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Abstract

Warping is fundamental to multiple algorithms in com-

puter vision andmedical imaging such as image and volume

registration. Warping is performed by determining a con-

tinuous deformation map and applying it to a given image

or volume. In registration the deformation map is deter-

mined based on correspondence between two images. It is

often the case that the deformation map can only be deter-

mined at discrete locations and so has to be interpolated.

The discrete locations where the deformation map is deter-

mined form irregular sampling of the unknown continuous

deformation map. Thin-plate splines are commonly used to

perform the interpolation and provide an optimal solution

in the sense of bending energy minimization. Assuming N
samples of the deformation map and n2 image pixels, thin

plate splines require solving a N × N dense linear system
with O(N3) complexity for determining spline coefficients
andN computations per pixel with O(Nn2) complexity for
determining interpolated values. When N and n are large
as in the case of volumetric medical image analysis this cost

becomes prohibitive. The approach proposed in this paper

is based on subdivision surfaces and is capable of achieving

similar quality results with O(N log N) complexity for co-
efficient determination and O(n2) complexity for comput-
ing interpolated values. Experimental results demonstrate

two orders of magnitude performance improvement on ac-

tual clinical data.

1. Introduction

Image registration is of primary importance in computer

vision and medical image analysis. In its essence, image

registration [1, 2] is a computational method for determin-

ing the point-by-point correspondence between two images

or volumes. In multiple image registration techniques the

deformation map between images is obtained only at a dis-

crete set of locations thus requiring interpolation to produce

a continuous deformation field. The given values of the de-

formation map are normally irregular samples of the con-

tinuous deformation map.

Thin plate splines (TPS) are commonly used for inter-

polating deformation maps based on irregular samples [3].

TPS are based on radial basis functions and are optimal in

the sense of minimizing the bending energy of the map.

TPS is capable of modeling arbitrary non-rigid deforma-

tions. In its regularized form the TPS model includes the

affine model as a special case. The computational cost of

TPS becomes prohibitive when the number of Samples is

large. Let N be the number of samples of a deformation
map and n2 be the number of pixel in an image. Using TPS

requires the solution of aN ×N dense system with O(N3)
complexity for determining interpolation coefficients and

evaluation of a radial basis function atN locations per pixel
for interpolation with O(Nn2) complexity.

The problem of interpolating between a set of irregu-

larly sampled points has been successfully addressed in ge-

ometric modeling through the use of subdivision surfaces.

Subdivision surfaces start with an initial surface triangula-

tion and iteratively refine it by splitting triangles to obtain

a smooth surface. While intermediate surface subdivisions

are only piecewise linear, the limit surface obtained in this

way has C2 continuity. The proposed approach is based on

the modified butterfly subdivision [4, 5] which is changed to

support the interpolation of deformation maps. In addition

we describe an efficient scanline algorithm to determine the

value of the deformation map at all image locations which

exploits coherence and is extremely efficient. It is shown

that the approachwe propose is capable of achieving similar

quality results with O(N log N) complexity for coefficient
determination and O(n2) complexity for computing inter-
polated values. Experimental results demonstrate two or-

ders of magnitude perform ace improvement on actual clin-

ical data.

The following sections describe our approach in greater

detail. Section 2 reviews related work. Section 3 de-

scribes a novel subdivision-based approach for interpolation
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and warping. Section 4 presents quantitative experimental

results comparing the proposed approach to known tech-

niques. Section 5 concludes the paper.

