfactory. This underachievement is mostly
due to the difficulty with finding a robust and consistent
method to extract speech-relevant visual features.

Broadly speaking, there are four main approaches to per-
forming lip-reading through visual recognition. The first
one is grounded in texture-based visual features [10, 13, 20,
24, 25] assuming that all pixels encode visible speech data.
With this approach, the features carry useful discrimination
information and are estimated directly from a generally de-
fined Region of Interest (ROI), such as the mouth, the lips,
or the cheeks. Such methods then rely on traditional pattern
recognition and image compression techniques (e.g. LDA,
PCA, DCT, DWT) to reduce the high dimensionality and
high redundancy of feature vectors and to extract relevant
and useful lip-reading information. However, as all pixel
values from the ROI are taken into account, it can contain
irrelevant information. Moreover, texture-based systems are
sensitive to intensity variations between the training and test
data sets. On the other hand, methods based on shape visual
features [1, 5, 12, 26] require adequate lip or mouth shape
tracking, and assume that the visual speech information is
captured by the form of the shape and the movement alone.
Chen [5] and Kaynak et al. [12] use geometric features like
outer-lip or inner-lip parameters. Alternatively, lip model
features are used by Aleksic et al. [1] and Wang et al. [26],
which consist of a model for the visible speech articulators,
usually the lip contours. However, shape-based approaches
suffer from complex feature extraction and training pro-
cesses. Due to the nature of shape-based methodology, par-
ticular shapes adopted may not consider all relevant speech
information and they are also over sensitive to image quality
or resolution. Bridging these two extremes, various combi-
nations of the two have also been used ranging from simple
concatenation [5, 9] (combining two classes of features) to
their joint modelling [18, 27]. The latter used an Active Ap-
pearanceModel (AAM) [6], which provides a framework to
combine shape and grey-level variation in a single statisti-
cal appearance model. Finally, motion based approaches
[14, 17], which assume that visual motion during speech
production contains relevant speech information, have been
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proposed largely using optic flow. Current motion-based
approachesmostly capture first order motion unable to cope
with quick movements (e.g. certain parts of lip movement).
A summary of lip-reading approaches is shown in Table 1.

Reference Segmentation Visual feature
Texture

[24, 25] DCT/DTW LDA/MLLT
[20] colour information DCT / LDA
[8] colour information PCA / DCT
[13] MESH / DFT PCA / LDA

Shape
[12] - height and width,

area and angle
[5] GMM 1 width and 2 height
[1] - Snake and parabolas
[26] FCMS ASM

Texture and shape
[4] GMM (colour space) PCA
[18] ASM/AAM/sieve
[27] AAM
[9] - colour and geometric features

Visual motion
[17] - optical flow
[14] - eigensequences

Table 1. A summary of lip-reading approaches divided into four
main groups. AAM: Active appearance model; MESH: Collec-
tion of vertices and polygons; ASM: Active shape model; MLLT:
Maximum likelihood data rotation; DCT: Discrete cosine trans-
form; LDA: Linear discriminant analysis; DFT: Discrete Fourier
transform; PCA: Principal component analysis.

In this paper we address the problem associated with
most existing feature-based techniques, which assume con-
tinuous appearance of image patches over time in their en-
tirety, and therefore tend to fail when the visual features are
occluded or partially disappear. This failure is often the case
in lip-reading due to deformation and self-occlusion. More-
over, most of the existing feature-based methods need man-
ual labelling or alignment between frames. This is partially
due to that given a shape-basedmodel, one assumes the con-
tinuous existence of specific features over time such as the
corners of the mouth or the outer-lip. We avoid such as-
sumptions by adopting a set of built-up space-time volume
features, which we refer to as macro-cuboı̈d (see Figure 1).
The term macro-cuboı̈d comes as a spatio-temporal exten-
sion of macroblock1, which is a widely used term in video
compression. The proposed representation accommodates
an arbitrary number of features in a given macro-cuboı̈d
corresponding to different image regions of a moving lip.
Furthermore, we introduce a probabilistic sequence match-
ing function that allows for non-rigid multi-scale match-
ing between different video sequences. With this approach,
we aim to build a set of model templates consisting of a

1Macroblocks (16x16 pixels) are used for motion estimation and com-
pensation in traditional video encoders (H.261, MPEG-1/2).

database of all the visemes2 of the studied language. These
templates provide a representation at an atomic level to be
both concise and generative, because for instance the En-
glish language is composed of only about fifteen visemes
[22]. To start, we focus in this paper on building model
templates for automatically segmenting and recognising 10
digits appearing randomly in continuous probe video se-
quences.

