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Abstract

We address the volumetric reconstruction problem that

takes as input a series of orthographic multi-energy x-ray

images, producing as output a reconstructed model space

consisting of uniform-size mass density voxels. Our ap-

proach solves the non-linear constrained optimization for-

mulation problem by constructing a compliant estimate of

volumetric distribution, subject to projective and domain

constraints, and minimizes variational irregularities. To re-

solve the inherent ambiguities of single-view formulation,

an optional shape model may be introduced to aid the re-

construction process. We demonstrate our method’s prac-

tical usage as a new in-vivo method for estimating three-

dimensional body segmental compositions, and compare its

results with those of existing methods.

1. Introduction

A wide range of applications require measurements of

properties internal to a physical shape in a convenient and

non-invasive way: In airport control, security devices for

inspecting luggage on conveyor belts; in manufacturing or

food industries, devices for evaluating products without in-

terrupting flow; in biomedical practices, devices for obtain-

ing body compositions as inputs to analysis, rehabilitation

or prosthetic reconstruction systems; and in biologically-

inspired learning systems, where models incorporate phys-

ical properties of the subjects. While magnetic resonance

imaging (MRI) and computed tomography (CT) scanners in

the medical domain offer possible solutions, they are typi-

cally considered impractical in terms of cost and logistics

for the above-mentioned applications.

Multi-energy radiographic imaging has seen uses in

chemical identification for threat detection systems [7, 19].

Dual-energy imaging is also widely used for estimating

body compositions of fat, muscular or bone mineral con-

tent. Although they are safe and cost effective, these

methods suffer the limitations of projection-based imaging

modalities—the acquired pixels are measures of a complex

physical integral and segmentation along the projection di-

rection is generally not possible. Tomographic techniques

can recover three-dimensional densities from multi-view

images, but incur considerable cost in radiation exposure,

scan duration and a more restrained setting.

In this paper, we examine the problem of three-

dimensional reconstruction from single-view, multiple-

energy radiographic images—insofar as it is possible to do

so. The problem is inherently ill-posed, resembling ambi-

guities in single-view scene interpretation. Thus, a complete

reconstruction of volumetric content—even in the case of

homogeneous substances—is neither possible nor to be ex-

pected. However, in applications where partial reconstruc-

tion suffices, the methods described in this paper readily

provide measurements that surpass the results of present ac-

quisition methods in accuracy and dimensionality.

Our approach estimates the mass distribution internal to

an object by discretizing its domain into volumetric ele-

ments. The objective is to compute a distribution that is

consistent with: (1) the absolute values and (2) the differ-

ential values observed in x-ray images, among (3) other

constraints that are reasonable to the application domain.

We cast the problem as a non-linear constrained mini-

mization problem, to which we implement a least-squares

solution comprising steps of iterative back-projection and

constraints resolution. A convergent solution is obtained

through interleaved stages of Gauss-Seidel iterations. The

general idea is related to voxel-based scene representation

and object reconstruction techniques, but with fundamental

differences in imaging modalities, application domains and

methodologies.

We further apply our algorithm to the estimation of the

physical compositions of human subjects, and demonstrate

that the quantities obtained through the method are empiri-

cally superior to the existing alternatives.
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Figure 1. Examples of dual-energy x-ray scans and image processing steps. From left, subject with 18% body fat: (a) High-energy

image (intensity proportional to mass). (b) Low-energy image. (c) Low-to-high ratio image. (d) Image isolating a single material (bone

mineral);. (e) Segmentation by material composition: bone (white), lean tissues (red), and fat (yellow). (f) Image enhanced with dual-

energy information. Another subject with 33% body fat: (g)-(h) Segmented and enhanced images. The two leftmost images are the raw

images. Note that simple thresholds on either input image will not reveal bone mineral content, for instance, at the thorax or the hands.