2. Related Work

Thin plate splines are commonly used for representing

flexible coordinate transformations due to the fact that they

are parameter free, have a physical interpretation, and have

a closed-form representation. Suppose zi is the target func-

tion value at location (xi, yi) for i = 1, . . . , N . Two such
TPS models are used to describe a 2D image deformation,

while three such models are used to describe a 3D volume

deformation. While the remainder of this paper targets the

2D case it should be evident that extension to 3D is immedi-

ate. Let (ui, vi) be the deformation map sample at (xi, yi).
We set zi equal to ui and vi in turn to obtain one continuous

transformation for each coordinate. The TPS interpolant

f(x, y) minimizes the bending energy [3]:
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and has a solution of the form:

f(x, y) = a1 +axx+ayy +
N

∑
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(2)

where U(r) is a radial basis function of the form of U(r) =
r2 log r2. The parameters of the TPS model w and a are the
solution of the linear system:
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where Kij = U(‖ (xi, yi) − (xj , yj) ‖), the ith row of
P is (1, xi, yi), w and z are column vectors formed from
wi and zi respectively, and a is a column vector with the
elements a1, ax and ay . To account for possible errors in

the deformationmap samples, regularization is used to trade

off between exact interpolation. This results in minimizing

the bending energy as follows:

Hf =

N
∑

i=1

[zi − f(xi, yi)]
2

+ λIf (4)

where λ is the regularization factor, controlling the amount
of smoothing. The regularized TPS can be solved by plac-

ing K in (3) with K + λI , where I is a N × N identity
matrix. The computational complexity of TPS is given by

O(N3)+O(Nn2), whereO(N3) is the complexity of solv-
ing a dense N × N linear system (3), and O(Nn2) is the
complexity of computing the interpolated values at n2 loca-

tions using (2). At each such location the radial basis func-

tion has to be computed for each of theN control points.

Hardy [6, 7] proposed a radial basis function known as

Multiquadratic Interpolation (MQ) which is also obtained

by solving a set of linear equations. When there are global

geometric differences between the images, TPS performs

better than MQ. When the images have local geometric

differences, TPS and MQ performs similarly. The MQ

method involves the determination of d2 coefficients using a

steepest descent algorithm, which makes MQ several times

slower than TPS [8].

TPS and MQ are both interpolating techniques, mapping

the control points exactly in both images. Several approx-

imation methods have been proposed for faster computa-

tion of the transformation function. Donato and Belongie

[9] proposed three approximation methods for TPS that ad-

dress the computational problem through the use of a sub-

set of corresponding control points. The first method is

based on simple subsampling, which solves for TPS map-

ping between a randomly selected subset of the correspon-

dence. The drawback of using this method was that some

parts were not sampled at all and the mapping was poor in

those areas. In the second method, an improved approxi-

mation was obtained by using a subset of the basis func-

tions with all of the target values. The third method pro-

posed an approach which is based on the Nystrom method

[10]. The Nystrom Method provides means for approxi-

mating the eigenvectors used to compute the coefficients of

TPS. Therefore, TPS coefficients were obtained by calculat-

ing matrix vector products in an appropriate order, instead

of inverting a large matrix. The performance of methods 2

and 3 is similar.

The weighted Mean (WM) method [11] is another ap-

proximation method that map the corresponding control

points to each other approximately by obtaining a weighted

average of the control points, with the sum of the weights

equal to 1 everywhere in the approximation domain. The

WM transformation uses rational weights with coefficients

that are the coordinates of the control points. Therefore,

a transformation is immediately obtained from the coordi-

nates of corresponding control points without solving a sys-

tem of equations which has a O(n2N) complexity. The
WM method is preferred when having a large number of

control points and the correspondences is noisy.

Piecewise Linear and Cubic transformations (PL) were

proposed by Goshtasby [12, 13]. These methods have com-

plexity ofO(N log N)+O(n2). PL transformationsmainly
involve the triangulation of the points in the reference im-

age. Point correspondences in the source and target images

are used to determine similar triangles. Triangular areas

are then mapped using linear or cubic functions. As the

transformation between different triangles are not identical,

this approach results in discontinuities along triangle edges.

Piecewise methods register image regions within the con-

vex hull of the control points. PL mapping is continuous



but not smooth. When the regions are small or when local

geometric differences between images are small, PL may

be sufficient. When local geometric differences between

images are large, tangents at the two sides of a boundary

shared by triangles may become different thus resulting in

large visible registration errors.

