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Abstract

Modeling the dynamics of heart and lung tissue is chal-
lenging because the tissue deforms between data acquisi-
tions. To reconstruct complete volumes, sample data cap-
tured at different times and locations must be combined.
This paper presents a novel end-to-end, data driven frame-
work for the complete reconstruction of deforming tissue
volumes. This framework is a joint optimization over an un-
deformed tissue volume, a deformation map that describes
tissue motion for given pose parameters (i.e. breathing and
heartbeat), and an estimate of those parameters for each
data acquisition. Tissue motion is modeled by deforming a
reference volume with a cubic B-spline free form deforma-
tion, and we use Isomap to derive initial estimates of the
pose of sample data. An iterative method is used to simul-
taneously solve for the reference volume and deformation
map while updating the pose estimates. This same process
is demonstrated on 4D CT lung data and heart/lung MR
data.

1. Introduction

Understanding respiratory and cardiac tissue motion is a
key pre-cursor to many diagnostic and treatment protocols.
Reconstructing a 4D model of how a tissue volume deforms
is a challenging computational problem, that requires the
joint optimization of three parts:

1. Reference volume estimation — Estimating the unde-
formed appearance of the data volume.

2. Parameterized deformation map generation — Estimat-
ing the deformation of the reference volume due to tis-
sue motion.

3. Deformable-pose estimation — Estimating, for each
time sample, the motion parameter of the deformation
map at the time of sampling.
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Figure 1. Previous 4D CT lung reconstruction methods pick the
slab in each scanner position with lung volume closest to a target
value (shown as vertical line). Each slab only covers part of the
lung (one such slab is outlined in red). Discontinuity errors can be
seen at the boundaries of scanner positions.

Common approaches to this problem requires additional
data in the form of either (a) a known reference volume,
or (b) feature detectors that reliably find and track points
to estimate the deformation. In this paper, we propose a
completely data driven method that is successful without
either of these.

The key contribution that allows this approach is a re-
cently proposed algorithm for manifold learning called
Isomap [13], and more recent specializations to allow pa-
rameterization of medical images [4]. This family of algo-
rithms takes in an unsorted collection of data volumes that
vary due to an unknown deformation and gives a percep-
tual organization to those data volumes, i.e. sorting them so
that similar data volumes have similar parameters. This pro-
vides a novel bootstrapping approach focusing on the third
piece of the optimization procedure by automating a mech-
anism to estimate the pose of each data volume, without
specifying either the reference volume or what type of de-
formation there is.

We demonstrate this algorithm in two different scenar-
ios: reconstructing the deformation field of 2D slices cap-
ture in a cine-MRI, and reconstructing 4D deformation



fields in lung CT. The lung CT acquisition process only
captures a small slab of data at a time, making it difficult
to acquire a full reference volume.

In 4D computed tomography (4DCT) of the lung [5, 6],
a part of the lung about 1 inch in height is repeatedly im-
aged while the patient breaths. The patient is then moved
I inch and a set of images at the next position is acquired.
Each image is ordered by the breath cycle phase at which it
was acquired. A lung volume at a specific breath phase can
be created by taking a sample from each scanner position at
the same breath phase. This is shown in figure 1. Our ap-
proach to this problem differs in that it directly deconstructs
the samples into a reference image and a deformation map,
which allows us to create a lung image at any breath posi-
tion, even when a gap in the data occurs.

2. Previous Work

Previous work in the analysis of dynamic medical im-
agery includes studies of 4D CT data and cardiac MRI. B-
spline models of tissue deformation have been fit to tagged
MR images [7, 14], and untagged MR images [2]. In 4D
CT of the lung a B-spline deformable model has been used
to find the deformation between 3D reconstructions at ap-
proximate maximum inhale and approximately maximum
exhale [9]. More recent work aims to minimize the arti-
facts caused in the 3D reconstruction at each breath phase;
when data is missing in a particular slab, optic flow is used
to reconstruct a 4D CT data set by interpolating data from
existing measurements to exactly the predefined respira-
tory phase at a particular phase. This helps for some kinds
of artifacts but not artifacts caused by vertical motion that
causes tissue to leave the (one inch high) data acquisition
volume [3]. Some 4D CT studies of the lung have relied
on a given reference image which is acquired by scanning
the patient during a breath hold [15, 8]. A lung deformation
model can then be created by registering the sample images
from different parts of the breath to the breath hold image
and fitting a B-spline to the deformation. Our method does
not require a separately acquired reference image but can
compute this image.

