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Abstract

Object detection is challenging when the object class ex-
hibits large within-class variations. In this work, we show
that foreground-background classification (detection) and
within-class classification of the foreground class (pose es-
timation) can be jointly learned in a multiplicative form of
two kernel functions. One kernel measures similarity for
foreground-background classification. The other kernel ac-
counts for latent factors that control within-class variation
and implicitly enables feature sharing among foreground
training samples. Detector training can be accomplished
via standard SVM learning. The resulting detectors are
tuned to specific variations in the foreground class. They
also serve to evaluate hypotheses of the foreground state.
When the foreground parameters are provided in training,
the detectors can also produce parameter estimate. When
the foreground object masks are provided in training, the
detectors can also produce object segmentation. The advan-
tages of our method over past methods are demonstrated on
data sets of human hands and vehicles.

1. Introduction
For object classes that exhibit large within-class varia-

tions, detection (segmentation) and pose (parameter) esti-
mation can be chicken-egg problems. Assuming the object
is detected and segmented from background, pose estima-
tion can be done as in [1, 28]. Assuming specific varia-
tions of the object class, detection (segmentation) can be
achieved as in [23]. However, if both pose and detec-
tion (segmentation) are unknown, then challenges arise.

One common solution is to use a divide-and-conquer
strategy, where the space of possible within-class variations
is partitioned, and different detectors are trained for differ-
ent partitions. Recent work in multi-view face detection
builds detectors for different head pose ranges [12, 17, 33].
In pedestrian and human hand detection, sets or hierarchies
of detectors tuned to different object variations are proposed
to handle large appearance variations [10, 20, 27, 31, 35].
However, discrete partitions have limited power when there
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are too few training samples in each subclass. Explicit fea-
ture sharing has to be employed to boost the performance,
but it also makes training more expensive.

In such a context, hybrid methods that unify detection
and parameter estimation are of great interest, especially
for human body detection and pose recognition. Some
approaches combine bottom-up part-based detectors with
top-down geometric constraints [9, 13, 21, 29]. Other ap-
proaches employ a recognition-verification strategy, where
discriminative models are used to produce estimates of body
pose (bottom-up), and then generative models are used to
verify pose estimates (top-down) [16, 24, 30]. However,
bottom-up recognition from images with background clut-
ter remains difficult, and the verification step cannot correct
an error when the recognition is already wrong.

Our work is related to recent work [37] in which a set of
detectors is learned jointly. However, that work did not ex-
ploit the link to kernels. In our work, one kernel measures
within-class similarity of the foreground class and the other
one handles foreground-background classification. Nonlin-
ear approximation is achieved with a nonlinear within-class
kernel. The resulting detectors are tuned to specific varia-
tions of the foreground class. In the experiments, our detec-
tors give improved detection accuracy over [32, 35, 37] on
data sets of human hands and vehicles.

The main contributions are as follows. First, the multi-
plicative kernel formulation enables feature sharing implic-
itly; the solution for the optimal sharing is a byproduct of
SVM learning. This is in contrast with [32, 37] where find-
ing the optimum is intractable, and greedy strategies must
be employed. Second, when object masks are included with
the training data, detectors can produce a mask for seg-
mentation of the foreground object. This mask also helps
to reduce the influence of background clutter inside a de-
tection window. Third, for applications where parameteri-
zation of foreground within-class variations is unavailable,
a nonparametric form is proposed that can be used within
the same multiplicative kernel model. This is in contrast
with [37] where a separate Adaboost-based mechanism had
to be employed. Finally, the proposed mode finding ap-
proach for the nonparametric case substantially reduces the
amount of training data that must be labelled.
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2. Our Approach
We start our derivation with the same problem definition

as [37]. Given a feature vector x ∈ R
n computed for an

image patch2, our goal is to decide whether or not the cor-
responding image patch depicts an instance of the object
with parameter θ ∈ R

m, which parameterizes certain varia-
tions of the foreground object class, e.g., object poses, view
angles, or latent factors that can be obtained via unsuper-
vised learning. We aim to learn a function C(x, θ) that tells
whether x is an instance of the object with parameters θ,

C(x, θ)

{
> 0,x is an instance of the object with θ

≤ 0, otherwise.

(1)
The function C(x, θ) is different from a generative

model P (x, θ) which has been explored in different con-
texts. Instead of estimating the distribution, C(x, θ) only
makes a binary decision as in Eq. (1). The magnitude of
C(x, θ) can be interpreted as confidence of the decision.

