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Abstract

Diffusion weighted magnetic resonance (MR) imaging
is a powerful tool that can be employed to study white
matter microstructure by examining the 3D displacement
profile of water molecules in brain tissue. By applying
diffusion-sensitized gradients along a minimum of 6 direc-
tions, second-order tensors can be computed to model dom-
inant diffusion processes. However, conventional DTI is not
sufficient to resolve crossing fiber tracts. Recently, a num-
ber of high-angular resolution schemes with greater than
6 gradient directions have been employed to address this
issue. In this paper, we introduce the Tensor Distribution
Function (TDF), a probability function defined on the space
of symmetric positive definite matrices. Here, fiber crossing
is modeled as an ensemble of Gaussian diffusion processes
with weights specified by the TDF. Once this optimal TDF
is determined, the diffusion orientation distribution function
(ODF) can easily be computed by analytic integration of the
resulting displacement probability function.

1. Introduction

In the past decade, diffusion magnetic resonance imag-
ing (MRI) has become a powerful tool for studying the
structure of fibrous materials. By applying diffusion-
sensitized gradients, diffusion MRI characterizes the parti-
cle diffusivity profile in various tissues. When the duration
of the applied diffusion sensitization § is much smaller than
the time between the two pulses, the MR signal attenuation
is related to the displacement probability function using a
Fourier integral relationship with respect to a wave vector ¢
[1].

In brain imaging, diffusion MRI is particularly advanta-
geous over conventional non diffusion-weighted MRI as it
can reveal the configuration and orientation of fiber tracts
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in white matter. The Diffusion Tensor MRI (DT-MRI)
proposed in [2] models the water displacement probabil-
ity function using a zero-mean 3D Gaussian distribution
whose covariance matrix, a second-order positive-definite
symmetric tensor, represents the principal directions of dif-
fusion and orientation of local fiber tracts. Although ex-
tremely powerful and easy to compute, DT-MRI has some
disadvantages. For example, any Gaussian probability dis-
tribution function has at most one orientational mode (prin-
cipal direction), and thus can not resolve fiber crossing.

More recently, several different approaches have been
developed to address this issue, involving sets of diffusion
gradients with high angular resolution, by sampling the g-
space on one or more shells with fixed radii. Methods such
as the g-ball imaging technique [3], the Persistent Angular
Structure (PAS) technique [4] and Spherical deconvolution
techniques [5] have been proposed to recover partial infor-
mation on the displacement probability function, while still
allowing the inference of underlying fiber orientations.

In this paper, we propose a new approach, the computa-
tion of the tensor distribution function (TDF), to model fiber
crossing in diffusion MR images. By using Gaussian dis-
tributions as basis functions, we expand the unknown dis-
placement probability function with the weights given by
the TDF. This may also be viewed as a natural, probabilis-
tic extension of the multi-compartmental model. With the
computation of the TDF, the water displacement probabil-
ity function, orientation distribution function (ODF), ten-
sor orientation distribution (TOD), and their corresponding
anisotropy measures may all be obtained through simple an-
alytic relations.

2. Theory

In standard diffusion-weighted MRI, images are ac-
quired using the Stejskal-Tanner pulsed gradient spin-echo
method. With some simplifications (rectangular pulse pro-



files), measured image intensities S are linked to p, the dis-
placement probability function of water molecules, via the
following Fourier transform

S(q) = 5(0) / p(x) expliq - z)de ()

here the wavenumber ¢ = rdG, where r, §, and G are the
gyromagnetic ratio, the duration of the diffusion sensitiza-
tion, and the applied magnetic gradient vector. Without loss
of generality, let us assume the constant S(0) is 1.

Assuming a simple Gaussian-diffusion one-tensor
model, the displacement probability function evaluated at
position x (given diffusion tensor D, and diffusion time t)
is

ztD™ g

p(w) = ((4t)* det(D)F exp (= =
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Thus, the measured diffusion MR image intensities in
this one-tensor case is simply S(q) = exp(—tq¢'Dq). It
is often useful to use the normalization ¢ = ¢/|q|, and
the notation b = t|q|?. In this case, we have S(§) =
exp(—bg' Dq).