(a) (b)

Figure 1. Examples of spatial only and spatio-temporal feature
based lip-reading. (a) Image-to-image approach: features (red
crosses) are extracted in each frame and then matched between
frames. (b) Space-time volume modelling: features (red oblongs)
are defined in space and over time to embed lip movements.

The remaining of the paper is organised as follows. Sec-
tion 2 details our method for visual feature extraction and
video sequence matching. Experiments and evaluation are
presented in Section 3. Conclusions are drawn in Section 4.

2. Sequence matching for lip-reading of digits
We aim to recognise spoken digits through lip-reading.

The proposed model is built given a database of model digit
templates, the atomic level representing the digits 0 to 9 sep-
arately, before matching those model templates with probe
video sequences. In a probe sequence, the order and the
number of pronounced digits are unknown. Our model con-
sists of two major parts: (1) visual feature selection and
extraction, and (2) video sequence matching. Our first step
defines and extracts automatically sets of spatio-temporal
features, which we refer to as macro-cuboı̈d (see defini-
tion above), without any manual labelling of feature points,
alignment between frames, or scale normalisation in space.
The macro-cuboı̈ds are then divided into a set of cuboı̈ds,
covering at least some parts of the lip movement. These
cuboı̈ds are represented at multiple spatial scales. Then
a kernel-based maximum likelihood matching function is
utilised to find the best match of all the macro-cuboı̈d can-
didates in a probe sequence for a model template. Digit
recognition is determined by a histogram computed with
the highest probability of a model macro-cuboı̈d (i.e. the

2A viseme is a basic unit of speech in the visual domain that corre-
sponds to phoneme (which is the basic unit of speech in the acoustic do-
main).



Figure 2. Processing blocks of our digit recognition system. Each digit model template is represented by a set of spatio-temporal macro-
cuboı̈ds (Im macro-cuboı̈ds). Then for each macro-cuboı̈d, we perform multi-scale scanning through the probe sequence. A probabilistic
matching function is computed for each scan. Then a histogram-based decision is made to localise and recognise the model template.

biggest bin) indicating both the existence of a digit and its
exact location in the probe sequence. Figure 2 gives an
overview of our approach. We shall describe the details in
the following.

2.1. Spatio-temporal approach

Instead of extracting the principal components of lip
movement in order to establish a one-to-one correspon-
dence between phonemes of speech and visemes of lip
shape [11, 25, 26], here we consider comparing the move-
ments of lips generated by a speaker (probe movements)
with the movements of lips of particular words (digits in
this paper) in a certain language (model movements). This
consideration induces space-time features, which embed the
lip movements. The idea of working in space and over time
is exploited in [2, 3, 7, 21]. These approaches are based ei-
ther on matching space-time trajectories of moving regions
or on detection of interest points (features) within a stack
of frames. This methodology contrasts with the matching
of explicit landmark interest points (e.g. corners, edges),
which is the basis of most feature-based image-to-image
matching techniques [12, 18]. Figure 3 shows the ambi-
guity exhibited by using a landmark feature based approach
as compared to that of a spatio-temporal model.