2.1. Multiplicative Kernel Construction

We now depart from [37] to introduce a nonlinear form
of C(x, θ), which leads naturally to a kernel representation.
Assume C(x, θ) can be factorized into the product of a fea-
ture space mapping φx(x) and a weight vector w(θ), which
is a common form in a classification problem,

C(x, θ) = φx(x)Tw(θ) (2)

where φx(x) = [φ0
x(x), φ1

x(x), . . . , φN
x (x)]T . Similarly

w(θ) is also in the form of basis function expansion, but
is a combination of vectors,

w(θ) =
M∑
i=0

viφ
i
θ(θ) = Vφθ(θ) (3)

where vectors vi ∈ R
N+1 are unknowns to be learned, and

V = [v0,v1, . . . ,vM ]
φθ(θ) = [φ0

θ(θ), φ1
θ(θ), . . . , φM

θ (θ)]T .

We assume that φx and φθ are defined. If we plug Eq. 3
into Eq. 2,

C(x, θ) = φx(x)TVφθ(θ)

=

⎡
⎢⎢⎢⎣

φ0
θ(θ)φx(x)

φ1
θ(θ)φx(x)

...
φM

θ (θ)φx(x)

⎤
⎥⎥⎥⎦

T ⎡
⎢⎢⎢⎣

v0

v1

...
vM

⎤
⎥⎥⎥⎦ (4)

= φT
x,θv, (5)

2In this paper, all vector variables are column vectors.

where φx,θ and v are the left and right vectors respec-
tively in Eq. 4. Note Eq. 5 is a standard binary classifi-
cation problem, in which φx,θ is the data term and v are
unknown weights. It can be solved by a standard kernel
based learning method, in our case, the SVM. The kernel
function kc(·, ·) is

kc(y,y′) = φT
x,θφx′,θ′

= [φθ(θ)T φθ(θ
′)][φx(x)T φx(x′)]

= kθ(θ, θ′)kx(x,x′), (6)

where y = [xT , θT ]T . Learning of V is implicit with this
kernel representation. If learned by SVM, the classification
function becomes,

C(x, θ) =
∑

i∈SV

αikθ(θi, θ)kx(xi,x)

=
∑

i∈SV

α′
i(θ)kx(xi,x), (7)

where αi is the weight of the ith support vector, and

α′
i(θ) = αikθ(θi, θ). (8)

Feature sharing among different θ is implicitly achieved
by sharing support vectors. When kθ(·, ·) is strictly non-
negative, e.g., a radial basis function (RBF) kernel, Eq. 7
can be interpreted as re-weighting the support vectors so
that only those having parameters similar to θ keep high
weights. Fewer support vectors have to be taken into ac-
count in a local subregion in θ space, as shown in Fig. 1.

Once we obtain all support vectors and corresponding
weights αi after SVM learning, we are able to evaluate a
tuple (x, θ) as defined in Eq. 1. If we fix θ, C(·, θ) is a
detector for a specific θ. On the other hand, given a x from
the foreground class, we can find the θ that gives highest
score via C(x, θ) as the parameter estimate of x.

2.2. Nonparametric kθ

In some problems, parametric forms of foreground
within-class variations may not be readily available. For
such cases, we propose a formulation that can utilize a non-
parametric kθ .

To understand the usage of nonparametric kθ , we need to
explain the role of parametric kθ in feature sharing. When
kθ is defined on a continuous θ space, two training samples
with close θ values obtain a high kθ score, and thus are
more likely to share features. Conversely, training samples
that are far from each other in θ space are less likely to
share features. We aim to preserve this similarity behavior
in designing a nonparametric kernel.

A straightforward design of a nonparametric kernel kθ

employs a nonparametric similarity/distance measure, e.g.,
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Figure 1. An experiment on synthetic data. A family of multiplica-
tive kernel classifiers is learned, where kθ is a RBF kernel defined
on θ, and kx is a linear kernel defined on x = (x1, x2)

T . The lin-
ear boundaries for example detectors C(x, 23o) and C(x,−30o)
are shown on the right. The circle points are the reweighted sup-
port vectors (Eq. 8). These synthetic “foreground” and “back-
ground” classes were chosen to illustrate the idea that local dis-
criminants can be learned jointly via multiplicative kernels, and
then reconstructed at a given θ.

bidirectional chamfer edge distance [10, 2] or shape con-
text distance [4]. Based on a distance measure D, a kernel
function can be defined [19],

kθ(i, j) = exp (−ηD(zi, zj)) , (9)

where zi and zj are representations of the foreground train-
ing samples indexed by i and j to calculate distance D.

