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Abstract

We introduce a generalized representation for a boosted

classifier with multiple exit nodes, and propose a method

to training which combines the idea of propagating scores

across boosted classifiers [14, 17] and the use of asymmet-

ric goals [13]. A means for determining the ideal constant

asymmetric goal is provided, which is theoretically justi-

fied under a conservative bound on the ROC operating point

target and empirically near-optimal under the exact bound.

Moreover, our method automatically minimizes the number

of weak classifiers, avoiding the need to retrain a boosted

classifier multiple times for empirical best performance as

in conventional methods. Experimental results shows sig-

nificant reduction in training time and number of weak clas-

sifiers, as well as better accuracy, compared to conventional

cascades and multi-exit boosted classifiers.

1. Introduction

Cascading boosted classifiers has been a successful ap-

proach in appearance-based detection since the seminal

work of Viola and Jones [12] on face detection. The key

insight of a cascade is to decompose a detection problem

into a sequence of binary classification sub-problems of

increasing difficulty. Positively predicted examples from

the boosted classifier for a sub-problem are used to train

the boosted classifier for the next sub-problem, while nega-

tively predicted examples are discarded. The final cascade

obtained from this bootstrapping process often has high de-

tection rate and extremely low false acceptance rate, while

the early rejection mechanism allows the cascade to scan

through a large set of examples for a rare detection event in

a small amount of time.

Despite its utility in detection, the cascade approach im-

poses a number of issues in learning. At the stage level, one

has to devise a learning strategy to find an optimal trade-

off among three important factors of a boosted classifier:

the detection rate, the false acceptance rate, and the num-

ber of weak classifiers. To maintain high detection rate

and extremely low false acceptance rate for the overall cas-

cade, each individual boosted classifier must ensure close-

to-one detection rate and moderate false acceptance rate. It

is essential to minimize the number of weak classifiers of

a boosted classifier, as it is roughly proportional to the run-

ning time of the classifier. Conventional methods often use

AdaBoost or one of its variants [3, 10] to train a boosted

classifier with a fixed maximum number of weak classifiers.

To find the best trade-off among the three factors, one has

to re-train the classifier multiple times and choose the best

candidate manually.

The overall detection rate of a cascade is the product of

detection rates associated with all individual boosted clas-

sifiers in the cascade; similarly, the overall false acceptance

rate is the product of all classifier false acceptance rates.

However, it is not known beforehand how many classifiers

are needed, nor which combination of ROC operating points

(each defined by a detection rate and false acceptance rate)

produces an optimal cascade. Currently, these parameters

are obtained mainly by trial and error, though some progress

has been made [2, 11].

In this paper, we introduce a notion called multi-exit

boosted classifier to describe a boosted classifier with mul-

tiple exits. Each exit is associated with a weak classifier.

A rejection decision at an exit is made if the intermedi-

ate boosted score, up to the associated weak classifier, is

below a threshold. Some cascade variants can be cast as

a multi-exit boosted classifier. We analyze recent cascade

training methods in terms of training goals, and show that

many of them result in training and/or using sub-optimal

weak classifiers. We propose a method to train a multi-

exit boosted classifier by minimizing the number of weak

classifiers needed to achieve the desired detection and false

acceptance rates simultaneously. It also removes the need

to run multiple ad hoc trials to discover the best boosted
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classifiers that satisfy the operating point requirements.

The remaining parts of the paper are organized as fol-

lows. In section 2, we define multi-exit boosted classifiers

and cast both the normal cascade and regular boosted clas-

sifier as special cases. An analysis of recent cascade train-

ing methods is also offered in this section. In section 3,

we describe our method to train a multi-exit boosted clas-

sifier, and discuss about important aspects in designing the

method. Experimental results are presented in section 4.