2.2. Feature selection and extraction

A set of model digit templates is divided into several
macro-cuboı̈ds, which are automatically selected to cover
the whole space and time of the model digit templates (ex-
haustive division). Matching a model template with a probe
sequence requires the computation of a probability func-
tion between the extracted macro-cuboı̈ds from each model
within the probe sequence. For each model template, this
operation is performed Im times (see Figure 2), where Im

corresponds to the number of model macro-cuboı̈ds over
multiple scales of themth model template.
Considering a model template and a probe sequence,

our algorithm works as follow: At first we divide the

(a)

(b)

Figure 3. Spatial feature ambiguity compared with a spatio-
temporal model.(a) Image-to image-approach: 2 separate frames
of 3 moving features. (b) Space-time volume modelling: a se-
quence with several spatio-temporal features. When analysing
only single frames, the information of the movements is lost and
the matching between features is strenuous. On the other hand,
space-time features are capable of capturing object movements.

model template into Im macro-cuboı̈ds MCm
i , with i =

1, 2, . . . , Im. The number of macro-cuboı̈ds Im is deter-
mined by the size, in space and in time, of the model tem-
plate. Each model template can have a different value of
Im. Based on several experiments using different overlap-
ping levels, we decided to use a fifty percent overlap in time
and none in space between the macro-cuboı̈ds in order to
cover the entire model digit templates.
After the extraction, each macro-cuboı̈d is divided into

N cuboı̈ds, Cm
j , with j = 1, 2, . . . , Jm. To be able to

manage certain different sizes of the ROI, the cuboı̈ds have
multiple scales in space, Scx and Scy (currently two scales
are used). The variations due to minor global movements



are coped by the macro-cuboı̈ds rather than each individual
cuboı̈d, therefore the cuboı̈ds have a fixed scale in time, Sct

(see Figure 4). The number Jm of cuboı̈ds is determined by
those three scales, Scx, Scy and Sct.

Figure 4. Macro-cuboı̈d MCm
i and its respective cuboı̈d Cm

j (see
Equation (2)). MCm

i and Cm
j are an oblong but Sct = Smct. Two

scales are used for Scx and Scy .

The initial scale value, S1, is manually selected in the
beginning of the process. Some preliminary experiments
fixed the value of S1. Then the second scale value is defined
as follows: S2 = 2× S1.

2.3. Probabilistic sequence matching
After the selection and the extraction of the spatio-

temporal features, we perform a probabilistic sequence
matching. For each scale, S1 and S2, the probability of
a model macro-cuboı̈ds to be matched with the probe se-
quence, PS, is as follows:

P (MCm
i , PS) =

1
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N
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where Δdi and Δli are respectively the differences and lo-
cal displacements between descriptors of the cuboı̈ds Cm

j

and their correspondents in the probe sequence. σd and σl

are the only parameters we have to define in Equation (1).
σl is equal to the norm of the diagonal of macro-cuboı̈ds
MCm

i . σd is determined empirically to give an equivalent
weight of − |Δdi|

2

2σ2

d

with − |Δli|
2
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d

in Equation (1).
Our cuboı̈d descriptors is an adaptation of Lowe’s SIFT

descriptor [15] for cuboı̈ds [7]. At first we compute the gra-
dient of cuboı̈ds as follows:

G =

[
∂C̃m

j

δx

∂C̃m
j

δy

∂C̃m
j

δt

]
(2)

where the first and the second derivatives are the differences
in space, x and y and the last derivative is the differences in

time t. Then the gradientG is divided into separate regions
and a local spatio-temporal histogram is created for each re-
gion. The histograms values are then flattened into a vector
to create a descriptor di for its corresponding cuboı̈d. The
goal is to introduce robustness to small perturbations while
retaining some positional information.
Finally, probability Ptot for matching a model macro-

cuboı̈d to a segment of a probe sequence, taking into ac-
count two different scales of Cm

j , is:

Ptot(MCm
i , PS) = max(PS1

, PS2
) (3)

where PS1
and PS1

are the probabilities P (MCm
i , PS)

(Equation (1)) using the two scales of the cuboı̈d,S1 and S2,
respectively. This probability Ptot is computed Im times.