After training, in contrast to obtaining a detector of a
parameter θ as in Eq. 7, we can obtain a detector for a par-
ticular training sample indexed by i:

C(x, i) =
∑

j∈SV

αjkθ(i, j)kx(xj ,x)

=
∑

j∈SV

α′
j(i)kx(xj ,x). (10)

The kernel kθ(i, j) gives high weights to support vectors
that are similar to i. Intuitively, those support vectors that
can provide more evidence for i should be weighted higher.

It is possible that a distance measure does not guarantee
a valid Mercer kernel, which should always have a positive
semi-definite Gram Matrix. However, when the Gram Ma-
trix based on kθ is positive semi-definite for the training set,

we can still apply it, since in detection only kx is evaluated
as in Eq. 7 and Eq. 10. If the Gram Matrix has small nega-
tive eigenvalues, we can either adjust η in Eq. 9, or employ a
method to replace the negative eigenvalues with zeros [22].

Alternatively, we can use a prototype-based embedding
method [3, 8, 11]. A set of prototype objects z1, . . . , zk can
be selected from the foreground class. The embedding for
each instance z is obtained by evaluating the distance D to
the prototype objects:

θ = (D(z, z1), . . . , D(z, zk)). (11)

Since θ is in a Euclidean space after embedding, we are
guaranteed that kθ in Eq. 9 is a valid Mercer kernel.

3. Detector Training
In this section, we give details on how to train the model

defined in the previous section. A bootstrap training process
is proposed first. Then, we will talk about how to incorpo-
rate image masks in training, to help reduce the influence of
background clutter and to produce foreground object seg-
mentation during detection.

3.1. Bootstrap Training

For training we are given a set of foreground and back-
ground training samples. The training samples take the
form of tuples - (x, θ) or (x, i). Each foreground sample
x is associated with its corresponding groundtruth θ (para-
metric case) or its sample index i (nonparametric case).
A background training sample x can be associated with
any foreground parameter or index of a foreground training
sample to form a valid tuple. The number of such combi-
nations can be huge. We therefore employ an iterative pro-
cess of bootstrap training to avoid combinatorial complexity
while maintaining the desired detection accuracy.

The training process starts with assigning each back-
ground feature vector x a foreground parameter θ or index
i at random. Then in each iteration false positives are col-
lected. A false positive is also in the tuple form (x, θ) or
(x, i), where θ or i is the corresponding parameter or sam-
ple index associated with the detector that accepts x. A
fixed subset uniformly sampled from the false positive tu-
ples is added to the background training tuples for SVM
training in the next iteration. The process ends when the
number of false positives falls below a threshold or the max-
imum number of iterations has been reached. The pseudo
code for the this process is shown in Fig. 2.

3.2. Including Object Masks in Training

There are situations in practice when object masks can
be obtained during training data acquisition, for instance,
when the background is known. In such cases, masks can



Given
Foreground training samples Xf = {xf1 , . . . ,xfn

},
Background training samples Xb = {xb1 , . . . ,xbn

},
Parameters of foreground training samples Θ =
{θf1 , . . . ,θfn

}.

Initialize
Assign each foreground training sample xfi

its actual
parameter θfi

, and each background training sample
xbi

a random value from Θ to form tuples (x, θ) for
training. If object masks are available in foreground
training data, the mask of θ is applied on x.

While

1. Compute Gram matrix Kg of all training sam-
ples, where kg(i, j) = kθ(θi, θj)kx(xi,xj).

2. Carry out SVM training using Kg , and obtain in-
dividual detectors for each θ ∈ Θ according to
Eq.7.

3. Apply all the detectors to background training
samples Xb. The false positive samples are in
the form (xpi

, θpi
), where θpi

is the parameter
of the individual detector that accepts xpi

.

4. If the number of (xpi
, θpi

) < Threshold or the
max number of iterations reached, break.

5. Sample from all (xpi
, θpi

) to obtain a subset of
a fixed size Ns. Expand original training tuples
with this subset of false positive samples as back-
ground training tuples.

end

Figure 2. Pseudo code for bootstrap training with parametric
within-class kernel kθ . For the case of nonparametric kθ , the set
Θ is replaced by the set of indices of foreground training samples.

be used to reduce the influence of background regions inside
the detection window during both training and testing.