The key contributions of the paper are:

• a generalized model that unifies existing models such

as conventional boosted classifiers, cascades, and more

recent multi-exit boosted classifiers;

• a new multi-exit asymmetric boosting method incorpo-

rating asymmetric training goals to achieve ROC op-

erating point targets while minimizing the number of

weak classifiers;

• a principled formulation of an asymmetric goal that

is theoretically optimal for a conservative bound on

an ROC operating point requirement, and empirically

near-optimal for the exact bound; and

• results demonstrating that the combined framework

outperforms existing methods.

2. Overview

2.1. General framework

In this section, we introduce a new model of which cas-

cades and multi-exit boosted classifiers are defined as spe-

cial cases. In section 2.2, we use the model to point out

disadvantages of existing methods.

We restrict ourselves to a problem of imbalanced binary

classification C : X → {−1, 1} where the prior probability

of the negative class far outweighs the prior probability of

the positive class, i.e., P (y = 1) ≪ P (y = −1) with y
being the class label. We consider the following model:

C(x)
def
=

{

1 if Hm(x) ≥ θm ∀m ∈ M
−1 otherwise

(1)

Hm(x)
def
=

m
∑

i=µ(m)

hi(x), (2)

In this model, there are M weak classifiers denoted in se-

quence by hi(x) with i = 1, . . . , M , where hi : X → R; in

the case of discrete-type weak classifiers, hi(x) = cifi(x)
with fi : X → {−1, 1} and coefficient ci ∈ R. Out of these

M weak classifiers, we specify a subset that acts as exit

nodes, represented by a set of indices M ⊂ {1, . . . , M}.

We assume that the last classifier is always an exit node,

hence M ∈ M. Associated with each exit node is a corre-

sponding entrance node, represented through the function

µ(m) which is an index to a weak classifier earlier in the

sequence. The boosted classifier comprising the weak clas-

sifiers between a pair of entrance and exit nodes is asso-

ciated with Hm(x). Note that while each exit node is a

unique weak classifier, entrance nodes may be shared (i.e.,

they map to the same weak classifier).

This model is general in that it encompasses a range of

existing and new models, e.g., (a) the normal boosted clas-

sifier in this model is simply a single-exit boosted classifier

utilizing all the weak classifiers, defined by M = {M} and

µ(m) = 1; and (b) the conventional cascade is represented

by defining µ(m) = m0 + 1 where m0 is the largest index

in M satisfying m0 < m, or m0 = 0 if m is already the

smallest index in M. Conventional cascades as expected

have entrance-exit intervals that are non-overlapping.

The variant we explore in this paper is the single boosted

classifier with a single entrance but multiple exits. This

model is characterized by µ(m) = 1 and |M| > 1; this re-

lates to multiple exit nodes sharing the same entrance node

at the first weak classifier. A special case of the multi-

exit boosted classifier is the soft/dynamic cascade [1, 16]

in which M = {1, . . . , M}. Other more complex variants

exist that await future analysis.

In learning the m-th weak classifier for model C using

AdaBoost or one of its variants [3, 10], the most important

factor is the discrete weight distribution w
(m) associated

with the training set provided to the weak classifier. It is

often possible to express w
(m) in the form

w(m)
n = Z−1

m exp(−yn(Sm(xn) − bm)), (3)

where Zm is the normalization factor to make w
(m) a dis-

tribution, bm is a threshold to adjust the trade-off between

false acceptance rate and false rejection rate when training

the m-th weak classifier, and Sm(xn) is a score function of

input point xn, defined as:

Sm(x)
def
=

{

0 if m = 1, or µ(m) = m
Hm−1(x) otherwise

(4)

In the original versions of AdaBoost [10], there are no

thresholds bm. It is known from literature [3, 10] that in

such cases, the minimizer hm(x) of the classification error

of the weighted training set {(xn, yn, w
(m)
n )}N

n=1 is approx-

imately the minimizer of an exponential loss:

E[exp(−y(Sm(x) + h(x)))]. (5)

By introducing bm 6= 0, the exponential loss becomes:

E[exp(−y(Sm(x) + h(x) − bm))], (6)

and is an upper bound of an asymmetric goal [13]:

J ′
m(h) = P (y = −1)e−bmE[e(Sm(x)+h(x))|y = −1]

+P (y = 1)ebmE[e−(Sm(x)+h(x))|y = 1]

≥ P (y = −1)e−bmFAR(Sm + h)

+P (y = 1)ebmFRR(Sm + h), (7)



where FAR(f) = E[1[f(x)>=0]|y = −1] and FRR(f) =
E[1[f(x)<0]|y = 1] is the false acceptance rate and the false

rejection rate respectively of a function f(x).

2.2. Related work

In their original work [12], Viola and Jones sampled N1

positive examples and N2 negative examples, and initially

set weights 0.5/N1 for positive examples and 0.5/N2 for

negative examples, respectively. Effectively, this removed

the prior probabilities not only from training the first weak

classifier, but also from training subsequent weak classi-

fiers. Since they did not use any threshold bm, the goal at

training the m-th weak classifier became finding a function

h that minimizes an upper bound of:

Jm(h) = FAR(Sm + h) + FRR(Sm + h). (8)

This symmetric goal, however, did not guarantee high de-

tection rate for a boosted classifier. Viola and Jones pro-

posed to threshold the boosted classifier’s score Hm(x)
by a value θm 6= 0. By adjusting θm, they were able

to achieve high detection rate (and also high false accep-

tance rate). Many recent methods followed this strategy

[1, 2, 4, 5, 11, 14, 16, 17]. While this approach is computa-

tionally trivial, it is also sub-optimal in that the θm-defined

ROC operating point was not arrived at by training the weak

classifiers with the asymmetric goal in (6)1.

In a subsequent paper [13], Viola and Jones addressed

this problem by introducing an asymmetric goal for training

a boosted classifier:

J ′
m(h) = FAR(Sm + h) + λFRR(Sm + h), (9)

where λ is related to bm by:

bm = 0.5 log λ. (10)

There were no suggestions on how λ should be selected.

While Pham and Cham [8] proposed a skewness balanc-

ing method for selecting λ, they require that the number of

weak classifiers be known in advance.

Xiao et al. [17] and Wu et al. [14] independently noted

that scores obtained from the previous boosted classifier

may be exploited downstream, and proposed to propagate

the previous scores from one boosted classifier to the next.

Though their weak classifiers were trained using the sym-

metric goal in (8), they showed significant improvements in

their empirical results. Nevertheless, their cascades may be

considered the initial boosted classifiers with multiple exits.

Bourdev and Brandt [1] trained a very long boosted clas-

sifier using the symmetric goal and subsequently utilized a

calibration algorithm to break this strong classifier into a

1Consequently the ROC curve obtained by varying θm upper-bounds

the error expressed by the “proper” ROC curve obtained by varying bm.

cascade, through a rejection threshold at every weak clas-

sifier. Because the thresholds were obtained after all the

weak classifiers were trained, the weak classifiers became

even less optimal w.r.t. the goal of the cascade. Xiao et al.

[16] corrected this by updating the training set before train-

ing each weak classifier. Nevertheless, the symmetric goal

was employed by both these methods to train weak classi-

fiers, resulting in sub-optimal feature selection. While the

approach of making decisions at each weak classifier is po-

tentially interesting, a number of issues are raised. First,

bootstrapping is required at every weak classifier, incurring

significant extra computational cost. Second and more im-

portantly, the requirement for early rejection diminishes as

progress is made down the cascade, where the problem be-

comes dominated by accuracy (as classification becomes

harder) as opposed to speed (since most of the obvious

negative samples will have already been rejected earlier).

In such cases, having a decision made at each weak clas-

sifier effectively discards important information that may

have been exploited if decisions were postponed until fur-

ther downstream, leading to less accurate classification.