3. Proposed Approach

The proposed approach is an efficient alternative to TPS

with O(N log N + n2) complexity compared to O(N3 +
Nn2) complexity of TPS. The proposed approach is supe-
rior to the PL model in several aspects: the handling of ex-

trapolation, the utilization of subdivision and local TPS to

reduce mapping discontinuities, and the exploitation of co-

herence to speed up performance.

3.1. Overview

Given N samples of a continuous deformation mapping

{(xi, yi), (dxi, dyi); i = 1, . . . , N} (5)

we would like to determine an approximation of the con-

tinuous deformation function f(x, y) with components
fx(x, y) and fy(x, y) that satisfy:

dxi = fx(xi, yi) ; dyi = fy(xi, yi) (6)

The coordinates of corresponding control points and defor-

mation map samples are arranged as two sets of 3D points

as follows:

{(xi, yi, dxi); i = 1, . . . , N} (7)

{(xi, yi, dyi); i = 1, . . . , N} (8)

Using this notation, the deformation maps fx(xi, yi) and
fy(xi, yi) describe height surfaces and may be obtained us-
ing interpolation.

The proposed approach starts by triangulating the point

set (7) (and similarly the point set (8)). This triangulation

forms an initial approximation of the deformation map co-

ordinates and is refined later through subdivision. It also

supports the scanline algorithm described later which ex-

ploits coherence for extremely efficient determination of

map values. Since the convex hull of these points may not

cover the complete image, additional points are added at

image corners and at regular intervals on the image bound-

aries. The z coordinate of the added points is extrapolated
based on the values of a local neighborhood of the origi-

nal points. The extrapolation process is discussed further in

Section 3.2).

To improve the accuracy of the mapping interpolation,

the initial triangulation is subdivided iteratively using the

modified butterfly subdivision scheme. This is an inter-

polating scheme that guarantees that the interpolated sur-

face will continue to pass through the initial control points.

The modified butterfly subdivision interpolates all coordi-

nate values in the same way. In the proposed approach the

accuracy of the z coordinate is more important compared
with the value of the other coordinates and so the modified

butterfly subdivision scheme is changed to interpolate the z
coordinate using a local TPS computation. This local TPS

computation is performed only once before subdivision be-

gins and has low computational cost. Experimental results

show that the use of local TPS to interpolate the z coor-
dinate in subdivision improves accuracy while not affect-

ing performance in a meaningful way. The local TPS-based

subdivision is discussed in greater details in Section 3.3.

Given the refined (subdivided) deformation map, it is

necessary to produce specific values of the deformationmap

at all pixel locations within the image so that the deforma-

tion can be employed to warp the image. This part is nor-

mally very time consuming in other interpolation schemes.

In the proposed approach, due to the triangulated structure

of the deformation map, we describe a highly efficient scan-

line algorithm for producing the deformation map values at

each location. The scanline algorithm exploits coherence

within triangles to produce a simple incremental computa-

tion at each location. This process is described in Section

3.4.

3.2. Deformation Extrapolation

Given the point set (7) (and similarly the point set (8)), it

is necessary to add points on the image boundaries so that

the deformation map covers the complete image. Setting

the (x, y) coordinates is simple and can be done in an arbi-
trary way (e.g. at regular intervals). The z coordinate of the
added points needs to be computed to produce extrapolation

of deformation map values. The extrapolation is done using

points neighboring the convex hull of the given point set.

Extrapolation is performed in a linear form by computing

a plane equation using points in a local neighborhood near

the convex hull. This extrapolation is attenuated based on

the coherence of the points in the local neighborhood that

produced the plane equation. It is also attenuated based on

the distance of the extrapolation from the convex hull. To

perform the extrapolation we assume that the point set was

triangulated as described later.

Let pe = (xe, ye, dxe) be an extrapolated point. The
(x, y) coordinates are set and the z coordinate has to be
computed. Let ph = (xh, yh, dxh) be the closest point
to pe on the convex hull. The coordinates of pe are all

known. Let ni be the vertex normal at pi computed by av-

eraging the normals of all the triangles that intersect at pi.