When each training sample has a mask, features from
outside the mask can be ignored. For instance, to calculate
the color histogram of a foreground object, only those pixel
colors from inside the mask region should be considered.
When the features have local supports and are ordered ac-
cording to their spatial arrangement, e.g., Histogram of Ori-
ented Gradients (HOG) [7] or Haar wavelet features [34],
applying object masks in feature extraction means that the
feature components that have supports from outside the ob-
ject masks have zero values.

To be consistent, background training samples also need

to be applied with masks during feature extraction. As men-
tioned earlier, each background training sample is associ-
ated with a foreground parameter θ or an index i of a fore-
ground training sample. Therefore the mask of the fore-
ground training sample with θ or i is applied to this back-
ground training sample.

Once a detector is associated with a mask, segmenta-
tion can be produced by superimposing the detector’s image
mask onto an accepted image patch during detection. The
image mask of a detector is calculated as a weighted sum
of image masks from foreground support vectors, using the
support vector weights α′

i.
Masks do not have to be explicitly applied in testing

when both of following two conditions are met:

1. The features have local supports like Histogram of
Gradients (HOG) [7] and Haar wavelet features [34].

2. kx(x1,x2) is based on the dot product xT
1 x2, e.g., the

linear kernel and polynomial kernels.

This is true because during detection, when x1 is a support
vector and x2 is the input feature vector, calculating xT

1 x2

automatically zeros out the features of x2 from outside of
x1’s mask. It has the same effect as excluding features of
x2 from outside x1’s mask during detection.

We should also mention that object masks were also used
in previous work [5, 36] where image segmentation and de-
tection can be achieved jointly. However, in our method no
decomposition of the image mask into local edgelets or im-
age patches is needed, which reduces the effort in training.

4. Detector Set Acquisition and Mode Finding
In the detection process a set of detectors is applied on

the input. An input is classified as from the foreground class
if and only if at least one of the detectors accepts it, in the
same manner as partition based methods [12, 17, 33, 35].

After training as described in Sec. 3, we are able to con-
struct a detector for a parameter θ or a foreground sample
index i. The set of online detectors is sampled from all pos-
sible detectors. In the parametric case, a parameter sample
set is uniformly sampled from the parameters of foreground
training samples. The detectors of those sampled parame-
ters form the online detector set. In our experiments, this
works well, but other sampling methods could possibly be
employed.

In the nonparametric case, first the detectors associated
with each foreground training sample are constructed. Then
via agglomerative clustering among detectors, the medoids
of clusters are collected as the online detector set. The sim-
ilarity measure Sα is defined on the support vector weights,

Sα(w(i),w(j)) =
α′(i)T α′(j)

||α′(i)|| · ||α′(j)|| ,



where α′(i) = [α′
1(i), α′

2(i), . . . , α′
n(i)]T are the support

vector weights for i, as defined in Eq.10.
Each cluster is regarded as a mode that represents a vari-

ation of the foreground class. During agglomerative cluster-
ing, the number of modes decreases as agglomerative clus-
tering goes further. The proper number of modes is decided
as the minimum number of modes that can achieve accept-
able detection accuracy on a validation set.

Interestingly, in the nonparametric case, foreground
states can still be recovered during detection by labelling the
mode medoids (which are foreground training samples as-
sociated with online detectors). For example, in a pedestrian
detection application, if the user wants to know whether
a detected person is in a crouching pose, a walking pose
or a standing pose, then the user can label mode medoids
with these three labels. Once a pedestrian is detected, the
label of the mode medoid associated with the detector of
the highest score indicates the pose of this person. Parame-
ter estimation can also be achieved by labelling the ground
truth parameters of mode medoids. An obvious advantage
of this strategy is that only a small portion of the foreground
training data must be labelled. This can save a significant
amount of effort that might be needed to label all training
samples for the same purpose. We demonstrate the advan-
tages of this approach in a vehicle view angle estimation
experiment in the next section.

5. Experiments
In this section we evaluate the proposed method in two

applications: hand detection and vehicle detection. For the
purpose of these experiments, HOG [7] features are em-
ployed for x on all data sets, while other features could be
possible. We chose the HOG feature representation since it
is widely used, and human hands and vehicles show strong
edges in their appearances. The detectors of our method are
trained by a modified version of SVMlight [14] with mul-
tiplicative kernels. The between-class kernel kx is always
a linear kernel, and the within-class kernel kθ is paramet-
ric or nonparametric depending on the data set. In training
both kx and kθ have to be calculated. In detection kθ does
not have to be calculated since the online detectors are sam-
pled as a pre-computation as described earlier, and therefore
only depend on x. Our results are compared with results ob-
tained via a partition based method [35] and methods that
explicitly share features [37, 32].