In the computer vision community, recent work on holis-
tic analysis of sets of images that vary due to a few pa-
rameters is often based on manifold learning. Approaches
include using manifold constraints to regularize segmen-
tation of cardiac MR images [16], and to learn the low-
dimensional parameterization of a cardiac MR set [11], in
order to find nearby neighbors for effective image interpola-
tion. However, neither approach solves for an explicit refer-
ence volume or deformation map. In the general case of an
object undergoing translational movement manifold pursuit
can be used [10].

3. Modeling Deformations of Tissue Volumes

Medical images of moving tissue can be represented as
a function (7, #) which captures the intensity of tissue in
the image at all spatial locations Z and poses g. This func-
tion should match the intensity values of the image samples
S; (&) at their respective pose 9_; To constrain the data vol-
ume I we assume that it is created from an underlying ref-
erence volume I, which accounts for the appearance of the
structure in all spatial dimensions and a set of free form de-
formations f (Z, 5) parameterized by pose 6 which account
for the motion of the structure during physiological activity.
We use cubic B-splines as our free form deformation for
simplicity of computation and differentiability and for the
finite support of its basis functions. The equation for a B-
spline deformation with two input dimensions is computed

as
4
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where A, and By, are cubic basis functions with weights
wWap. The deformation takes as input the spatial position
and pose of the structure, and outputs the deformed posi-
tion of the structure in a reference coordinate system. The
deformed image /; at a pose §'is calculated by indexing the
reference image I, with the deformation map.

Id('f’ ) = I,(f(f, )) (2)

4. Model Optimization

The model is defined by three sets of parameters which
correspond to the three kinds of inference problem.

1. The values of the voxels in the reference volume I,..
2. The parameters of the deformation map wz.
3. The pose estimates 9_; for each sample.

The cost of the model is defined as the reconstruction
error of the samples.

c=Y [w@d)-s@ra o
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The integral is defined over all the pixels of the sample im-
age 5;, which may only be part of the range of the model.
We use a standard non-linear solver L-BFGS-B based on
a Quasi-Newton approach to solve for the minimum of the
cost function [1]. In each iteration we obtain a new set of pa-
rameters for the deformation map and pose estimates from
the L-BFGS-B algorithm. we compute the cost function and
gradient of the cost function with respect to pose estimates
and deformation parameters and provide these values to the
L-BFGS-B algorithm. Additionally, if the cost function has



Figure 2. Reference images of synthetic data in iteration 1, 10, 50, 100, 400, and at convergence (1307).

gone down since the last iteration then the reference image
is recomputed by deforming the samples images into the
coordinate system of the reference image using the current
deformation map.

4.1. Basis Weight Derivatives

For clarity we present the following equations for the
case with exactly one spatial dimension and one pose di-
mension. The gradient of the cost function with respect to a
basis function weight can be computed analytically.
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The derivative of the deformed image with respect to the
weight of a basis function can be calculated using the chain
rule on equation 2.
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The generalized form of the chain rule is required when the
model has more than one spatial dimension; however, this
value is still easily computed. The first term of the product
can be calculated directly as an image derivative of the de-
formed image. The second part can be calculated from the
B-spline using equation 1.
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This just picks the basis function which corresponds to the
weight wag.

4.2. Pose Estimate Derivatives

The gradient of the cost function with respect to the pose
0 of a sample can also be calculated analytically. Simi-
larly to equation 4, the derivative of the cost function can be

Figure 3. Final reference images as the deformation is constrained
to be closer to the identity at the central pose.

calculated; however, only one sample will be non-zero.