Let nh = (nx, ny, nz) be the average neighborhood normal
at ph computed by averaging the normals of the first ring



neighbors of ph (i.e. neighbors who share an edge with ph).

The point ph on the extrapolation surface need to satisfy the

plane equation and so: (pe − ph) · nh = 0. Thus we have:

dxe = dxh +
(xh − xe)nx + (yh − ye)ny

nz

(9)

The coordinate dxe is attenuated by multiplying it by an

exponential attenuation factor ξ depending on coherence of
the local neighborhood and distance from the convex hull.

Let re = pe − ph and r̂e be a unit vector in the direc-

tion of re. A measure for the planar coherency of the local

neighborhood is given by the cosine of the angle between

nh and re, that is: |nh · r̂e|. This coherence measure is
zero in a coherent (i.e. planar) neighborhood and different

from zero (but below one) in an incoherent neighborhood.

A measure for the distance from the convex hull is given by

|re|. Using these terms the attenuation factor ξ is given by:

ξ(nh, re) = e−|nh·r̂e|α|re|
2

(10)

where α = 1/ē2
h log(0.9) is a constant, and ēh is the av-

erage length of edges intersecting at ph. The constant α is
selected so that attenuation at the average edge distance is

small (0.9). It should be noted that in linearmappings where

the deformation map is a planar, the attenuation factor be-

comes one thus resulting if planar extrapolation.

The augmented point set containing the extrapolated

points is triangulated to form the initial approximation of

the deformation map. This approximation is later subdi-

vided to increase the smoothness of the interpolation. The

triangulation is performed in 2D by projecting all the points

onto the (x, y) plane. In this work we use the Delaunay tri-
angulation due to the fact that it tends to maximize the min-

imum angle in triangles and prevents slivers. The proposed

approach does not depend on the triangulation scheme and

may be employed using different triangulation schemes. We

use an incremental insertion algorithm for Delaunay trian-

gulation, which have an advantage of generalizing to arbi-

trary dimensionality. Incremental insertion algorithms oper-

ate by maintaining Delaunay triangulation, into which ver-

tices are inserted one at a time. The algorithm used in our

implementation is described by Bowyer/Watson [14, 15].

3.3. Local TPSbased Subdivision

The triangulated surface obtained in the previous steps

forms an approximation of the desired continuous deforma-

tion map. To improve the accuracy of the mapping interpo-

lation, the initial triangulated is subdivided iteratively using

the modified butterfly subdivision scheme. The modified

butterfly subdivision scheme is an interpolating scheme and

so guarantees that the interpolated surface will continue to

pass through the initial control points.

In the original butterfly scheme [4, 5], at each itera-

tion, every triangle is subdivided into four triangles by

connecting approximated midpoints along its edges. To

guarantee smoothness, the approximated midpoints are

computed using a weighted average in a local neighbor-

hood. Assuming a regular mesh where the valence (affin-

ity) of regular vertices is 6, the approximated midpoint is

computed using a butterfly mask with weights of W =
[−1/16, 1/8,−1/16, 1/2, 1/2,−1/16, 1/8,−1/16]. That
is, given points pi and pj the approximated mid point be-

tween them pij is given by:

pij =
1

2
(pi+pj)+2w(pk+pl)−w(pm+pn+po+pp) (11)

wherew = 1/16, pk and pl are the remaining vertices of the

triangles (t
(1)
ij ,t

(2)
ij ) that share the edge between pi and pj ,

and pm, pn, po, pp are the remaining vertices of the triangles

that are adjacent to t
(1)
ij and t

(2)
ij . Note that the combination

coefficients add to one thus resulting in an affine combina-

tion. As locality is used to determine new vertices, there

is no need to solve a global system of equations. In mesh

surfaces where not all the vertices are regular (i.e. having

a valance of 6), there is a need to set the weights of the

affine combination for defining new vertices differently. A

modification of the basic butterfly subdivision scheme was

developed by Zorin et al. [16] to include semiregular and ir-

regular settings in which the vertices defining the edge have

a valance other than 6. This is known as the modified but-

terfly subdivision.