1.1. Multi­Energy Imaging

Consider a single photon beam of energy level E. As the

beam traverses through objects in its path, physical inter-

actions diminish its intensity. With an intervening object of

homogeneous material, the source and attenuated intensities

are related via the classic attenuation formula:

I = I0e
−µm×ρ×L (1)

where L is path length (cm), and ρ and µm are the ob-

ject’s density (g/cm3) and mass attenuation coefficient

(cm2/g) respectively. For objects with heterogeneous

compositions—the ubiquitous case, the attenuation contri-

bution by each differential element can be expressed as:

d(ln(
I

I0

)) = −µm × ρ× dL (2)

where the material properties are now specific to the volu-

metric element.

Discretizing the object domain by the imaging resolution

(X−Y ) across a proportional depth (Z), and assuming con-

stant material in each volume element, the log-attenuation

ratio is a sum of elemental attenuation over the pixel:

ln

(

I(E, x, y)

I0(E)

)

=
∑

z

−µm(E,K)×ρ(x, y, z)×dz (3)

As it turns out, the mass attenuation coefficient for a sub-

stance K (c.f. effective atomic number) is constant at a

given beam energy E and can be obtained through exper-

imentation. If the number of substance types is finite and

known, an alternate form of the attenuation equation is:

ln

(

I(E, x, y)

I0(E)

)

=
∑

j

−µm(E,Kj)× ρ(Kj)× Lj (4)

where Lj is the effective thickness of material Kj within

the mass column.

It is clear from the equation above that by introducing

beams of distinct energies, it is possible (at least in theory)

to solve for the effective thickness of each material in a het-

erogeneous object, provided that we have prior knowledge

of the object’s composition. This is possible for organic

lifeforms and also in manufacturing and food industries,

where material constituents are known a priori, but more

difficult for applications whose object contents cannot be

anticipated, such as in luggage inspection. Henceforth, in

this paper, we assume the former circumstances.

To illustrate, suppose we obtain the log-attenuation val-

ues, p1 and p2, corresponding to the attenuation of two

beams of energies E1 and E2. From Eq. 4, we have:
(

p1

p2

)

=

(

ρ(K1) 0
0 ρ(K2)

)

×

(

µm(E1,K1) µm(E1,K2)
µm(E2,K1) µm(E2,K2)

)(

L1

L2

)

(5)

which is solvable for any two-substance object so long as

the constant matrices on the right are non-singular.

Where a mixture of component materials is present, e.g.,

soft tissues, the number of distinct beam energies can be

fewer than the component materials. A classification algo-

rithm is required to identify each pixel by material groups,

such as fat+lean or soft tissue+bone, each of which is solv-

able as in the case of non-mixture materials. Examples of

raw and processed images are shown in Figure 1. We refer

the interested reader to Pietrobelli et al.’s review article [18]

for further details. For the remainder of this paper, it suffices

to understand that with multi-energy imaging, it is possible

to infer compositional mass estimates for a finite number of

pre-determined material types from a single view.



2. Background

Physically-based methods that involve human subjects

are common in clinical studies, biomechanical studies [12],

biologically-inspired learning [23], simulation systems [20]

and advanced animation [15], to name a few. The physi-

cal quantities that these systems require are known as body

segmental parameters (BSP), comprising measures of mass,

center of mass, and principle moments of inertia for each

body segment [22]. Despite the existing research, obtaining

accurate estimates of three-dimensional segmental parame-

ters in living subjects remains a fundamental challenge.

Typically, BSP estimates are obtained from cadaver-

based regression models (e.g., [9, 25]). While applying

these regression equations is relatively straightforward, the

models are typically constructed from small, demograph-

ically limited or physically-biased samples of a popula-

tion. It is widely acknowledged that indiscriminate use of

these predictive models can lead to a propagation of un-

substantiable errors [10]. Other methods based on stereo-

photogrammetry (e.g., [13]) relied on the flawed premise

that the mass within a body is uniformly distributed. Some

experimental studies compute BSP from MRI and CT (e.g.,

[8]) despite practicality and safety concerns.

