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Abstract
We propose a method that detects and segments multi-

ple, partially occluded objects in images. A part hierarchy
is defined for the object class. Whole-object segmentor and
part detectors are learned by boosting shape oriented local
image features. During detection, the part detectors are ap-
plied to the input image. All the edge pixels in the image
that positively contribute to part detection responses are
extracted. A joint likelihood of multiple objects is defined
based on the part detection responses and the object edges.
Computing the joint likelihood includes an inter-object oc-
clusion reasoning that is based on the object silhouettes ex-
tracted with the whole-object segmentor. By maximizing
the joint likelihood, part detection responses are grouped,
merged, and assigned to multiple object hypotheses. The
proposed approach is applied to the pedestrian class, and
evaluated on two public test sets. The experimental results
show that our method outperforms the previous ones.

1. Introduction
Detection and segmentation of objects of a given class

is a fundamental problem of computer vision. Recently,
promising results have been achieved for several classes, in-
cluding faces [18, 9], pedestrians [12, 8, 7, 10, 17, 11, 16],
and cars [3, 19]. Many detection methods learn object clas-
sifiers from a labeled training set. Given a test image, the
classifier is applied to the sub-windows with variable sizes
at all positions. For detection of objects with partial occlu-
sions, part based representations can be used. For each part,
a detector is learned and the part detection responses are
combined.

The part detectors are typically applied to overlapping
windows and the windows are classified independently,
hence one local feature may contribute to multiple over-
lapped responses for one object, see Fig.1. Some false de-
tections may also occur, as local features may not be dis-
criminative enough. Due to poor image cues or partial oc-
clusions, some object parts may not be detected. To get

a one-to-one mapping from part detection responses to ob-
ject hypotheses, we need to group the responses and explain
inconsistency between the observation and the hypotheses.
When objects are close to each other, both the one-object-
multiple-response problem and the part-object assignment
problem require joint consideration of multiple objects, in-
stead of treating them independently. We propose a unified
framework for part response grouping, merging and assign-
ing, and demonstrate that it outperforms the previous related
methods.

(a) Full-body (b) Head-shoulder

(c) Torso (d) Legs

Figure 1. Examples of part detection responses for pedestrians.

1.1. Related work
Many previous efforts on detection, i.e. [7, 8], focus on

the classification accuracy, measured by detection rate and
false positive per window. However, the sub-window clas-
sification results are not the final outputs of a detection sys-
tem. One main post-process is to “merge” the positive re-
sponses having large overlap and expect that each of the re-
sulting clusters corresponds to one object, e.g. the aggregate
clustering used in [21] and the adaptive bandwidth mean-
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shift used in [7]. Usually, thresholding on overlap is used to
determine if two responses are from the same object. Set-
ting this threshold can be tricky when objects are close to
each other. Some other methods try to generate human hy-
potheses by directly grouping image features, e.g. the re-
cent work by Sharma and Davis [4]. These methods treat
individual objects independently. They do not consider the
interaction between multiple objects.

Recently, part based representations have been used to
detect objects with partial occlusions, e.g. [12, 6, 2, 15]. In
these methods, several part detectors are learned by super-
vised learning. One way to build a set of part detectors is
to train them independently, like in [12, 6]. However, this
increases the time complexity of training linearly w.r.t the
number of parts. Another way is to build one part detector
as a true subset of the whole-object detector. For example,
in [15] each sub-region detector use a subset of features of
the whole-region detector and only the decision thresholds
are different. The main limitation of this method is that a
subset of features of the whole-object model may not be
sufficient to construct a good part model.

For detection, the part detectors are applied to the input
image and the detection responses are merged with some
clustering method, as in the case of single object detec-
tor. When assigning part responses to object hypotheses,
some joint analysis is done to cover partially occluded cases
[12, 6, 2]. A joint image likelihood of multiple objects
is computed by awarding successful part detection and pe-
nalizing missed detection of visible parts and false alarms.
Different hypotheses configurations are tested, and the one
with the highest likelihood is kept as the final interpretation
of the image. The inputs of the part combination stage are
the bounding boxes of parts. These are relatively coarse rep-
resentations from which we can not get an accurate occlu-
sion model. In addition, the errors from the overlap thresh-
olding at the response merging stage are hard to correct at
the part combination stage. Different from the part combi-
nation methods, Leibe et al. [14] propose an Implicit Shape
Model based approach to detect multiple humans. Joint
analysis is done to cover occluded objects.