Another problem with the methods above is that the

number of weak classifiers per boosted classifier must be

specified prior to training. This number is important be-

cause it is a trade-off between a better ROC operating point

and a shorter running time for a boosted classifier. Tuning

the number in an ad hoc fashion is difficult and time con-

suming. Our approach avoids this by choosing a proper

asymmetric goal that greedily minimizes the number of

weak classifiers to reach the target detection rate and false

acceptance rate simultaneously.

3. Multi-exit Asymmetric Boosting

3.1. Overview of the method

In what follows, we propose a method, called multi-exit

asymmetric boosting, to train a multi-exit boosted classi-

fier using an asymmetric learning goal (algorithm 1). Un-

like conventional cascades, a multi-exit boosted classifier

may be considered as a collection of boosted classifiers that

share overlapping sets of weak classifiers. Training multi-

exit boosted classifiers thus entails a number of added com-

plexities. Similar to Xiao et al. [17], we incorporate boot-

strapping and AdaBoost into a single method.

We use the same strategy as conventional methods [12,

13] in designing the target minimum detection rate and

maximum false acceptance rate at every exit node. That

is, we are interested in considering a rejection decision only

when the false acceptance rate is below α0 and detection

rate over 1 − β0, where α0 and β0 are predefined as part

of the cascade design. The problem of finding the optimal

combination of desired rates for all exit nodes are not ad-



Algorithm 1 Multi-exit Asymmetric Boosting

Require:

a generator G that produces i.i.d. training examples

maximum false acceptance rate α0

maximum false rejection rate β0

a stopping condition D {see section 3.1}
1: M0 = m = 0
2: M = ∅
3: λ = α0/β0 {see section 3.2}
4: Generate a training set Z = {(xn, yn)}N1+N2

n=1 of N1

positive examples and N2 negative examples

5: repeat

6: Initialize weights: {see section 3.3}
wn = e−(Sm(xn)−0.5 log λ)/N1 ∀n : yn = 1
wn = e(Sm(xn)−0.5 log λ)/N2 ∀n : yn = −1

7: repeat

8: m = m + 1
9: Normalize weights wn

10: Train fm(x) using {(xn, yn, wn)}N1+N2

n=1

11: Find the weighted training error of fm:

em =
∑N1+N2

n=1 wn1[yn 6=fm(xn)]

12: Compute the corresponding coefficient:

cm = 0.5 log 1−em

em

13: Update weights: {see section 3.3}
wn = wne−yncmfm(xn) ∀n

14: Estimate the training error rates:

αm = 1
N2

∑

n:yn=−1 1[Hm(xn)>=0]

βm = 1
N1

∑

n:yn=1 1[Hm(xn)<0]

15: until D or (αm ≤ α0 ∧ βm ≤ β0)
16: if not D then

17: M0 = m
18: M = M∪ {m}
19: Re-generate Z = {(xn, yn)}N1+N2

n=1 of N1 posi-

tive examples and N2 negative examples such that

Hm(xn) ≥ 0 ∀m ∈ M, n ∈ {1, . . . , N1 + N2}
20: end if

21: until D
22: return M and {(ci, fi)}M0

i=1 as the parameters of C

dressed in this paper, and it is assumed that (α0, β0) is pro-

vided for every exit node.

Line 16 to line 20 is a bootstrap to generate new exam-

ples after a rejection decision is made. As the sub-problem

gets harder, it is possible that the desired rates may not be

achievable. Therefore, a stopping condition D is needed. In

our experiments, we stopped training when the number of

weak classifiers between two exit nodes exceeds 200. Con-

ventional methods [12, 13] also used at most 200 weak clas-

sifiers to train a boosted classifier.