More recently, methods to estimate BSP from X-ray pro-

jections have been developed [11]. Besides providing em-

pirical validation that accurate in-vivo estimates of BSP are

possible, these studies point out substantial errors in the un-

qualified use of regression equations [10]. Their method is

practical and safe, relying on dual-energy scanners that are

readily available in sports and clinical facilities. Although

the authors acquired dual-energy images, only one of the

radiographic image was used, thereby limiting their meth-

ods to planar uses. To the best of our knowledge, the use of

multi-energy image properties to recover three-dimensional

mass, geometry or segmental properties, as described in this

paper, has not been discussed previously.

Our methods are not limited to biomechanical purposes.

In vision, knowing the physical properties of an object

offers an important advantage in predicting object move-

ment dynamics [2]. This advantage can be exploited in

physically-based tracking [4] and model-based learning

systems [3]. Although computing the physical properties of

a rigid object is relatively easy, the problem becomes signif-

icantly more complex for non-rigid motion and deformable

structures [16, 17] such as human subjects.

3. Volumetric Reconstruction I (with known

exterior geometry)

We first consider a volumetric reconstruction algorithm

where the object’s geometry is known, and extend it to the

unknown case in the next section.

Let the three-dimensional bounding manifold of the ob-

ject G be aligned with the plane of the acquired images

I ∈ R
2×N . For dual-energy scans, N = 2. We discretize

the space such that G is enclosed within a volumetric do-

main D comprising m× n× d cells. Each cell, commonly

termed a voxel, v = (x, y, z)T ∈ D, is assumed to have

uniform material property.

Let the scalar function f : D → R denote the unknown

mass density field. We constrain the values of f such that

the implicit surface f = 0 delineates G:

f(v) =







+ve v is interior to G

0 v lies on G

−ve v is exterior to G

(6)

Note that geometric closure and orientability are required of

G—for otherwise, the signed distance function is ill-defined

[21].

From the properties of radiographic transfer, a photon

beam of sufficiently high energy passes through all matter

and is attenuated linearly by the amount of mass in its path

[14]. The associated pixel is thus proportional to the mass

integral along the depth. Assuming unit depth (cm) for each

cell, the integral of each column is:

I(x, y) =

d
∑

z=0

{ f(x, y, z) | f(x, y, z) > 0 } (7)

which confines the summation to voxels interior to the ob-

ject. Our objective is to estimate f within D subject to the

m×n constraints of Eq. 7. Referring to Eq. 2, we note that

f(x, y, z) = −µm × ρ is the differential attenuation of the

photon beam through a path of unit length.

Since the formulation is under-constrained, a solution to

f is not viable without further assumptions or constraints.

Further, direct matrix solvers are ill-advised as the volumet-

ric domain is typically large but locally structured.

Drawing from discrete level-set approaches, we proceed

to formulate an iterative solution by first initializing f with

a signed function f0 whose value equals the shortest linear

distance to G. The distances are signed such that points

interior to G are positive while those exterior are negative

(Eq. 6). Efficient methods of computation exist, e.g., [1],

whose details shall be omitted here.

Although a signed distance function is largely expected

to be different from a mass distribution function, the bound-

ary condition coincides by design:

G = f0(p) = f(p) = 0 (8)

for all p ∈ G. To preserve the implicit geometry, we intro-

duce a positive field r+ : D→ R
+ such that:

f(x, y, z) = r+(x, y, z)f0(x, y, z) (9)



where we initialize r+(x, y, z) = 1 so that Eq. 8 and Eq. 9

are initially identical. Since the field r+ is uniformly posi-

tive, the boundary (Eq. 8) and sign constraints (Eq. 6) are

unconditionally maintained.

To unify the solution, we introduce a regularization

scheme which minimizes total variational energy modeled

as the anisotropic diffusion of the multiplier field r+:

argmin

r+

∫

∇ · r+(x, y, z) (10)

As smooth divergence is not necessarily true of real body

masses, the condition only serves to ensure generally non-

sporadic variations in the reconstituted volume.