2.4. Digit recognition by lip-reading
At the end of the previous process, an histogram of the

Im model macro-cuboı̈ds with the highest probability to be
in the probe sequence is computed. The biggest bin indi-
cates the position of the most likely match between a model
digit template and a segment in a probe sequence. This in-
formation gives us the recognition and the localisation of
digits in the probe sequence. If we assume that a set of
model templates fully represents a language, then each part
of a probe sequence can be decrypted. The model templates
will consist of a database of all the visemes of the language.
The main advantage of this is that the database will be con-
cise and generative, because for instance, as mentioned ear-
lier, the English language is composed of 15 visemes only
[22]. For the examples used in this paper, we need to model
10 digits only in order to analyse any arbitrary combination
of pronounced digits in a video sequence.

3. Experiments
3.1. Dataset

The number of existing audio-visual database is small
compared to the number of audio-only speech databases,
which have been collected for a longer time. For our exper-
iments, we use the CUAVE database [23]. The CUAVE cor-
pus is a moving-talker speaker-independent database, de-
signed to support research into audio-visual speech recog-
nition. The database consists of two major sections: one
of individual speakers (36 different speakers) and one of
speakers pairs (20 sequences). For both the individuals and
groups sequences, connected and continuous digits between
0 and 9 are spoken while standing still in the first part of the
clips. As this was not forced, there are some small, natural
movements among these speakers. The last part of the clips
is more challenging. In the individual speaker sequences,
the speaker moves around intentionally while talking; in the
multiple speaker sequences, two speakers are uttering the



digits simultaneously. The individual sequences are about 2
minutes long and the group ones about 20-25 seconds long,
at 29.97 fps (NTSC video standard).

3.2. Setup

The database is converted into grey-level images and
each frame is cropped around the mouth (ROI). We divided
the dataset into two parts: one part is used to generate the
model templates and the other is used for the probe se-
quences. Each digit from 0 to 9 consists to one model tem-
plate separately. To legitimate the fact that our method does
not need any scale normalisation either in space or in time,
we create several samples of each model digits. Hence each
sample has a different size in space and in time (according
to the pronunciation speed of the subjects). Figure 5 shows
an example of frames for the model template representing
the digit 0.
The probe sequences have a variable length, ranging

from 4 to 10 digits in duration. The sorting of the digits
can be either in an increasing order, in a decreasing order or
at random. As for the model digit templates, each digit can
have a different size in space and duration over time.
In the next two sub-sections, we present, at first, a com-

parative evaluation with three other methods and secondly
we show different results with our approach, macro-cuboı̈ds
matching using spatio-temporal SIFT descriptor and local
displacement, which we refer to as MCM-ST.

(a) (b) (c) (d)

Figure 5. Example of model template ROIs. (a) – (d): Samples
from the normal model sequence for digit 0.

3.3. Comparative evaluation

We evaluate our approach by comparing it with three
other different representations, two of which also macro-
cuboı̈d based with the third one using a motion vector based
strategy. The first alternative macro-cuboı̈d based repre-
sentation calculates optical flow using Lucas & Kanade al-
gorithm [16]. The second macro-cuboı̈d based method is
based on histogrammed brightness values with twelve uni-
formly quantised bins. The last method uses the motion
vector strategy. This spatial strategy consists of dividing
an image into pixel macroblocks and then further dividing
each macroblock into blocks. The sum of the differences
between the pixel values of blocks between two consecu-
tive frames is computed. The region with the smallest sum
is chosen. We apply this strategy to our lip movements and

we extend it to a spatio-temporal support. Instead of us-
ing blocks and macro-blocks we perform the motion vector
strategy between the cuboı̈ds of the model template and the
probe sequence.
Figure 6 shows the confusionmatrices for the four differ-

ent methods. We can observe that our approach, MCM-ST,
outperforms the others. For all the methods, the model digit
8 is not correctly localised. This error is due because the
movements of the lip for the digit 8 in general are extremely
limited. Consequently the matching is spread between ev-
ery digits.
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(c) (d)

Figure 6. Confusion matrices from using (1) proposed method
(MCM-ST), (b) optical flow, (c) intensity gradient, (d) motion vec-
tor matching. The columns represent the model template indices
whilst the rows account for correctness of digit recognition and
localisation.