3.2. Analysis of asymmetric goals

One of the main contributions of our approach is to select

a proper asymmetric goal that greedily minimizes the num-

ber of weak classifiers to achieve detection rate over 1− β0

and false acceptance rate below α0 concurrently. Before

analyzing how the choice of an asymmetric goal affects the

final boosted classifier, let us assume for the moment that

AdaBoost minimizes an asymmetric goal instead of its ex-

ponential upper bound2. For notational simplicity, we de-

note the false rejection rate and the false acceptance rate of

a classifier H as β(H) and α(H) respectively. In the con-

ventional methods, one often trains a boosted classifier us-

ing AdaBoost with the symmetric goal in (8). If we plot all

the training ROC operating points (β(Hm), α(Hm))T with

an increasing number of weak classifiers m = 1, 2, . . . we

obtain a set of points in figure 1a (shown in red).

In AdaBoost and many of its variants [3, 10], when an

m-th weak classifier is trained, all other weak classifiers

are considered fixed. The proper ROC curve of the new

boosted classifier is simply the locus of all operating points

of the boosted classifier obtained through training the m-

th weak classifier with different asymmetric goals (as op-

posed to simply varying the threshold on the symmetric

goal function). Because of the immense computational ef-

fort involved, the proper ROC curve is seldom obtained in

entirety for training purposes; instead only a single operat-

ing point is derived for each weak classifier. While most of

the proper ROC curve remains unknown, a number of ROC

curve properties may be inferred as described below.

Let the unknown training ROC curve be denoted by Qm

and expressed in the form

Lm(β, α) = 0 (11)

with each instance of (β, α) that satisfies (11) representing

an ROC operating point trained with a different asymmetric

goal. In this paper, we make the assumption that Qm is first-

order continuous. Equation (9) representing an asymmetric

goal may be rewritten as

Gλ(β, α) = λβ + α, (12)

with a controlling parameter λ. When using Gλ to train the

m-th weak classifier, it becomes:

Jm,λ(h) = Gλ(β(Sm + h), α(Sm + h)) (13)

= λβ(Sm + h) + α(Sm + h) (14)

We assume the resulted weak classifier hm minimizes

Jm,λ(h) globally:

hm = arg min
h

Jm,λ(h). (15)

2In practice, because the minimization is applied on the exponential

upper bound, the value of the true goal tends to exhibit a locally oscillating

but globally decreasing behavior w.r.t. the number of weak classifiers.



(a) (b)
Figure 1. Illustration of how the operating point of a boosted classifier moves when more weak classifiers are trained. Blue solid curves are

equivalent to the ROC curves of the boosted classifier. (a): A case when the symmetric goal G1 is used, i.e., λ = 1. (b): A case when an

asymmetric goal Gλ is used with λ = α0/β0.

As in conventional methods, the boosted classifier is up-

dated via

Hm = Sm + hm. (16)

Training the weak classifier can be cast as a minimization

problem w.r.t. (β, α), with objective function Gλ(β, α), and

a constraint Lm(β, α) = 0. Thus, at any solution point (if

it exists) lying on Qm, the gradient of goal Gλ (i.e., ∇Gλ)

has to be perpendicular to the ROC curve Qm. Note that

∇Gλ is independent of β and α once λ is fixed.

By using the symmetric goal G1 (i.e., λ = 1) as in

conventional methods, one effectively chooses an operat-

ing point on Qm at which the gradient is perpendicular to

∇G1 = (1, 1)T. If instead we choose an asymmetric goal

Gλ for some λ ≥ 0, we recover a different operating point

on Qm with gradient perpendicular to Gλ = (λ, 1)T. By

varying λ from 0 to ∞ and retraining the weak classifier

each time, we can reconstruct the ROC curve Qm. Though

we have no knowledge of Qm prior to training a weak clas-

sifier, we can somewhat control where the next operating

point might be located, by controlling λ.

If we further assume that Qm is not only first-order con-

tinuous but smoothly varies as λ is changed, then a key ob-

servation is that Qm must be convex. This is because as

λ is varied from 0 to ∞, the gradient ∇Gλ monotonically

changes from vertical to horizontal uniformly throughout

the α-β space. Convexity is guaranteed as the operating

point (β, α) for a particular λ must not only be on a point of

Qm perpendicular to ∇Gλ but also be the global minimum

of Gλ.