2.1. The Tensor Distribution Function

Let us first denote the space of symmetric positive defi-
nite 3-by-3 matrices as ). We seek a probabilistic ensemble
of tensors, as represented by a Tensor Distribution Function
P defined on the tensor space D, that best explains the ob-
served diffusion-weighted images. In this case, the calcu-
lated image intensity is

Scalculated(q) = P(D)exp ( - tthq> dD (3)

DeD

To solve for an optimal TDF P*, we apply multiple

diffusion-sensitized magnetic field gradients in directions
¢;s, and arrive at P* using the least-squares principle

P* = argminp Z (Sobs(Qi) - Scalculated(%))2 “

To simplify our derivations, we define the error vector
E(qi) = Sobs(¢i) — Secaicutated(q:) to be the contribution to
the total error with respect to g;. For P(D) to be a true ten-
sor distribution function, we have to enforce two contraints,
i.e., the non-negativity constraint: P(D) > 0 for every D,
and the probability density constraint: [ P(D)dD = 1.

To enforce the first constraint, we utilize the non-
negativity property of the exponential function and let
P(D) = exp(R(D)). The minimization problem as pro-
posed above is now optimized in the associated R space,
ensuring the non-negativity of the resulting TDF. To this

end, the gradient descent in the R space for this minimiza-
tion problem is:

(D)= 3 2B(g) ep(RIDNF(D,a)  (5)

Here, 7 is an artificial time, and F'(D,q;) = exp( -

Let us now turn to address the second constraint.
We first rewrite this constraint in the R space:
Jpepexp (R(D))dD = 1, and modify the gradient
direction in Eq.(5) by gradient projection onto the con-
straint space. This gives us the following modified gradient
descent

(D) = Y Bla) exp(R(D)F(D,45) + Aexp(R(D))
Z ©)

where
 Jpenexp(R(D)) 32, E(g) exp(R(D))F(D, g;)dD
fDeD exp(R(D))?*dD

A=

2.2. Parametrizing the Tensor Space D

The solution space D is a 6-dimensional space, and some
reduction is necessary for numerical optimization. To this
end, we assume that two eigenvalues (out of three) are equal
for each individual tensor in D, which is reasonable in prac-
tice. With this assumption, we only need to specify, for each
tensor, one unit direction on the sphere which we associate
with the third eigenvalue. Thus, each tensor is now rep-
resented by two scalars (specifying 3 eigenvalues) and one
unit direction, allowing us to reduce D to a 4-dimensional
space. In other words, every tensor D may be expressed
using D(), 0), where the eigenvalues A = (A1, A2) (with
Ao the repeated eigenvalue), and 6 = (61, 05) the azimuthal
and polar angles associated with ;. Here we do not spec-
ify whether the two equal eigenvalues are smaller or greater
than the third eigenvalue, allowing more types of tensors to
be included.

Lastly, the unit direction associated with each tensor in
D is initially expanded and parameterized with respect to
the n diffusion-sensitized gradient directions ¢;s. The ra-
tionale behind this particular discretization is that the an-
gular resolution of computed fiber tracts should be linearly
related to the number of independent diffusion-sensitized
gradients employed when acquiring HARDI. Once an ini-
tial solution is computed for the tensor distribution function,
we further refine the angular resolution (beyond that given
by the diffusion-sensitizing gradient directions) by using a
multi-resolution scheme.



2.3. From TDF to ODF and Beyond

Once the optimal TDF is calculated, the displacement
probability function p is simply:

t -1
po)= [ PO)(@mt) der(D)H exp (-
DeD 41
(N
Moreover, the ODF can be analytically computed by ra-
dial integration:

ODF(z) = C’/OOO p(rz)dr

1
2

C/DE]D) P(D)(det(D)itD*%z) D (8)

Here C' is a normalizing constant. Lastly, we deter-
mine dominant fiber directions by examining the peaks in
the Tensor Orientation Distribution Function (TOD), the
marginal density function of the TDF by integrating out the
eigenvalues A = (Aq, \o):

TOD(0) = / P(D(A\,0))d\ )
A

Once the dominant fiber direction 8* is determined, one
can estimate anisotropy measures (i.e., eigenvalues) of the
dominant fibers (A*) by computing the expected values of A
along this direction.

J P(D(X, 0%))AdA
[ P(D(\,0%))dX

Here, we note that computing TOD may be advantageous
when comparing our TDF approach to methods such as Q-
ball imaging, where determination of dominant fiber tract
directions is less straightforward.

A*

(10)

2.4. Exponential isotropy via Shannon entropy

To provide a complete recipe for the TDF framework,
here we seek a measure, similar to fractional anisotropy or
generalized fractional anisotropy, that quantifies the over-
all anisotropy of any given voxel. First, we observe that
the Shannon entropy (H) of any TDF P measures the ran-
domness of this probabilistic ensemble, and thus inversely
measures how certain we can estimate dominant fibers.