)
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The partial derivative of the B-spline function with respect
to 0 requires taking the derivative of some of the basis
functions of the B-spline.
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In which By is the derivative of By,.

4.3. Computing Reference Images

An optimal reference image can be computed given a
deformation map and pose estimates. Each sample image
can be deformed into the coordinate system of the reference
image, using the inverse of the B-spline deformation. The
mean of these deformed sample images is the best possible
reference image for the given deformation and pose esti-
mates. Figure 2 shows the evolution of the reference image
as the optimization iterates.

4.4. Initial Conditions

The identity transformation is used as an initial guess
for the deformation. The initial pose estimates can be mea-
sured directly using a physical device such as a belt around
the patients abdomen, or can be computed from the image
data using manifold learning techniques [13]. Assuming the
identity transform as an initial deformation leads to an ini-
tial reference image which is the average of all the samples.

4.5. Anchoring the Reference Image

As described so far, the optimization problem is under-
constrained, for example, a shift of the reference image is
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Figure 4. Image samples and their reconstructions. The recon-
structions contain less noise, since they combine the data from
many samples.

equivalent to a shift of the deformation map. Furthermore,
there is no guarantee that the reference image even resem-
bles the tissue. This problem can be solved by constraining
the reference image to be equal to the tissue volume at a
particular pose. This is accomplished by penalizing devi-
ation (l2 norm) of the deformation map from the identity
deformation at the central pose. A large scaling factor on
this penalty term can lead to slow convergence and may ad-
versely effect pose estimates if they are allowed to change
during optimization. Figure 3 shows a sequence of final ref-
erence images for increasing penalty terms; notice that the
reference images become rounder and more like the sam-
ple images as the level of constraint on the deformation is
increased.

4.6. Finding Deformations in Low Contrast Regions

In low contrast regions, any deformation map will yield
similar images, making it difficult to determine the appro-
priate deformation map. However, tissue normally remains
together as it moves, and hence has a similar direction of
movement at nearby points. By applying a smoothness con-
straint we can determine the most likely deformation map
even in low contrast regions, and otherwise overcome noise
in our images. We enforce a smoothness constraint by ap-
plying a penalty term on the square of all second derivatives
of the B-spline deformation with respect to both its spatial
parameters and pose parameters.

Different deformations or penalty terms can induce prop-
erties such as volume preservation. However, for efficient
optimization, the deformation must be differentiable. A
useful application of penalty terms could be in distinguish-
ing rigid and semi-rigid bodies [12]. In general, we have
found that a coarser grid of control points is more effec-

Expanding

0.0 0.2 0.4 0.6 0.8 1.0
Shifting

Figure 5. Pose estimates (black dots) for synthetic data. Recon-
structed images of specific poses marked with a X are shown.

tive at producing a smoother deformation than the use of a
smoothness penalty term.

5. Sample Applications

In this section we show results of our algorithm for three
data sets: a synthetic data set, a 4D CT lung data set, and a
2D heart MRI data set.

5.1. Synthetic Data

We create a synthetic dataset of the heart consisting of
two concentric circles which we have deformed in two
ways, shifting (to simulate the effects of breathing on the
heart) and expansion (to simulate a heartbeat). Each of the
100 sample images is 60x60 pixels and has Gaussian noise
added. Figure 4 shows some sample images and their re-
constructions. Figure 5 displays the data volume of this
synthetic data. Each black dot represents the location in pa-
rameter space of one of the 2D sample images used as input
to the algorithm. At the poses marked with X we draw the
cross section of the data volume I(x, *, 6, ¢) computed by
our algorithm. The generating size and positions were cho-
sen randomly and were not used by the algorithm. Instead,
initial poses were estimated using Isomap to extract two pa-
rameters and employing Independent Component Analysis
to rotate the axes to a more meaningful position.