1.2. Outline of our approach
Fig.2 shows a diagram of our approach. We define a

part hierarchy for an object class, in which each part is a
sub-region of its parent. As building part detectors indepen-
dently is time consuming and building them as sub-sets of
the whole-object detector may not be able to achieve a de-
sirable accuracy, we choose a trade-off between these two
approaches. For each part, a detector is learned by boosting
local shape features. A child node in the hierarchy inher-
its image features from its parent node and if a target per-
formance can not be achieved from the inherited features,
more features are selected and added to the child node. For
whole-object, besides the detector a pixel-level segmentor

is learned. Given a new image, the part detectors are ap-
plied. The image edge pixels that positively contribute to
the detection responses are extracted. The part responses
and object edges form an informative intermediate repre-
sentation of the original image.

In our approach, we do not divide the tasks of merging
responses and part combination into two separate stages;
instead, we try to solve them under the same framework.
From the part detection responses, multiple object hypothe-
ses are proposed. For each hypothesis, a pixel-level seg-
mentation is obtained by applying the whole-object seg-
mentor, and the silhouettes are extracted. We apply oc-
clusion reasoning to the object silhouettes. For joint im-
age likelihood of multiple objects, besides the reward of
successful detection, and penalties of missed detection and
false alarm, we add a matching score between visible sil-
houettes and the object edges. Our joint analysis enforces
the exclusiveness of low level features, i.e. one image fea-
ture can contribute to at most one hypothesis.

Our approach is a unified MAP framework that solves
part merging, grouping, and assigning together. The main
contributions include: 1) a part hierarchy design that en-
ables efficient learning of part detectors by feature sharing;
2) an accurate occlusion reasoning approach based on sil-
houettes; 3) a joint image likelihood based on both detec-
tion responses and object edges that are assigned to object
hypotheses exclusively. We demonstrate our approach on
the class of pedestrians. Every module in our approach con-
tributes to the robustness of the whole system. Though the
situations where any single module may have an advantage
are not frequent, together they result in a statistically signif-
icant improvement compared to the previous methods.

The rest of this paper is organized as follows: section 2
describes the part detector hierarchy; section 3 introduces
our joint analysis algorithm for multiple objects; section 4
shows the experimental results; and some conclusions and
discussions are given in the last section.

2. Hierarchical Body Part Detectors
We use the class of pedestrians to illustrate and validate

our approach. We define a part hierarchy for human body,
which consists of three levels including a full-body node
and 11 body part nodes, see Fig.3.

2.1. Learning part detectors
For each node, a detector is learned. As we define the

part hierarchy such that the region of one child node is a
sub-region of its parent node, feature sharing between the
parent and child nodes is possible. For each part node, a
boosting algorithm is used to select good local shape fea-
tures and construct a classifier as detector. The image fea-
tures used are edgelets as in [12]. Before the regular boost-
ing procedure, the detector of one node, except for the “full-
body” node, inherits all the edgelet features overlapping



Figure 2. Overall diagram of our approach.

with its sub-region from its parent node. For each inher-
ited edgelet, the points that are out of the part’s sub-region
are removed, and the classification function is re-trained.
Usually the detector can not achieve a high accuracy from
the inherited features only. The regular boosting algorithm
is then applied to add more features to the classifier. Fig.4
gives an illustration of feature sharing. The boosting algo-
rithm used is the Cluster Boosting Tree (CBT) method in
[3]. More details of the experimental setting are given later
in section 4.

For the full-body node, we use the method in [5] to learn
a pixel-level segmentor. Note, we do not learn segmentors
for the other body parts. Because the full-body segmentor
is based on local features, even when the object is partially
occluded, the full-body segmentor can still segment the vis-
ible part well based on the visible features.

Figure 3. Hierarchy of human body parts. ( is full-body;
head-shoulder; torso; legs; left shoulder;
head; right shoulder; left arm; right arm;
left leg; feet; right leg. The left and right sides here
are w.r.t. the 2-D image space.)