Another important point is, if we use the same λ to train

every weak classifier of a boosted classifier, convergence is

guaranteed due to iterative decreases in values of a single

goal function. If we use different goals (i.e., different λ)

to train different weak classifiers, it is possible that when

a goal function decreases, other goal functions increase.

Hence, no convergence is guaranteed. Despite this, previ-

ous work shows empirically reasonable results when differ-

ent goals are used for different weak classifiers [8, 13], but

they require that the number of weak classifiers be specified

before training. Therefore, to ensure convergence and also

to avoid the need to specify apriori the number of weak

classifiers to be trained, we use the same λ to train every

weak classifier of a boosted classifier.

Generally, the training process should be stopped once

we reach an operating point in rectangle OAEB in figure

1, which represents an exact bound ensuring detection rate

over 1 − β0 and false acceptance rate below α0. However,

let us focus our attention on a more conservative but easier-

to-analyze bound, expressed by the triangle OAB. This tri-

angle has an interesting property as follows.

Theorem 3.1. If Qm penetrates triangle OAB for some

m, then the use of goal Gλ∗ with λ∗ = α0/β0 ensures that

point (β(Hm), α(Hm))T is located inside the triangle.

Proof. Because Qm is first-order continuous and intersects

with the line segment AB at two locations, there exists a

point (β∗, α∗) on Qm inside triangle OAB at which the

gradient of Qm is parallel to AB. Alternatively:

∇Lm(β∗, α∗) ‖ (α0, β0)
T. (17)

If we use λ∗ = α0/β0 to train the m-th weak classifier, we

obtain Hm such that:

∇Lm(β(Hm), α(Hm)) ‖ (α0/β0, 1)T. (18)

Because Qm is convex, (β(Hm), α(Hm)) is a unique point.



Since (α0/β0, 1)T ‖ (α0, β0)
T, these two points must coin-

cide:

(β(Hm), α(Hm)) = (β∗, α∗). (19)

Theorem 3.1 states that even though the next ROC curve

is unknown, if it intersects with triangle OAB, then by us-

ing goal λ∗ = α0/β0, a stopping point is found in no more

than one single iteration. This is an absolute guarantee.

Other choices of λ may result in one single iteration, but

the guarantee is not absolute.

Furthermore, if the ROC curve does not intersect with

triangle OAB, we still have a guarantee that the newly

found operating point minimizes function Gλ∗ . Since

∇Gλ∗ ‖ (α0, β0)
T, it means the newly found operating

point is the one nearest to the line containing segment AB
in Euclidean distance.

Therefore, we use λ = λ∗ to train every weak classifier

of a boosted classifier. In theory, the line containing seg-

ment AB is λ∗β+α = α0, so we can use Jm,λ∗(hm) ≤ α0

as the stopping condition. In practice, we use the original

stopping condition: α(Hm) ≤ α0 and β(Hm) ≤ β0.

Experiments in section 4.2 verify our analysis.

3.3. Updating weights

An important advantage in our method is that every weak

classifier is trained with the same asymmetric goal as the

boosted classifier. Therefore, the number of weak classi-

fiers needed to reach the desired rates is greedily the short-

est. In addition, no threshold adjustment need be applied

to a boosted classifier as in many previous methods. Con-

versely, the use of a threshold would mean that the asym-

metric goal of the boosted classifier is different from that

used in training the weak classifiers; hence the weak classi-

fiers would have been sub-optimally trained w.r.t. the goal.

We use the same weight-updating rule proposed by Vi-

ola and Jones [13]. By simply multiplying the weights

of every example (xn, yn) with
√

λyn , before training the

first weak classifier, the training goal of every weak classi-

fier essentially becomes asymmetric: FAR + λFRR. No-

tice that for every weak classifier, λ and bm are related by

bm = 0.5 log λ as in (10).