B-spline control points were placed on a 10 pixel grid
(6 spans in both x and y coordinates) with 5 spans over the
shifting (¢) parameter and 5 spans over the expansion (¢)



Figure 6. Lung reconstructions arranged from exhalation to inhalation. Right: vectors of tissue movement during breathing.

parameter for a total of 10368 parameters. Optimization
took about 3 minutes on an AMD Athlon 64 3800.

5.2.4D CT lung

4D CT scans are created by scanning a patients lung mul-
tiple times as they breath. A 16 slice scanner in cine-mode
is used to acquire 25 data volumes each approximately one
inch in height of the same location on the patient. The pa-
tient is then moved one inch to begin capturing the next slab.

Initial estimates of the lung volume were provided by
a belt around the patient’s abdomen which measured chest
circumference. Control points were placed every 8 vox-
els in all spatial dimensions, and 4 spans were used to
model breathing, producing a total of 57,330 B-spline pa-
rameters. The reference image has dimension 56 by 80
by 152 (680,960 voxels). And each of 250 samples has a
single breath parameter. So 57,580 parameters are explic-
itly optimized for in the solver. Optimization took about 3
hours on an AMD Athlon 64 3800. Figure 6 shows a coro-
nal cross section of the lung at three stages during exhala-
tion and a vector map showing tissue motion during breath-
ing. Lung CT reconstructions are possible even without belt
measurements, by using an Isomap based pose estimation
method [4].

To measure the quality of the deformation model we de-
termine how well the model is able to register slabs with
similar pose estimates. For each of the 250 sample slabs
we deform the sample slab with pose estimate most similar
to it using the deformation map to account for motion due
to breathing. The average voxel-wise difference between
the sample and its deformed nearest neighbor is found to be
15.8 Hounsfield Units (HU) with a standard deviation of 4.0
HU. In comparison, a direct difference between the sam-
ple and its nearest neighbor (without deformation) is 16.2
HU with standard deviation 4.3 HU. Although the improve-
ment is small, a two tailed paired t-test over all 250 samples
shows that the difference in mean between the two distribu-
tions is significant (p-value 2.1 - 10™%).

5.3. MRI heart/lung

Data was captured as 193 frames of an un-gated cardiac
MR during free breathing conditions. Initial pose estimates
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Figure 7. Large dots show the pose estimates of the MRI heart/lung
dataset. Reconstructed images are shown at points marked with X.
The arrow 1 and 2 correspond to pose changes along the breathing
and heartbeat axes respectively: the motion corresponding to these
pose changes is shown in figure 8.

Figure 8. The motion corresponding to a change in pose along
arrow 1 and 2 in figure 7.



were computed using Isomap with a modification for em-
bedding onto a cylinder. Results are shown in figure 7. The
vertical translation of the heart due to breathing is visible
along the x-axis, while the cyclic heartbeat is visible along
the y-axis. Figure 8 shows the deformation field that cor-
responds to motion along the arrows (marked 1 and 2) in
figure 7.

Since the images vary in part due to blood flow that ap-
pears in some parts of the heartbeat cycle, the deformation
field does not always correspond to tissue motion. Inte-
grating a reference image which is able to account for such
changes is a key direction of future work.

6. Conclusion

We have presented a framework for modeling moving
tissue in medical images that can be applied to many dif-
ferent imaging modalities. By, fully modeling the defor-
mation using a reference image and deformation map, we
provide a method capable of simultaneously (1) estimating
the undeformed appearance of the data volume, (2) estimat-
ing arbitrary deformations, and (3) estimating the pose of a
data sample. In the future, we hope to use our framework to
address some of the shortcomings of current reconstruction
methods and provide high-fidelity medical data reconstruc-
tion, specifically for 4D CT of lung tissue.

Looking forward, a key future problem in this domain
is the verification of automatically generated tissue motion
models. The availability of comparative data sets, with
known ground truth based on physical markers or phantoms
with known motion would allow better quantitative analy-
sis.
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