2.2. Detecting body parts and object edges
Given a new image, the part detectors are applied. Be-

sides collecting part responses, we extract image edges that
correspond to objects. For each edgelet feature in the

classifier, we call it a positive feature if it has higher av-
erage matching score on positive samples than on negative
samples, i.e.

(1)

where is positive/negative sample space. The computa-
tion of the matching score between an edgelet feature and
an image is similar to edge template matching [12]. The
average matching scores are evaluated during the off-line
learning stage. For one sub-window that is classified as ob-
ject, the positive features in the sub-window are ranked ac-
cording to their matching scores. The positive features with
top scores are retained.

Figure 4. Illustration of feature sharing in part detector hierarchy.
(The black ones are the inherited features, and the gray are the
newly selected features.)

As one detector usually contains about one thousand
positive features, a large number of edgelets are kept for one
image. Some of these edgelets correspond to the same edge
pixels. We apply a clustering algorithm to prune redundant
edgelets. An edgelet consists of a chain of 2-D points. De-
note the positions of the points in an edgelet by ,
where is the length of the edgelet. Given two edgelets
and with the same length, we define an affinity between
them by

(2)

where is the mean of . If the two features have dif-
ferent numbers of points, and , first they are aligned by
their center points, and then the longer feature is truncated
to the length of the shorter one by removing points from the
two ends. The affinity given by Equ.2 multiplied by a factor
of is taken as the affinity for these edgelets.

The clustering algorithm is an iterative algorithm. First,
we find the edgelet with the highest matching score, and



then remove all edgelets with high affinity to it. This pro-
cedure is repeated until all object edgelets are examined.
The remaining edgelets are the observations that support
the putative object hypotheses, see Fig.5 for an example.
Compared to general edge based image segmentation meth-
ods, where all edges are extracted, our edge extraction re-
moves edges from background clutters and focuses on ob-
ject shapes. These object edges, together with the bounding
boxes, are input for the joint analysis of multiple objects.

Figure 5. Extracted object edgelet pixels.

3. Joint Analysis for Multiple Objects
Similar to the previous methods [12, 6, 2], our joint anal-

ysis takes the detection results as input and searches for
the multiple object configuration with the best image like-
lihood. The difference is that we enforce feature exclusive-
ness among multiple hypotheses, do occlusion reasoning to
compute 1-D silhouette based visibility score, and add the
object edge information into the likelihood definition. Fig.6
lists the main steps of the algorithm.

1. Propose initial object hypotheses sorted such that their -
coordinates are in a descending order.

2. Segment object hypotheses and extract their silhouettes.
3. Examine the hypotheses one by one, from front to back

(a) For one hypothesis , compute the joint occlusion
maps for silhouettes of multiple objects, with and with-
out ;

(b) Match the detection responses and object edgelets with
visible silhouettes;

(c) Compute the image likelihood with , , and
the likelihood without , ;

(d) If , keep the hypothesis; other-
wise remove it.

4. Output all remaining hypotheses.

Figure 6. Searching for the best multiple object configuration.

3.1. Proposing object hypotheses
Initially, object hypotheses are proposed from the detec-

tion responses of a subset of parts. For pedestrians, we use
full-body, head-shoulder, left/right shoulder, and head to
propose. During detection, only the part detectors for initial
hypothesis proposal are applied to the whole image, while
the others are applied to the local neighborhood around the
initial hypotheses. The hypotheses with large overlap ratio,
which is defined as the area of their intersection over the

area of their union, are merged. Different from the tradi-
tional merging step [21], we use a high overlap threshold to
obtain a set of “under-merged” responses, in which one ob-
ject may have multiple hypotheses but hypotheses of differ-
ent objects are unlikely to be merged. Although this under-
merging reduces the search space, it can keep the responses
of close by objects separate for further joint analysis. We
sort the object hypotheses such that their -coordinates are
in a descending order, see Fig.7(a) for an example.

(a) (b)

(c) (d)

Figure 7. Computing joint image likelihood for multiple objects.
a) the examined multiple object configuration. b) the visible sil-
houettes obtained by occlusion reasoning. c) the parts of the sil-
houettes that have matched edgelets (red points). d) result of
matching full-body detection responses in Fig.1(a) with the cur-
rent hypotheses (yellow: matched responses; orange: response not
matched with any hypothesis; red: hypothesis without matched
response).