3.4. Spatio-temporal space results

Figure 7 shows several examples of experimental re-
sults with nine different model templates on three differ-
ent probe sequences. For those experiments, the speaker
is male and the probe sequences contain 4 digits in dura-
tion. In each plot, we can see the probe sequence (shown
by the biggest oblong), the macro-cuboı̈ds with the highest
probability to be in the probe sequence (the coloured ob-
longs) and the corresponding histogram. The biggest bin in
each histogram indicates both the existence of the digit and
its exact location in the probe sequence. In each probe se-
quence, the frame slices (4 slices per sequences) represent



the first frame of a digit. Therefore the representation of the
experiments is more apparent.
We can observe in Figure 7 that the results are correct: all

the digits, 3, 6 and 9, are localised correctly for each sam-
ples. The plots (c), (d) and (f), for instance, show the differ-
ence between the model template samples. Some samples
for one digit are more representative of the digit. This ob-
servation could be used to generate one unique model tem-
plate per digit (See Section 4). We can observe in plots (g)
to (i) that when some digit (digit 2 and 3 in this case) are
truly short in time (less than 7 frames), the macro-cuboı̈ds
are bigger than the digit itself. One solution is to reduce
the scale in time of the macro-cubı̈ds but this measure will
remove too much useful information about the movements
of lip in the features and increase the computational load.
Other solutions need to be investigated.
Figure 8 shows similar results than Figure 7. The only

difference is that the probe sequences contain 10 digits in
duration. We observe that our approach, MCM-ST, is still
able to recognise and localise the model digit even with dif-
ferent length of the probe sequences.
In both Figures 7 and 8, some macro-cuboı̈ds are not

correctly localised. Most of those macro-cuboı̈ds are posi-
tioned in the edges of the ROIs, where only few movements
exist. Adding a post-processing step to remove the macro-
cuboı̈ds on the borders would help limiting this issue.
Figure 9 shows a graph with the recognition rate for each

model digit in the database. Each coloured curve represents
another model digit. The x axe represents the number of
macro-cuboı̈ds used to recognise and localise a model digit
in a probe sequence. The number 100% means we use all
the Im macro-cuboı̈ds. We observe that if we decrease the
number of macro-cuboı̈ds used for the model digit locali-
sation decision (x axe towards 0), the recognition rate de-
creases consistently.

4. Conclusion
In this work we have shown the viability of a spatio-

temporal feature-based lip-reading. These features em-
bed lip movements from pronounced digits and contain
more discriminative information than spatial features alone.
This approach needs no manual labelling of feature points,
no alignment between frames, nor scale normalisation in
space, thanks to a macro-cuboı̈ds based representation. This
representation accommodates arbitrary number of features
in a given cuboı̈ds corresponding to different image regions
of a moving lip.
Our system automatically selects spatio-temporal fea-

tures extracted from 10 digit model templates and matches
them into a probe video sequence. A model template for
each digit is represented by a set of spatio-temporal macro-
cuboı̈ds at multiple scales. A probabilistic sequence match-
ing function automatically segments a probe video sequence
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Figure 9. Recognition rates for matching single model digit tem-
plates representing all 10 digits with novel probe sequences of
variable length, ranging from 4 to 10 digits in duration. The x

axis shows the number of macro-cuboı̈ds associated with the high-
est probability in matching model digits to probe sequences. The
y axe gives the recognition rate, which also implicitly gives the
most likely location of all the recognised digits in the probe se-
quences (see examples in Figures 7 and 8). Each curve represents
a different model digit.

and matches the most likely sequence of digits recognised
in the probe sequence.
The comparative evaluation between optical flow, in-

tensity gradient, motion vector strategy and our method
(macro-cuboı̈ds matching using spatio-temporal SIFT de-
scriptor and local displacement) shows that our method out-
perform the other approaches. Experimental results demon-
strate that the existence of a model digit and its exact loca-
tion can be found in a probe sequence.
Future works include an extension of the set of model

templates to a database of all the visemes of a studied
language. Also, the analysis of the results of the dif-
ferent samples of one particular digit needs to be in-
vestigated to be able to create one model template per
digit.
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