H(P(D)) = — /D . P(D)logP(D)dD  (11)

In other words, here the Shannon entropy measures the
isotropy of any given voxel, and thus we propose the expo-
nential isotropy (EI) as follows.

EI(P(D)) =e fDe]D P(D)logP(D)dD (12)

Notice that unlike FA or GFA, EI takes greater values in
white matter than in gray matter.

)ap

3. Results

In this section, we present experimental results to vali-
date the proposed TDF approach. Two diffusion-sensitized
gradient protocols were acquired from an individual subject
on a Bruker Medspec 4 Tesla MRI scanner, with a trans-
verse electromagnetic (TEM) headcoil. The timing of the
diffusion sequence was optimized for SNR according to the
scheme proposed in [6].

The first protocol used 27 diffusion-sensitized gradi-
ent directions, evenly distributed on the hemisphere, and
three baseline scans with no diffusion sensitization (i.e., T2-
weighted images). Acquisition parameters were (b-value:
1146 s/mmg; TE/TR: 91.7/6090 msec; FOV=230x230; in-
plane resolution: 1.8mmx1.8mm; 21 x Smm slices with
a 0.5mm gap; acquisition time 3:05 minutes). The sec-
ond protocol used 94 diffusion-sensitized gradient direc-
tions, and 11 baseline scans with no diffusion sensiti-
zation (b-value: 1159 s/mmz; TE/TR: 92.3/8250 msec;
FOV=230x230; in-plane resolution: 1.8mmx1.8mm; 55 x
2mm contiguous slices; acquisition time 14:30 minutes). To
assess the performance of the TDF approach, we first simu-
late various configurations of one-tensor systems using dif-
ferent b values and signal-to-noise ratios (SNR) (similar to
those seen in real HARDI data). To quantitatively compare
the proposed TDF approach to other methods in the litera-
ture, we compare the calculated ODF (from the computed
TDF) and the true ODF using the L1-norm, L2-norm, and
the Kullback-Leibler distance. Here, we chose A\ = 18 and
Ao =2 (107192571 ) as the eigenvalues for each individ-
ual tensor, and employed Rician noise in our simulations.
The ODFs were rendered using 642 points, as determined
using an icosahedral approximation of the sphere.

Table 1 compares the mean and standard deviation of the
three performance measures with a fixed b value and differ-
ent SNR’s (10, 15, and 20) using the 27-direction protocol.
The results indicate that the TDF approach is robust, and
is relatively independent of the SNR (signal-to-noise ratio).
Moreover, the results are comparable to those reported in
[5]. In Tables 2 and 3, we investigated the influence of b
values on the performance measures, and the results indi-
cated that the TDF approach, similar to other methods, per-
forms better with increasing b values (in this paper, b ranges
from 1000 to 4000 s/mm?). To assess the performance in
resolving fiber-crossing, we simulated two-tensor systems
with equal weights and varying angles of crossing (45, 60
and 90 degrees), and the corresponding Kullback-Leibler
distance measures are shown in Table 4. Typical examples
of recovered ODFs are shown in Figure 1.

To compare the two acquisition protocols, similar 2-
tensor simulations were conducted using the 94-direction
protocol and the results are shown in Table 4 (here, b value
and SNR are 1200 s/mm? and 15). Interestingly, the results
indicate that the 27-direction protocol performs comparable



to the 94-direction protocol, indicating the numerical stabil-
ity of both the TDF approach and the acquisition processes.

In the next experiment, we investigated the con-
cept of the tensor orientation distribution function
(TOD) by simulating 2-tensor systems with 90-
degree crossing using the 94-direction protocol (the
two tensors are: 10~ Pdiag(18,2,2)m?s~  and
10~ 1%iag(2,18,2)m?s~t).  Examples of computed
TOD’s are plotted at the bottom of Figure 1. Visually,
we observe that the recovered TOD has two peaks corre-
sponding to the true fiber orientations. To help visualize
the recovered ODF’s, two fiber bundles crossing at 90
degrees were simulated, using similar parameter settings as
above, in a 10 by 10 by 1 grid (Figure 3). Notice that the
fiber crossing is visually clearly resolved. In this case, the
mean angular separation of the two recovered tensors, as
computed using the corresponding TODs, is 89.8 degrees
with a standard deviation of 4.3 degrees (in Fig. 2, we
plotted the recovered dominant fiber orientations, using
the spherical coordinate system, relative to the actual
orientations used to simulate these 2-tensor systems).