The volumetric reconstruction problem can thus be cast

as a non-linear constrained minimization problem: Solve

the unknown positive field r+ ∈ D that minimizes Eq. 10

subject to the constraints in Eq. 7, and given the inputs G,

f0 and I .

We formulate an iterative solution by refining r+ through

three steps. The first step locally resolves the projected mass

constraints (Eq. 7) for each pixel by normalizing the col-

umn of mass densities through the following pair of com-

putations:

I ′(x, y) =
∑

z∈G

r+(x, y, z) f0(x, y, z) (11)

and

r+(x, y, z)′ = r+(x, y, z)
I(x, y)

I ′(x, y)
(12)

The next step refines the current estimate (Eq. 12) through

its first-order differential. Expressing Eq. 10 in terms of

finite differences, we then obtain a strictly diagonally domi-

nant linear system whose solution can be efficiently approx-

imated through a Gauss-Seidel relaxation scheme:

δr+(x, y, z)′ = (r+(x, y, z)′ − t(r+(x− 1, y, z)′

+r+(x, y − 1, z)′ + r+(x, y + 1, z)′

+r+(x, y, z − 1)′ + r+(x, y, z + 1)′

+r+(x + 1, y, z)′))/(1 + 6t) (13)

where t is the relaxation parameter. We typically set t as

0.01 and perform a fixed number of relaxation iterations (8–

15) at each update cycle.

Finally, we update the current iterate, projecting it to the

positive domain when necessary:

r+(x, y, z)←
{

r+(x, y, z)′ + δr+(x, y, z)′
}

≥0
(14)

4. Volumetric Reconstruction II (without exte-

rior geometry)

We extend the previous framework to the case where the

object geometry is unknown. Recall from §1.1 that the ef-

fective thickness of materials in heterogeneous objects may

Figure 2. Image pixels plotted as ratios of low-to-high attenuation

(Y-axis) against mass (X-axis) for a single subject. The two cali-

bration curves partition the pixels into three zones: Above the up-

per calibration curve are the pixels that contain bone. Pixels plot-

ted near the bottom curve contain only fat tissues. The remaining

bulk lying in between the curves are pixels of lean/fat mixtures.

be obtained by exploiting differences in interactions with

beam energies. The idea then is to identify the fractional

composition of each material and to make use of estimated

material thickness in place of object geometry.

We first segment the image pixels by material compo-

sition, making use of the fact that the attenuation coeffi-

cients of distinct materials are known constants (see §1.1).

Illustrating the process through an example, Figure 2 shows

the classification of pixels in a full-body dual-energy im-

age (Figure 1, Subject 1) into compositions of bone, lean

and fat. The plot shows pixel ratios (Y-axis) of dual-energy

images against projected pixel mass (X-axis). The mate-

rial calibration curves, experimentally determined using the

method described in [14], partition pixels by known com-

positions. The segmented image is shown in Figure 1(e).

From each pixel’s classification, we estimate each mate-

rial’s effective thickness using densities that have been ex-

perimentally obtained [18]. The thickness of the column of

mass at each pixel, L(x, y), can therefore be estimated as

the sum of each material’s effective thickness.

It thus remains to position the mass column along Z,

denoted H(x, y). We introduce a heuristic region-based

operator that first seeks out local symmetries in the im-

age. A method we found relatively resilient to scale and

noise is a split-operator scheme based on edge extraction

and weighted Principle Component Analysis [24]. High-

intensity pixels lying along the symmetry axes are “an-

chored” to the ground plane: H(x, y) = 0. Conversely,

low-intensity pixels in directions orthogonal to the symme-

try axes and border both background and object (and hence

have zero thickness) are assigned a height equal to half the



Stack Measured (cm) Computed (cm) Difference (%)

1 5.5 5.130 -6.727%

2 11.0 10.732 -2.436%

3 16.5 16.643 0.866%

4 22.0 21.333 -3.031%

5 27.5 27.013 -1.771%

Figure 3. Experimental setup for the validation of single-material

reconstruction. The scene consists of stacked reams of standard

A4-size photocopy paper. The top-left shows the low-energy x-ray

image. The volume interior comprises a uniform density material

(carbon). The reconstructed scene and the measured versus com-

puted differences are shown. The RMS% difference is 3.582%.

average thickness of their associated symmetry axes pix-

els. The remaining unprocessed pixels are assigned heights

that are relative to the normalized spread of their neighbors’

heights.

