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Abstract

A new approach to align an image of a textured ob-
ject with a given prototype (learned reference object) is
proposed. Visual appearance of the images, after equaliz-
ing their signals, is modeled with a Markov-Gibbs random
field with pairwise interaction. Similarity to the prototype
(learned reference object) is measured by a Gibbs energy
of signal co-occurrences in a characteristic subset of pixel
pairs derived automatically from the prototype. An object is
aligned by an affine transformation maximizing the similar-
ity by using an automatic initialization followed by gradient
search. To get accurate appearance model, we developed a
new approach to automatically select the most important
cliques (neighborhood system) that describe the visual ap-
pearance of a texture object. Experiments confirm that our
approach aligns complex objects better than popular con-
ventional algorithms.

1. Introduction

Image registration aligns two or more images of similar
objects taken at different times, from different viewpoints,
and/or by different sensors. The images are geometrically
transformed to ensure their close similarity. Registration
is a crucial step in many applied image analysis tasks, e.g.
to fuse various data sources (such as computer tomography
(CT) and MRI data in medical imaging) for image fusion,
change detection, or multichannel image restoration; form
and classify multi-band images in remote sensing; update
maps in cartography, perform automatic quality control in
industrial vision, and so forth. Co-registered medical im-
ages provide more complete information about the patient,
help to monitor tumor growth and verify treatment, and al-
low for comparing the patient’s data to anatomical atlases.
For the state of the art of registration methods we refer the
reader to [1].

Most of the known registration methods fall into
two main categories: feature-based and area-based tech-

niques [1]. Feature based techniques rely on salient local
structures extracted from images, e.g. specific areas such
as water reservoirs and lakes [2, 3], buildings [4], or ur-
ban areas [5], specific lines like straight segments [6, 7, 8],
object contours [9, 10, 11], coast lines [12, 13], rivers, or
roads [14, 15], and specific points, e.g. road crossings [16],
centroids of water areas, or oil and gas pads [17]. Scale
invariant feature transform (SIFT) proposed by Lowe [18]
is most popular at present because it reliably determines a
number of point-wise correspondences between two images
differing by affine transformation and local contrast / offset
signal deviations. But these methods can be used only if
objects have distinctive and non-repetitive local features.

Area-based methods such as the classical least square
correlation match directly image signals to avoid feature ex-
traction [19]. However, because the objects are assumed
identical to within spatially uniform signal deviations, the
correlation is too sensitive to non-uniform and spatially in-
terdependent deviations of the corresponding signals due to
sensor noise, illumination variations, and/or different sensor
types. Alternative phase correlation and spectral-domain
(e.g. Fourier-Mellin transform based) methods [20, 21, 22,
23, 24] are more robust with respect to the correlated and
frequency dependent noise and non-uniform time varying
illumination. However, these methods typically allow for
only very limited geometric transformations.

More powerful mutual information (MI) based image
registration [25, 26] exploits a probabilistic similarity mea-
sure that allows for more general types of signal deviations
than correlation. The statistical dependency between two
data sets is measured by comparing a joint empirical distri-
bution of the corresponding signals in the two images to the
joint distribution of the independent signals. Because the
MI-based registration performs the best with multi-modal
images [26], it is used in many of medical imaging appli-
cations. The joint distribution is estimated using Parzen
windows [27] or discrete histograms [28]. The main ad-
vantage of the MI is insensitivity to monotone variations of
correspondence between the object and prototype signals,
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but the objects should be of almost identical shape apart
from their affine geometrical and monotone signal transfor-
mations. The MI allows also for some non-monotone signal
correspondence variations although they may change the vi-
sual appearance too much and hinder registration accuracy.

Recently, the researchers used Markov-Gibbs Random
Field (MGRF) for modeling image deformation, e.g. Roy
and Govindu [29], Boykov et al. [30], Kumar et al. [31],
Winn and Jojic [32], Kovtun [33], and Shekhovtsov et
al. [34], and, to the best of our knowledge, we are the
first authors who propose to use MGRF as a new simi-
larity measure for global image alignment.