5.1. Hand Shape Detection with Parametric kθ

In the hand shape data set of [37], two angle parame-
ters (within the range [0,90]) are labelled on all hand im-
ages. There are 1696 hand images for training and 1018
for testing. There are also 5500 background training sam-
ples and 50000 background test samples, cropped from real
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Figure 3. Comparison of ROC curves on the hand shape data set
with two-dimensional parameters [37]. The detection rate is in the
range between 94% and 100%.

background images or hand images of other hand shapes. In
the implementation of our method, the within-class kernel
kθ is a RBF kernel in the two-dimensional parameter space.
After SVM training, 200 parameter values θ with corre-
sponding detectors are uniformly sampled from the 1696
parameter values associated with foreground training exam-
ples. These 200 detectors are then used at the online stage.

The ROC curves of the detection result (hand vs. back-
ground) are shown in Fig. 3. As can be seen from the ROC
curves, our method consistently outperforms [37]. At a
false positive rate of 2 × 10−4, it improves the true posi-
tive rate from 94% to 99%. Both methods apply 200 de-
tectors at the online stage so the online speeds are very
close. However, the training of the multiplicative kernel
based method is about 10 times faster than the boosting
based method [37].

Parameter estimation is achieved by assigning the pa-
rameter associated with the detector of the highest score.
The mean absolute errors on the two finger parameters are
6.7 and 4.6 degrees respectively, in contrast to 9.0 and 5.3
degrees in [37].

5.2. Hand Detection and Segmentation with Non-
parametric kθ

In this data set the hand images are obtained without
explicit parameter labelling. Hand images are collected
from two sources of sign language video sequences: Flem-
ish Sign Language data [6] and American Sign Language
data [18]. Example frames are shown in Fig. 4.

Figure 4. Example sign language sequences from which the train-
ing and test hand images are obtained.
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Figure 5. Six hand modes are displayed with their mode medoids, positive detector weights and mode masks. For each mode the weights
of foreground support vectors are displayed at bottom.

In total there are 17 signers. The training set contains
3000 hand images and the test set has 2270 hand images.
The test set and training set are disjoint. For the training
hand images, corresponding hand silhouettes are also ob-
tained. About 70% of the hand silhouettes are automati-
cally segmented by skin color models or simple background
models. The rest are obtained manually.

The background training set contains images of outdoor
and indoor scenes. These are separated into disjoint training
and test sets, which contain 300 images each. From each
background image set 5000 image patches are collected as
samples for the background class.

In the implementation of our method, the within-class
kernel kθ is in the nonparametric form of Eq. 9. The dis-
tance measure D is the bidirectional chamfer edge dis-
tance [10] between hand images. With η = 1, the Gram
matrix of kθ is positive semi-definite on the training set.
1242 hand modes are obtained after agglomerative cluster-
ing as described in Sec. 4. The total training time is about 30
minutes on a single 2.6GHz AMD Opteron 852 processor.

Six out of the 1242 hand modes obtained after train-
ing are shown in Fig. 5. For each mode the figure shows
three images: the mode medoid, the positive weights of
the detector associated with the medoid, and the mask.
The positive weights of a mode detector are shown in the
same way as in [7] to demonstrate how local edge orienta-
tions are weighted. A mode image mask is computed as a
weighted sum of image masks of support vectors for the top
50 weights, and then thresholded to obtain a binary image.
While there could be different ways to construct an image
mask, in our experiment, the obtained masks have appro-
priate sizes and shapes for this setting. The resulting masks
are applied at the online stage to yield segmentation results.

For each mode shown in Fig. 5, a graph shows the distri-
bution of support vector weights α′ . Interestingly, although

the weights have peaks on a few foreground support vectors,
the sum of weights from low weight support vectors is sub-
stantial. This indicates that the contributions to the detec-
tor of a particular foreground variation come from a broad
range of training samples, although each contribution may
be small. One explanation is that very different hand shapes
may still share segments of finger or palm boundaries. Intu-
itively, this broad feature sharing ability may help to prevent
overfitting on training sets that are of limited sizes.

Examples of the combined detection and segmentation
results obtained with our method are shown in Fig. 6. The
segmentation obtained in this way is only approximate;
nonetheless, the shapes are matched well and the segmenta-
tion is obtained with no extra cost. The segmentation result
from our method can be used to mask the image for a hand
shape estimation module in sign language analysis or as ini-
tialization to a method that requires segmented input.