With an estimate of G = (H,L), algorithm §3 can be

invoked as it is. It is worth noting that the heuristics presup-

pose errors in finding local symmetries and borders. Fur-

ther, the constructed geometry is consistent with the class of

plane-symmetric shapes. In practice, the scheme also works

favorably for generally regular shapes. For scans specific

to human subjects in a supine pose, a heuristic that works

reasonably well is to ground pixels that contain high bone

mineral content, the rationale being such columns of masses

are more likely to be in contact with the underlying support.

5. Experimental Results

5.1. Validation

Experiments were carried out to evaluate the viability of

estimating the effective thickness of materials using multi-

energy imaging. Figure 3 illustrates an example of a single-

material experimental setup. Multiple stacks of photocopy

Step Measured (cm) Computed (cm) Difference (%)

0.15 0.148 -1.333%

Aluminum 0.35 0.354 1.143%

0.80 0.802 0.250%

3.70 3.737 1.000%

Acrylic 8.80 8.908 1.227%

19.80 19.643 -0.793%

Figure 4. Experimental setup for the validation of two-material

reconstruction. The scene consists of a six-step device supplied

by the scanner’s manufacturer. Each step consists of either acrylic

or an aluminum/acrylic mixture. The reconstructed scene and the

measured versus computed differences are shown. The RMS%

difference is 1.023%.

paper reams were arranged in columns of different heights.

The paper reams were assumed to compose of a homo-

geneous material (carbon) with an experimentally deter-

mined density of 0.73g/cm3. The stacked paper reams

were scanned with a dual-energy scanner (Hologic Discov-

ery Model A). Knowledge of scene geometry was not as-

sumed in baseline validations. The image obtained from

the low-energy x-ray beam is shown in the figure. The

volume was computed with the algorithms described in §4.

A similar two-material experiment was carried out using a

manufacturer-calibrated device (Figure 4).

In both tests, larger discrepancies were observed (as

were expected) near scene edges which can be accrued to

the image resolution (pixel size is 1.303 cm × 0.618 cm)

relative to the scene size (approximately 195.5 cm × 65.5

cm). Increased errors are thus typical of pixels that bor-

der both object and air, and relatively more pronounced

with smaller-size objects. Scanners with higher image res-

olution would partly alleviate these errors. On the other

hand, differences in reconstructed object heights for the

manufacturer-calibrated device (RMS%=1.023) are lower

than our stacks of paper reams (RMS%=3.582), possibly

indicating the importance of material purity and calibration.



Figure 5. Reconstructed thigh and arm from projected multi-

energy images using the algorithm described in §4. They reflect

closely the thickness and shape of the actual body segments.

5.2. Human Body Geometry

We applied the algorithm in §4 to reconstruct the geom-

etry for human body segments (Figure 5). Each segment

was assumed to consist of bone, lean tissues and fat with

densities of 1.6g/cm3, 1.06g/cm3 and 0.9g/cm3 respec-

tively. Bone regions are distinguished from non-bone re-

gions in the images since the attenuation coefficient of bone

is distinctly higher. In non-bone regions, the mass frac-

tions of constituent lean tissues and fat were estimated by

making use of their attenuation coefficients and low-to-high

ratio image. Their thicknesses were then computed using

known mass densities and summed up to obtain the total

thickness. Bone pixels were resolved in a similar way with

two components to be bone and lean/fat mixture. The aver-

age density of lean/fat mixture above and below the bone is

derived from that in surrounding non-bone neighborhood.