Equation (11) can be applied for introducing new sur-

face points by treating the x, y, z coordinates equally. Note,
however, that the accuracy of the z coordinate is more im-
portant as it has direct influence over the value of the in-

terpolated deformation map. Small inaccuracies in the x, y
coordinates have little influence on accuracy. Due the im-

portance of accuracy in the z coordinate we use local TPS
interpolation to compute it whereas the x, y coordinates of
added points are interpolated as above (Equation 11). To

perform local TPS interpolation, TPS coefficients are com-

puted for each triangle based on the triangle vertices and its

first ring neighbors. The local TPS coefficients are com-

puted and stored only once before subdivision begins and

so do not affect much the overall computational cost. Given

an edge pipj shared by the triangles t
(1)
ij and t

(2)
ij , a new ver-

tex is added along it using a two step process. First the x, y
coordinates of the new vertex are computed using Equation

(11) to yield (xij , yij). Then we set the z coordinate to the
mean of the value interpolated based on the two neighbor-

ing triangles. Experimental results show that the use of lo-

cal TPS to interpolate z coordinates improve accuracywhile
not affecting performance.

3.4. Scanline Processing

The subdividedmesh surface of the deformationmap co-

ordinates fx(xi, yi) (and similarly fy(xi, yi)) forms an ap-



proximation of the continuous deformation map. To be able

to use this deformation map to perform warping it is neces-

sary to determine the value of the deformation mat at each

image pixel. Given that the number of pixels in the image is

large it is necessary to perform this step in an efficient man-

ner. Using the triangulation of the surface, following algo-

rithms for smooth polygon shading, the proposed approach

employs an incremental scanline algorithm to exploit coher-

ence within triangles which is highly efficient.

In the scanline algorithm each triangle is projected onto

the x, y plane and then decomposed into a set of horizontal
scanline intervals. Consider the i-th scanline of the k-th tri-
angle. This scan line intersects exactly two triangle edges.

The starting and ending points of this scanline are deter-

mined in integer coordinates by computing the intersection

between the scanline and the respective triangle edge. The

scanline equation is given by y = yi whereas the edge equa-

tion is given by y = ax+ b. The intersection point between
a triangle edge and the scanline is thus given by yi = axi+b
from which we have xi = (yi − b)/a. The starting and end-
ing points of a horizontal edge (a = 0) are known directly.
Given the computed starting and ending point of a scan-

line after rounding, we get a set of image pixels with in-

teger coordinates belonging to the scanline. When moving

from one pixel to the next on the same scanline the x co-
ordinate of the pixel is simply incremented by one. The

intersection of subsequent scanlines with the edge can be

computed incrementally. Given an intersection point of

(xi, yi) on the i-th scanline, the intersection point on the
i + 1 scanline is given by: (xi+1, yi+1) = (xi+1, yi + 1)
where xi+1 = (yi + 1− b)/a = xi + 1/a, thus resulting in
a simple incremental computation.

4. Results and Discussion

The performance of the proposed approach is evaluated

both qualitatively and quantitatively and compared to that

of TPS. The evaluation uses 512 thoracic CT scans and is
performed using 2D registration. Quantitative performance

evaluation requires knowing the true deformation field. For

this purpose we synthesize various deformation fields, both

linear (e.g. rotation (Tr), translation (Tt), and scale (Ts))
and non-linear. The non-linear deformations are produced

by generating random deformation vectors at discrete loca-

tions with random directions and lengths. These are then

interpolated to produce a continuous deformation map. To

avoid bias toward any of the evaluated methods, the inter-

polated deformation field is produced separately using both

TPS (Ttps) and subdivision (Tsub).
The accuracy of the different approaches was evaluated

by comparing the obtained results to expected (known) re-

sults. Accuracy was measured in both image and transfor-

mation space. In image space the error was measured by

registering the images and measuring the average intensity

(a) (b) (c)
Figure 1. Sample test images. (a) Reference image. (b) Deformed

target image. (c) Co-occurrence histogram between the target and

reference images.

difference. Intensity errors are on a scale of [0..255] where
low intensity difference indicates high accuracy. In transfor-

mation space the error was measured as the average distance

(in pixels) between the obtained and expected mapping of

each pixel. Low pixel differences indicate high accuracy.