Figure 6. Examples of detection + segmentation.

For experimental comparison, a partitioning-based
method is formulated and trained as follows: first clustering
of hand subclasses is obtained via k-means with Euclidean
distance of HOG features, then the detector for each sub-
class is trained using SVM with a RBF kernel. The γ of
the RBF kernel is 0.1, which is chosen empirically to max-
imize the accuracy. Each subclass is also associated with
a mask, which is the union of all training masks belonging
to this subclass. The features from outside a subclass mask
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Figure 7. ROC curves of different detectors for hand detection.

are ignored during training and testing of the subclass detec-
tor. The accuracy of the partition based method improves as
the number of partitions increases to around 50 partitions.
Further increases of the number of partitions do not yield
significant improvement.

The detection accuracy of the different methods is shown
in the ROC curves of Fig. 7. Our method outperforms other
methods by a clear margin on this data set. Compared to
the best competing method (50 partitions), our method im-
proves detection accuracy from 80% to 90% at a false pos-
itive rate of 5%. At the detection rate of 80% our method
reduces the false positive rate from 5.3% to 1.7%.

5.3. Vehicle Detection and View Angle Category
Classification

The vehicle detection data set consists of 2809 vehicle
images from the LabelMe data set [25]. The vehicle images
are put into 12 view angle categories as shown in Fig. 8.
The background data set contains 778 street scene images
without any vehicles. Both the vehicle and the background
image sets are split half-half into disjoint training and test
sets by random sampling. 5000 background training sam-
ples and 5000 background test samples are obtained from
corresponding image sets.

In our method we use vehicle bounding boxes as masks.
The nonparametric within-class kernel kθ is a RBF kernel
on HOG features with γ = 0.5. After training, 560 mode
detectors obtained via agglomerative clustering are used for
detection. We compare performance with three other de-
tection methods [32, 37, 35]. For [32] the view angle la-
bels are provided since it is a multi-class detection method.
In [35] the tree structure is mainly controlled by a splitting
threshold θz . The best θz is found at 0.95 in this experiment,
which produces a tree of 13 leaf nodes.

The detection accuracy of all methods is shown in the
ROC curves of Fig. 9. Compared with [35], our method
improves the detection rate from 92.4% to 94.2% at the
false positive rate of 1%. At the detection rate of 95%, our
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        120                        150                         180                        210  

Figure 8. Examples of view angle variations of vehicles in the La-
belMe data set [25].
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Figure 9. ROC curves for vehicle detection experiment.

method reduces the false positive rate from 2.4% to 1.2%.
Besides detection, we are also interested in estimating

the view angle category of an input. The view angle cate-
gory of a test input can be estimated if the mode medoids
associated with detectors are labelled with true view cate-
gories. As described in Sec. 4, a foreground test example is
assigned the view category of the mode medoids associated
with the detector that has the highest score.

We compare our method with [32] and a baseline method
on a view angle category estimation experiment. Each train-
ing and test vehicle example has a ground truth view angle
category label, as is shown in Fig. 8. The method of [32]
gives a fixed accuracy of 65.0% on this data set. A baseline
method that learns 12 category detectors via Adaboost [26]
gives an accuracy of 62.4%. The accuracy is relatively low,
mainly due to 180 degree symmetry in cars. In the base-
line method, each of the 12 category detectors is a combina-
tion of 2000 weak classifiers. In both [32] and the baseline
method, view angle labels of all 1405 foreground training
examples are given.

Our method achieves an accuracy of 65.6% with 400
modes, which means only 400 view angle category la-
bels (out of 1405) are needed during training. With 600 and



800 modes, our method achieves accuracy of 68.0% and
71.7% respectively. Compared with [32] and the baseline
method, a clear advantage of our method is that parameter
labelling is only required on a portion of foreground training
data to achieve comparable or better estimation accuracy on
this vehicle data set.

6. Conclusion and Future Work
A multiplicative kernel gives a general form for learning

a family of detectors that are tuned to within-class varia-
tions of the foreground class. With this formulation, feature
sharing is implicitly achieved. The learned detectors also
evaluate the foreground state. Moreover, object masks can
be employed to reduce the background influence inside a
foreground bounding box.

Currently the kernel functions employed in this work
are limited, in contrast with the numerous interesting ker-
nels proposed in the machine learning literature in recent
years. As our formulation is general, we are enthusiastic
about investigating the use of other kernels in our method.
At the same time, exploiting implicit parameterizations like
GPLVM [15] is also a direction for future investigation.
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