To validate the TDF approach using real imaging data,
the diffusion-weighted MR images of a normal control sub-
ject were acquired using the 27-direction acquisition proto-
col. Three regions were used (Fig. 7): region one covered
the crossing of the corona radiata and corpus callosum; re-
gion two was obtained from the fanning of the arcuate fas-
ciculus; region three from the corpus callosum where inter-
hemispheric connections are known. The results are shown
in Figs. 4-6. In these cases, the recovered ODF plots appear
consistent with known anatomical structures. Lastly, the ex-
ponential isotropy (EI) plot for region one is shown in Fig.
8, illustrating the value of EI as a natural isotropy measure
for the TDF approach.

4. Conclusion

In this paper, we introduced the computation of the Ten-
sor Distribution Function (TDF) as a novel method to re-
solve intravoxel fiber crossing in HARDI. We presented
mathematical formulations of the TDF, and proposed a pro-
jected gradient descent algorithm for numerical computa-
tion of TDFE. With minor constraints on the diffusion pro-
cess and the anisotropy of individual tensors, the proposed
approach solves for an underlying tensor ensemble that
best describes the observed diffusion-weighted MR images.
Moreover, it offers some advantages relative to other meth-
ods since the displacement probability function, orientation
distribution function, and principal fiber directions (or the
tensor orientation function) may all be directly derived from
TDF through simple analytic relations.

Table 1. Means and standard deviations (in parenthesis) of the
three performance measures for one-tensor simulation results with
varying SNR, b = 1200s/mm?

SNR | 10 15 20

KL .0020 (1.Te-4) .0022 (1.0e-4) .0023 (6.2¢-5)

L1 7.6e-4 (1.7e-5)  8.2e-4 (1.8e-5)  8.8e-4 (1.9¢-5)

L2 .0032 (9.5e-5) .0034 (3.5e-5) .0035 (3.1e-5)
Table 2. Mean of the three performance measures for one-tensor

simulation results with varying b, SNR = 15

b 1000 1500 2000 2500 3000 3500 4000

KL | 0.0022 0.0022 0.0021 0.0019 0.0018  0.0014  0.0013
L1 82e-4 824 T7.6e-4 T.6e-4 T7.0e-4 64e-4  57e-4
L2 | 0.0034 0.0034 0.0033 0.0032 0.0030 0.0027 0.0026

Table 3. Estimated standard deviation of the three performance
measures for one-tensor simulation results with varying b, SNR

=15
b 1000 1500 2000 2500 3000 3500 4000

KL | T.2e-4 52e-5 87e5 78e-5 79e5 22e4 1de4d
L1 6.4e-5 63e-4 6.0e-4 6.0e-4 55e-4 595 3.9e-5
L2 l.le-4 3.5e-5 7.de5 7.0e-5 72e-5 2.le4 1lde4

Table 4. Mean (and standard deviation) of KL distance for two-
tensor simulation results with varying angles, b = 1200s/mm?,
SNR =15

Angle 45 60 90

27 directions
94 directions

2.5e-3 (de-4)
2.51e-3 (2.21e-4)

4.0e-3 (4.5e-4)
3.75e-3 (5.72e-4)

3.4e-3 (5e-4)

Figure 1. Top: Examples of typical recovered ODFs for a two-
tensor system with relative orientations of 90 (left), and 60 (right)
degrees (simulated data with 94 diffusion-sensitizing gradients,
b = 1200s/mm?, and SNR = 15). In these examples, we used
the multi-grid method to refine angular resolution beyond the orig-
inal 94 directions. Here, the final angular resolution is given by an
icosahedral approximation of the sphere (642 directions). Center:
A sphere showing the directional color coding used for the ODFs.
Bottom: Recovered TOD of the same 2 systems.
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Figure 3. Recovered ODF plot for simulated 2-tensor crossing at
90 degrees using the 27-direction protocol (Rician noise; SNR =
15).

dependent field gradient.” J. Chem. Phys. 42, 288-292,
1965

[2] Basser, P. J. "Inferring microstructural features and the
physiological state of tissues from diffusion-weighted
images.” NMR Biomed 8, p. 333-344, 1995.

¢

:

L3
b
Y
ay o9
- =
- %
-
-
[

Figure 4. Recovered ODF plot from area 1 of the HARDI data in
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Figure 8. The exponential isotropy (EI) plot of Area 1 of the
HARDI data in Fig. 7 (the corresponding ODF and GFA plot is
shown in Fig. 4). Here, gray matter appears to have higher EI
values than White matter.
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