The thickness of each bone pixel was the aggregate of the

computed bone and lean/fat mixture at that pixel.

Figure 5 shows the three-dimensional geometry of the

thigh and arm reconstructed from the projected multi-

energy images. Other complex body segments might also

be constructed by taking into account additional materials,

such as brain tissue in the head and air in the lung.

5.3. Human Body Composition

The mass distribution volumes were computed for es-

timating body segment parameters. To provide the inputs

required for the algorithms, we obtained the dual-energy x-

ray images for a group of 18 healthy male subjects; 4 of

which also underwent body geometry scanning. Addition-

ally, physical measurements of each subject were taken for

purposes of comparisons with the alternative methods. In-

formed consent was collected from all subjects prior to their

participation. The acquired 3D geometry can be registered

Figure 6. Cross-sectional views of the volumetric results at the

head, lung, thighs and calves. Each row, from left to right, illus-

trates the mass distribution estimates after initialization (Eq. 9),

normalization (Eq. 12) and Gauss-Seidel relaxation (Eq. 13). The

darkness in the head and lung cross-sections corresponds to brain

tissue and air, respectively. The bright regions in the thighs and

calves indicate the bones in each segment.

with the image using a non-rigid shape registration [6].

Cross-sectional views of the reconstructed volumetric

mass density are shown in Figure 6. Different distributions

can be seen at the head, lung, thighs and calves. Although

the obtained results may not perfectly resemble the real dis-

tribution in the human body, they clearly reflect the specific

compositions of each body segment.

5.4. Body Segment Parameters

To analyze the proposed method, we also compared our

results with available BSP data from alternative methods.

Contrary to our approach which is subject-specific and mea-

sures segmental mass directly from high-energy x-ray im-

age (Figure 1(a)), the compared methods estimate BSP

by assuming known uniform densities, based on statisti-

cal studies of cadaver [5, 9], gamma-ray [25] and MRI [8].

Table 1 shows the mean segmental masses of all subjects

and the corresponding root mean square deviation against

masses estimated from other regression-based methods. Al-

though the variations in segments definition might affect the

Mass (kg) RMSD (kg)

Segment Vo DEM

[9]

CHA

[5]

ZAT

[25]

CHE

[8]

Head+neck 5.77 1.08 N.A. 0.85 1.08

Trunk 31.06 2.52 N.A. 1.4 2.25

Upper arm 2.3 0.47 0.45 0.42 0.53

Forearm 1.07 0.12 0.16 0.12 0.11

Hand 0.38 0.12 0.13 0.11 0.17

Thigh 9.03 2.4 1.78 N.A. 0.64

Calf 3.08 0.34 0.33 0.21 0.31

Foot 0.9 0.25 0.14 0.17 0.61

Table 1. Comparison of mean segmental mass obtained by our pro-

posed method (Vo) and alternative methods



Center of mass (%) Moments of inertia (kg × m2)

Segment Vo DEM [9] CHE [8] Vo DEM [9] CHE [8]

Ixx Iyy Izz Ixx Ixx Iyy Izz

Head+neck 48.9 43.3 49.6 0.0308 0.0285 0.0172 0.031 0.036 0.037 0.016

Trunk 45.9 N.A. 60.2 0.9832 1.0785 0.2236 N.A. 0.94 0.99 0.18

Upper arm 45.2 43.6 43.4 0.0152 0.015 0.0026 0.022 0.027 0.026 0.003

Forearm 42 43 47.3 0.0071 0.0077 0.003 0.0072 0.0067 0.0066 0.0007

Hand 39 49.4 42 0.0005 0.0006 0.0003 0.0011 0.001 0.001 0.0002

Thigh 42.2 43.3 44.7 0.1268 0.1256 0.0231 N.A. 0.14 0.14 0.017

Calf 39.3 43.3 44.2 0.036 0.0356 0.0041 0.047 0.025 0.025 0.003

Foot 47.4 42.9 54 0.003 0.0007 0.0028 0.004 0.009 0.007 0.009

Table 2. Comparison of centers of mass and moments of inertia obtained by our proposed method (Vo) and alternative methods

computed mass, major differences can be seen across all

segments, which is reasonable since our method does not

assume any density for the mass distribution computation.