In our evaluation intensity errors generally corresponded to

transformation errors. Note that while the above error mea-

sures provide a quantitative measures they do not quantify

the effects of discontinuities. The proposed subdivision ap-

proach is capable of reducing both intensity/transformation

errors as well as discontinuities. The errors and time mea-

surements in the evaluation where computed as the average

of multiple, randomly generated, deformations.

Example of a typical thoracic CT section and its defor-

mation used in our evaluation is shown in Figure 1. Fig-

ure 1-(a) shows the original section image, Figure 1-(b)

shows the deformed section, and Figure 1-(c) shows the co-

occurrence histogram of the two images. A diagonal co-

occurrence histogram is an indication of successful regis-

tration.

Registration obtained using TPS and subdivision is pre-

sented in Figure 2. The first and second rows show respec-

tively results obtained using TPS and subdivision with four

iterations. The first column shows the registered images af-

ter warping, the second column shows the differences be-

tween the warped and reference image, and the third col-

umn shows the co-occurrence histogram between the ref-

erence and warped images. As can be observed TPS and

subdivision produce similar results.

The effect of subdivision on the interpolated deforma-

tion map is shown in Figure 3. The first column displays a

coordinate of the deformation map interpolated using TPS.

The second, third, and fourth columns show the results after

0, 1, and 2 subdivision iterations respectively. The first row

displays the x coordinate of the deformation map fx(x, y)
whereas the second row shows the underlying triangulation.

For clarity reasons, the values in this image were mapped to

[0..255]. As can be observed, subdivision smooths the de-
formation map by removing the visible discontinuities be-

tween triangles.

Time performances comparison of TPS and subdivision



Figure 2. Comparison of TPS and subdivision warping.

Figure 3. Effect of subdivision on interpolated displacement maps.
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as a function of the number of control points is presented

in Figure 4. As can be observed, subdivision is substan-

tially faster than TPS. For i subdivision steps the number of
triangles increases by a factor of 4i and so eventually subdi-

vision becomes less efficient. As shown later quantitatively,

there is no much gain in subdivision beyond two subdivi-

sion steps. As expected, increasing the number of control

points increases the time it takes to perform interpolation in

both TPS and subdivision interpolation.
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Quantitative performance evaluation is presented in Fig-

ure 5 where transformation error in pixels is measured as

a function of the number of subdivisions. As can be ob-

served the error in subdivision is not improved much after

one or two subdivision iterations. Note that the deformation

used in generating this figure is Tsub and so subdivision pro-

duces smaller errors. When using Ttps, TPS obtains smaller

errors with a comparable margin to the one in this Figure.

Thus we conclude that the results obtained using TPS and

subdivision are comparable.

Evaluation of interpolation error as a function of the

range of control points in the image is shown in Figure 6.

As expected, when the range of control points in images

(512×512) increases the interpolation error decreases. This
due to the fact that extrapolation is less accurate than inter-

polation. As can be observed, when the control points are

sufficiently spread, a single subdivision step has the largest

influence on accuracy.

5. Conclusion

We present a novel subdivision interpolation scheme that

is suited for image and volume warping and registration.

The advantage of the proposed approach is improved per-

formance. Compared to TPS, the proposed approach pro-

duces similar results in terms of accuracy while reducing

the processing time by up to two orders of magnitude. Us-

ing the proposed subdivision approach there is a tradeoff

between accuracy and time performance. Experimental re-

sults show that after two subdivision iterations the compu-

tational cost increases with minor contributions to accuracy.

While the proposed approach is described and evaluated in

a 2D (image) context it can be easily extended to 3D (vol-

ume) warping.
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