We consider a more general case of registering a textured
object to a prototype with similar but not necessarily identi-
cal visual appearance under their relative 2D affine trans-
formations and monotone variations of signal correspon-
dences. The variations are suppressed by equalizing signals
in the images. The co-registered equalized images are de-
scribed with a characteristic subset of signal co-occurrence
statistics. The description implicitly “homogenizes” the im-
ages, i.e. considers them as spatially homogeneous patterns
with the same statistics. In contrast to the feature-based reg-
istration, the statistics characterize the whole object. In con-
trast to the conventional area-based techniques, similarities
between the statistics rather than pixel-to-pixel correspon-
dences are measured. Section 2 represents the equalized ob-
ject and prototype images as samples of a generic Markov-
Gibbs random field (MGRF) with pairwise pixel interac-
tion. Gibbs potentials are analytically estimated from co-
occurrence statistics for the prototype. Similarity between
an affinely transformed object and the prototype is mea-
sured with a total Gibbs energy for a characteristic pixel
neighborhood. A new algorithm for selecting the neighbor-
hood for the MGRF model is introduced. After an auto-
matic initialization, the affine transformation aligning the
object with the prototype is found by the gradient search for
the maximum Gibbs energy of the transformed object. Ex-
periments in Section 3 confirm that our method is more ef-
ficient for complex textured objects than more conventional
SIFT and MI based registration techniques.

2. MGRF Based Image Registration

2.1. Basic notation.

We denote Q = {0, . . . , Q − 1}; R = [(x, y) : x =
0, . . . , X − 1; y = 0, . . . , Y − 1], and Rp ⊂ R a finite
set of scalar image signals (e.g. gray levels), a rectangular
arithmetic lattice supporting digital images g : R → Q,
and its arbitrary-shaped part occupied by the prototype, re-
spectively. A finite set N = {(ξ1, η1), . . . , (ξn, ηn)} of
(x, y)-coordinate offsets defines neighbors {((x + ξ, y +
η), (x − ξ, y − η)) : (ξ, η) ∈ N} ∧ Rp interact-
ing with each pixel (x, y) ∈ Rp. The set N yields a

neighborhood graph on Rp to specify translation invari-
ant pairwise interactions with n families Cξ,η of cliques
cξ,η(x, y) = ((x, y), (x + ξ, y + η)). Interaction strengths

are given by a vector VT =
[
VT

ξ,η : (ξ, η) ∈ N
]

of po-

tentials VT
ξ,η =

[
Vξ,η(q, q′) : (q, q′) ∈ Q2

]
depending on

signal co-occurrences; here T indicates transposition.

2.2. Image normalization.

To account for monotone (order-preserving) changes of
signals (e.g. due to different illumination or sensor char-
acteristics), the prototype and object images are equalized
using the cumulative empirical probability distributions of
their signals on Rp.

2.3. MGRF based appearance model.

In line with a generic MGRF with multiple pairwise in-
teraction [36, 37] (see Fig. 1), the Gibbs probability P (g) ∝
exp(E(g)) of an object g aligned with the prototype g◦ on
Rp is specified with the Gibbs energy:

E(g) = |Rp|VTF(g) (1)

where FT(g) is the vector of scaled empirical prob-
ability distributions of signal co-occurrences over each
clique family: FT(g) = [ρξ,ηFT

ξ,η(g) : (ξ, η) ∈ N ]

where ρξ,η = |Cξ,η|
|Rp| is the relative size of the family

and Fξ,η(g) = [fξ,η(q, q′|g) : (q, q′) ∈ Q2]T; here,

fξ,η(q, q′|g) = |Cξ,η;q,q′ (g)|
|Cξ,η| are empirical probabilities of

signal co-occurrences, and Cξ,η;q,q′(g) ⊆ Cξ,η is a subfam-
ily of the cliques cξ,η(x, y) supporting the co-occurrence
(gx,y = q, gx+ξ,y+η = q′) in g. The co-occurrence distri-
butions and the Gibbs energy for the object are determined
over Rp, i.e. within the prototype boundary after an object
is affinely aligned with the prototype. To account for the
affine transformation, the initial image is resampled to the
back-projected Rp by interpolation.

The appearance model consists of the neighborhood N
and the potential V to be learned from the prototype.

Figure 1. Pairwise pixel interaction MGRF model.

2.4. Learning the potentials.

The MLE of V is proportional in the first approximation
to the scaled centered empirical co-occurrence distributions



for the prototype. We use here our novel analytical max-
imum likelihood estimator for the Gibbs potentials of the
pair-wise MGRF [35]:

Vξ,η(q, q′) = λρξ,η[fξ,η(q, q′) − f(q)f(q′)] (2)

where f(.) and fξ,η(q, q′) be a joint empirical probabil-
ity distribution of pixel intensities and of intensity co-
occurrences, respectively. The common scaling factor λ is
also computed analytically; it is approximately equal to Q2

if Q � 1, f(q) ≈ 1/Q, and ρξ,η ≈ 1 for all (ξ, η) ∈ N . In
our case it can be set to λ = 1 because the registration uses
only relative potential values and energies.