In Table 2, mean values for three principle moments of

inertia and center of mass (CM) of each body segment were

computed for the 4 subjects with known body geometry

and compared between our method and [8, 9]. The seg-

mental CM positions were computed along the main axis

of each segment. The moments of inertia were calculated

about three anatomical axes defined in [8]. Note that at the

foot segment, our method computes a significantly small

Iyy compared to the corresponding Ixx and Izz . This is to

be expected because y is the main axis of the foot. However,

this main-axis effect was not reflected clearly in [8].

6. Discussion

Typically, the model of an object comprises directly ob-

servable aspects such as size, shape, position, motion and

texture. A more complete description, however, would in-

clude properties such as mass distribution. The importance

in modeling these physical attributes is growing, along with

increasingly sophisticated methods for processing real-life

data, especially where motion is dominated by dynamics.

Already, physically-based methods that pertain to process-

ing or understanding human movements are reported in vi-

sion, graphics and robotics. Yet despite these advances, the

fundamental challenge of estimating the input parameters to

those physics algorithms has received little attention.

Our method recovers partial depth structure from x-ray

images by exploiting a fundamental principle of materials—

that differential photonic attenuation observed at a point re-

veals the object’s composition along the direction of pro-

jection. However, a complete three-dimensional recon-

struction of an object’s internal distribution from a sin-

gle view—for that matter from any limited number of

views—is unlikely. Consequently, the majority of work that

concerns three-dimensional construction in x-ray imaging

solves large systems of algebraic equations formulated from

a large number of images, each obtained from different an-

gles. The application of such systems is highly specialized

and has mostly been confined to medical diagnostics.

Multi-energy, single-view x-ray imaging has a distinct

advantage that linear “sandwich-type” projectors (without

major rotary mechanisms) are possible. Commonly seen

ones are those at airport security checkpoints. Among these

systems, those that exploit multi-energy image properties

are used mainly to detect specific chemicals such as explo-

sives. The ability of these systems to detect structural forms,

such as banned carry-on items, remains to be seen. While

image-based object detection methods may work for head-

on images of a known object, they may not work equally

well if the recognizable 2D structures are concealed, by

malice or chance, along the direction of projection.

The applicability of our algorithms largely depends on

the domain’s tolerance to scale. While it is mostly accept-

able to say “the human spine lies central to its trunk”, the

statement is meaningless in a close-up view of a spinal sec-

tion. This is the main limitation of our method. Neverthe-

less, we have demonstrated the ability to estimate whole-

body physical properties in living subjects, with estimates

of segmental parameters that surpass the accuracies of con-

ventional, non-subject-specific methods (i.e., regression).

Our method resolves ambiguities of scene interpretation

through spatial coherence and a model-based algorithm.

To minimize complications to the presentation, we have

avoided a more extensive use of domain-specific knowl-

edge, and have focused on information that can be recov-

ered through the nature of multi-energy images. From a

computer vision perspective, the ability to reconstruct ob-

ject models from a single orthographic view may be note-

worthy, despite assumptions of shape and material compo-

sition. More importantly, the geometry of a human body

comprising mixtures of substances can be estimated from a

pair of x-ray images.

Extensions incorporating domain-specific knowledge are

likely to further improve our results or widen the range of

applications. One simple extension is to resolve the spatial

sequencing of lean, bone and fat voxels through the anatom-

ical knowledge that fat is always subcutaneous. A more so-

phisticated approach is to apply the stochastic distribution

(e.g., [26]) of the acquired images on variations along the



projected direction. It will be interesting to see these devel-

opments, and more generally, the extent to which structure

and form can be recovered from multi-energy images.
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