4. Experimental Results

4.1. Setup

To justify the arguments we made in the previous section,

we ran a few experiments. We collected 1521 face images

from the BioID Face Database3, 508 face images from the

AR Face Database [6], and about 4000 frontal face images

used by Xiao et al. in [16]. Altogether we obtained about

3http://www.bioid.com/downloads/facedb/index.php
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Figure 2. Comparison of training a boosted classifier with different

λ and stopping bounds

6000 face images. We used a generator that selects known

face locations randomly, and resizes them down to a base

resolution of 24× 24 pixels, with some perturbation bias to

achieve a slightly more robust performance [11]. We used

the same collection of a few thousand large images contain-

ing no faces used by Wu et al. in [15] to generate sufficient

non-face sub-windows.

In order to speed up our comparisons, we implemented

the technique for fast-training weak classifiers described in

[7]. Nineteen types of Haar-like features were used, gener-

ating nearly 300,000 Haar features. We observed a training

time of 4 seconds per weak classifier. This technique was

uniformly applied to all methods compared in table 1.

For testing, we used the MIT+CMU test set which con-

sists of 130 grayscale images with 507 frontal faces [9].

Post-processing was the same as in [12]. The experiments

were done on a 3.2GHz Intel Pentium IV PC with 1 GB

memory running Windows XP.

4.2. Training with different asymmetric goals

To test the effects between choosing different λ for train-

ing and the resulting number of weak classifiers, we ran the

following experiment. We trained multiple single-entrance

single-exit boosted classifiers by varying only λ and the

stopping bound (i.e., either exact or conservative). All of

these were trained using the same face training set with

5,000 examples per class, which had been filtered from a

cascade of a few layers. This was to avoid a trivial case that

a boosted classifier might end up using too few weak clas-

sifiers. We set the desired rates to be: α0 = 0.8 for false ac-

ceptance rate, and β0 = 0.01 for false rejection rate. Hence

the choice of λ selected by our method was at λ∗ = 80. We

counted the numbers of weak classifiers obtained when the

algorithms stopped. The results are plotted in figure 2.

From figure 2, the resultant curves are similar for λ ≤ 5
or λ ≥ 100. They differ at the range 5 ≤ λ ≤ 100, where

they both have low numbers of weak classifiers. Figure 3

illustrates an expanded view of this smaller range.
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Figure 3. A closer view on the comparison of training a boosted

classifier with different λ and bounds

In figure 3, the x-axis represents the angle of the gra-

dient of the goal function Gλ, w.r.t. y-axis. The angle is

calculated as tan−1 λ. As λ → 0, the angle approaches

0◦, while the angle approaches 90◦ as λ → ∞. The figure

shows that most of the values of λ with few weak classifiers

correspond to angles above 80 degrees. When training with

the conservative bound, the number of weak classifiers at

λ = λ∗ (indicated by the vertical line at tan−1 80 = 89.3◦)

was observed to be empirically optimal. We saw some fluc-

tuations when training with the exact bound. However, the

observed number of weak classifiers at λ = λ∗ was very

close to that of an optimal one.

4.3. Performance comparisons

We compared our method with original cascade [12] and

asymmetric cascade [13] of Viola and Jones, boosting chain

of Xiao et al. [17], nesting-structured cascade of Wu et al.

[14], soft cascade of Bourdev et al. [1], and dynamic cas-

cade of Xiao et al. [16]. To obtain free parameters for these

methods, we used either their proposed best parameters, or

obtained manually by trial and error. Also to make the com-

parisons as reasonable as possible, we simplified their ver-

sions by removing ideas that are reasonably irrelevant to the

comparisons. For example, in nesting-structured cascade,

we replaced Real AdaBoost with Discrete AdaBoost. We

used the same type of weak classifiers for all methods.