2.5. Learning the characteristic neighbors.

To find the characteristic neighborhood set N , the rela-
tive energies Eξ,η(g◦) = ρξ,ηVT

ξ,etaFξ,η(g◦) for the clique
families, i.e. the scaled variances of the corresponding em-
pirical co-occurrence distributions, are compared for a large
number of possible candidates. Figure 2 shows a zebra pro-
totype and its Gibbs energies Eξ,η(g◦) for 5000 clique fam-
ilies with the inter-pixel offsets |ξ| ≤ 50; 0 ≤ η ≤ 50.

To automatically select the characteristic neighbors, we
consider an empirical probability distribution of the ener-
gies as a mixture of a large “non-characteristic” low-energy
component and a considerably smaller characteristic high-
energy component: P (E) = πPlo(E) + (1 − π)Phi(E).
Both the components Plo(E) and Phi(E) are of arbitrary
shape and thus are approximated with linear combinations
of positive and negative discrete Gaussians (efficient EM-
based algorithms introduced in [36] are used for both the
approximation and estimation of π, Fig. 3 shows all steps of
density estimation using the modified EM algorithm [36]).
To the best of our knowledge, we are the first authors
who developed an automatic way to estimate the neighbor-
hood system from the learned data (see Fig. 4(a) for zebra,
Fig. 13(a) for the kidney, and Fig. 18(a) for the lung).

(a) (b)
Figure 2. Zebra prototype (a) and relative interaction energies (b)
for the clique families in function of the offsets (ξ, η).

The intersection of the approximate mixture components
gives an energy threshold θ for selecting the characteristic
neighbors: N = {(ξ, η) : Eξ,η(g◦) ≥ θ} where Phi(θ) ≥
Plo(θ)π/(1−π). The above example results in the threshold
θ = 21 producing 168 characteristic neighbors shown in
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Figure 3. (a) Empirical density of the Gibbs energy femp(E) and
the estimated two dominant Gaussian components P2(E) which
represent low-energy component and high-energy component, (b)
Deviation and absolute deviation between the empirical density
and the two dominant components, (c) The estimated density for
the absolute deviation, (d) The final LCDG components which
are used in the estimation of mixed density shown in (e) and the
marginal estimated density (f) giving the energy threshold θ to se-
lect the neighborhood system as shown in (g).

(a) (b)
Figure 4. (a) Characteristic 168 neighbors among the 5000 candi-
dates (a; in white) and the pixel-wise Gibbs energies (b) for the
prototype under the estimated neighborhood.

Fig. 4 together with the corresponding relative pixel-wise
energies ex,y(g◦) over the prototype:

ex,y(g◦) =
∑

(ξ,η)∈N
Vξ,η(g◦x,y, g◦x+ξ,y+η)



Figure 5. Gibbs energies for translations of the object with respect
to the prototype.

Figure 6. Initial position of the object with respect to the prototype.

(a) (b)

(c) (d)
Figure 7. Our (a), MI-based (b), NMI-based (c), and SIFT-based
(d) registration.

2.6. Appearance-based registration.

The object g is affinely transformed to (locally) max-
imize its relative energy E(ga) = VTF(ga) under the
learned appearance model [N ,V]. Here, ga is the part
of the object image reduced to Rp by the affine transfor-
mation a = [a11, . . . , a23]: x′ = a11x + a12y + a13;
y′ = a21x + a22y + a23. The initial transformation is a
pure translation with a11 = a22 = 1; a12 = a21 = 0, en-
suring the most “energetic” overlap between the object and
prototype. The energy for different translations (a13, a23)
of the object relative to the prototype is shown in Fig. 5;
the chosen initial position (a∗

13, a
∗
23) in Fig. 6 maximizes

this energy. Then the gradient search for the local energy
maximum closest to the initialization selects the six param-
eters a; Fig. 7 (a) shows the final transformation aligning
the prototype contour to the object.

3. Experimental Results

Due to space limitations, we focus on zebra photos,
dynamic contrast enhanced magnetic resonance imaging
(DCE-MRI) of human kidney, and low dose computed to-
mography (LDCT) of human lung commonly perceived as
difficult for both the area- and feature-based registration.
But the like results are obtained for several other types of
complex objects (e.g., starfish photos or brain images). We
compare our approach to three popular conventional tech-
niques, namely, to the area-based registration using MI [26]
or normalized MI [28] and to the feature-based registra-
tion establishing correspondences between the images with
SIFT [18]. Note that for both MI and NMI we used the im-
plementations in ITK (Ver. 2.0). Results are shown in Fig. 7.