Table 1 shows some statistics obtained when training

these methods. We report the total training time based on

the best boosted classifiers. The first four methods had

many free parameters thus requiring much more trial and

error to get the best results than the last three.

The table showed that the methods that propagate scores

(i.e., boosting chain, nesting-structured cascade, dynamic

cascade, and multi-exit asymmetric boosting) resulted in

significantly smaller numbers of weak classifiers. Among

these four methods, multi-exit asymmetric boosting gave

the smallest number of weak classifiers, less than two third

that of the second best, i.e., nesting-structured cascade.

Method No of weak No of Total training

classifiers exits time

Viola-Jones [12] 4,297 32 6h20m

Asym cascade [13] 3,502 29 4h30m

Boosting chain [17] 959 22 2h10m

Nested cascade [14] 894 20 2h

Soft cascade [1] 4,871 4,871 6h40m

Dynamic cascade [16] 1,172 1,172 2h50m

Multi-exit boosting 575 24 1h20m

Table 1. Some key factors after training recent methods.
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Figure 4. Comparing different methods on the MIT+CMU test set

Figure 4 shows different ROC curves of these methods.

There are a few interesting points that can be understood

from these ROC curves.

Soft cascade turned out poorer than Viola and Jones’

original cascade. This is explainable as the former was “cal-

ibrated” from a fixed and very long boosted classifier, while

in the latter, bootstrapping was used after every successful

training of a boosted classifier, implying the use of better

datasets. Xiao et al. [16] observed a similar result.

Viola and Jones’ asymmetric cascade performed signif-

icantly better than both soft cascade and Viola and Jones’

original cascade, but not as good as other methods. It per-

formed better than dynamic cascade, boosting chain, and

nesting-structured cascade at first, but became inferior when

a lot more weak classifiers were trained. In the first few lay-

ers, training with an asymmetric goal indeed had an advan-

tage over that with the symmetric goal. As the sub-problem

became much harder as in the final layers of a cascade, the

use of propagating the scores from previous boosted classi-

fier became very useful.

Dynamic cascade performed worse than nesting-

structured cascade and boosting chain. While dynamic cas-

cade was trained automatically, boosting chain and nesting

structured cascade was trained with key parameters manu-

ally selected. This result justified our argument in section

2.1: as the sub-problem becomes harder, it is better to train



Figure 5. Some results of our method on the MIT+CMU test set

longer but more accurate boosted classifiers than making

early but less accurate rejection predictions.

Nesting-structured cascade performed comparable to

boosting chain. However, multi-exit asymmetric boosting

performed better than all previous methods. This was ex-

pected because not only multi-exit asymmetric boosting in-

herited the idea of asymmetric goals from asymmetric cas-

cade, it also inherited the idea of propagating scores from

one segment to another. Besides, the values of λ selected

by our method often resulted in low numbers of weak clas-

sifiers and high accuracy, and were often similar to those

manually chosen for asymmetric cascade [13]. Multi-exit

asymmetric boosting avoided the need to specify the num-

ber of weak classifiers to train per segment, as well as to

train a segment multiple times.

5. Conclusions and Future Work

We proposed a method to train a multi-exit boosted

classifier by combining the idea of propagating scores in

[14, 17] and training with an asymmetric goal in [13]. We

showed how to properly select an goal that achieves the

desired error rates with a minimum number of weak clas-

sifiers, avoiding the need to run multiple ad hoc trials to

discover the best boosted classifiers that satisfy the operat-

ing point requirements. Experimental results showed not

only significant reduction in training time and number of

weak classifiers, but also better accuracy compared to con-

ventional cascades and multi-exit boosted classifiers.

We did not address the problem of selecting the desired

rates for all the exit nodes, leaving it as an open problem for

future work. In the paper, we used fixed desired rates for

every exit node, similar to that of Viola and Jones [12, 13].

Also, our analysis of asymmetric goals might be the first,

but clearly future work should provide a deeper investiga-

tion into the issue.
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