To clarify why the MI- or NMI-based alignment is less
accurate, Fig. 8 compares the MI / NMI and Gibbs en-
ergy values for the affine parameters that appear at succes-
sive steps of the gradient search for the maximum energy.
Both the MI and NMI have many local maxima that poten-
tially hinder the search, whereas the energy is practically
unimodal in these experiments. The SIFT-based alignment
fails because it cannot establish accurate correspondences
between similar zebra stripes (Fig. 9).

10 20 30 40

0.85

0.9

0.95

1

Our
MI
NMI

Figure 8. Gibbs energy, MI, and NMI values at the successive steps
of the gradient search.

Figure 9. Corresponding points by SIFT.

In the above example the object aligned with the pro-
totype has mainly different orientation and scale. Fig-
ure 10 shows more diverse zebras and their Markov-Gibbs
appearance-based and MI-based alignment with the proto-
type in Fig. 2(a). Visually, the back-projection of the pro-
totype contour onto the objects suggests the better perfor-
mance of our approach. To quantitatively evaluate the ac-
curacy, masks of the co-aligned objects obtained by manual



(a) (b) (c)
Figure 10. Original zebras (a) aligned with our (b) and the MI-
based (c) approaches.

(a) (b)
Figure 11. Overlap between the object masks aligned with our (a;
91.6%) and the MI-based approaches (b; 70.3%).

(a) (b)
Figure 12. Kidney image (a) and relative interaction energies (b)
for the clique families in function of the offsets (η, ξ).

(a) (b)
Figure 13. (a) Most characteristic 76 neighbors among the 5000
candidates (a; in white) and the pixel-wise Gibbs energies (b) for
the prototype under the estimated neighborhood.

(a) (b) (c) (d)
Figure 14. Initialization (a) and our (b), MI-based (c), and SIFT-
based (d) registration.

(a) (b) (c)
Figure 15. Original kidneys (a) aligned with our (b) and the MI-
based (c) approaches.

(a) (b)
Figure 16. Overlap between the object masks aligned with our (a;
90.2%) and the MI-based approaches (b; 62.6%).

(a) (b)
Figure 17. Lung image (a) and relative interaction energies (b) for
the clique families in function of the offsets (η, ξ).

segmentation are averaged in Fig. 11. The common match-
ing area is notably larger for our approach (91.6%) than for
the MI-based registration (70.3%). Similar results obtained
for the kidney images are shown in Figs. 12–16: the com-



(a) (b)
Figure 18. (a) Most characteristic 173 neighbors among the 5000
candidates (a; in white) and the pixel-wise Gibbs energies (b) for
the prototype under the estimated neighborhood.

(a) (b) (c) (d)
Figure 19. Initialization (a) and our (b), MI-based (c), and SIFT-
based (d) registration.

(a) (b) (c)
Figure 20. Original lungs (a) aligned with our (b) and the MI-based
(c) approaches.

(a) (b)
Figure 21. Overlap between the object masks aligned with our (a;
96.8%) and the MI-based approaches (b; 54.2%).

mon matching area 90.2% is for our approach vs. 62.6%
for the MI-based one. The final application which we intro-
duced in this paper is the alignment of LDCT lung images.
The results of LDCT lung images are shown in Figs. 17–
21: the common matching area 96.8% is for our approach
vs. 54.2% for the MI-based one.

4. Conclusions

In this paper we introduced a new approach to align an
image of a textured object with a given prototype whose
appearance is modeled with a Markov-Gibbs random field
with pairwise interaction. Experimental results confirm that
image registration based on our Markov-Gibbs appearance
model is more robust and accurate than popular conven-
tional algorithms. Due to the reduced variations between
the co-aligned objects, our approach results in more accu-
rate average shape models that are useful, e.g. in image
segmentation based on shape priors.

As we mentioned in the experimental result section, the
proposed approach is not only limited to zebra photos, kid-
ney and lung images but also is suitable for registering
starfish photos and brain images. The latter were not in-
cluded in the paper because of the space limitations, but,
the registration results for the starfishes and brain images
are provided on our website1.

Our future work will focus on generalizing the proposed
appearance Markov-Gibbs random field model to learn the
appearance model of 3D volumes instead of 2D images.
Also, we will integrate our approach in a framework of
shape based segmentation; which we believe will enhance
the accuracy of segmentation results of the existing ap-
proaches.
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