3.2. Joint occlusion map of silhouettes
For each hypothesis, segmentation is computed by ap-

plying the whole-object segmentor and its silhouette is ex-
tracted. As in [12, 6, 2], we assume that objects are on a
ground plane and the camera looks down towards the plane,
so that the relative depths of objects can be inferred from
their image coordinates. We render the segmentation masks
of the ordered hypotheses by a -buffer like method, and
remove the invisible parts of the silhouettes that are out of
image frame or occluded by other objects, see Fig.7(b). For
each part of an object hypothesis, a visibility score is de-
fined as the ratio between the length of the visible silhouette
and the length of the whole silhouette. Compared to the 2-D
region based visibility score in the previous work [12, 6, 2],
the 1-D silhouette based visibility score is more accurate
and meaningful for the shape based detectors. For example,
when the region of a big object in the back is mostly oc-
cluded by a smaller object in the front, the silhouette based
occlusion reasoning can retain the back one for further anal-
ysis as long as its contour is mostly visible.



3.3. Matching object edges with visible silhouettes
After getting the visible silhouettes, we assign the object

edgelets extracted during part detection to the hypotheses
by matching them with the visible silhouettes. For each
edgelet, we find the closest silhouette to it and align the
edgelet with the silhouette. Fig.8 gives the algorithm.

1. Compute distance transformation for all silhouettes;
2. For each object edgelet

(a) Compute Chamfer matching scores to all the silhou-
ettes, and assign the edgelet to the silhouette with the
largest score;

(b) Find the silhouette point nearest to the edgelet and
locally align the edgelet with the silhouette around ;

(c) Mark the part of the silhouette that is covered by the
edgelet as “supported”;

Figure 8. Matching and aligning edgelets with silhouettes.

To assign edgelets to silhouettes, first we compute the
distance transformation for each visible silhouette. Then,
we compute the Chamfer matching scores between all the
edgelets and all the silhouettes through distance transfor-
mation. One edgelet is assigned to the silhouette that has
the highest matching score with it. (If one edgelet has low
scores with all the silhouettes, then it is not assigned to any.)

To align one edgelet with its corresponding silhouette,
first we find the silhouette point closest to the edgelet
through distance transformation. Then we search a small
neighborhood of along the silhouette, pixels. For
each position, we cut a segment from the silhouette with
the same length as the edgelet and compute its shape affin-
ity to the edgelet by Equ.2. The position with the highest
affinity is taken as the aligned position, and the correspond-
ing segment of the silhouette is marked as “supported”, see
Fig.7(c). The ratio between the length of the supported seg-
ments and the overall length of the silhouette is called the
edge coverage of the silhouette.

The above algorithm guarantees that one edgelet con-
tributes to at most one hypothesis. If one silhouette can not
get enough supporting edgelets, the corresponding hypoth-
esis will be removed. This solves the one-object-multiple-
hypotheses problem in a natural way and prune some false
alarms. For example, the hypothesis 8 in Fig.7 is removed
in this way.

3.4. Matching detection responses with visible parts
For each hypothesis, we remove the body parts whose

visibility scores are smaller than a threshold (=0.7 in our
experiments). The remaining parts are considered observ-
able to the detectors. Matching part detection responses
with the visible part hypotheses is a standard assignment
problem, which we solve by the Hungarian algorithm [22].
For each response-hypothesis pair we compute their over-
lap ratio. If a pair’s overlap ratio is larger than a threshold

(=0.5 in our experiments), it is considered to be a poten-
tial match. After matching, we apply under-merging to the
remaining part responses to remove redundant false alarms.
Then we count the successful detections, false alarms, and
missed detections, see Fig.7(d) for an example.

3.5. Computing joint image likelihood
Denote one visible part of an object hypothesis and one

part detection response by and respectively. Denote the
set of matched response-hypothesis pairs by (success-
ful detection), the sets of false alarms and missed detections
are defined by and
(false negative) respectively. Denote the object edgelets
from the response by . The joint image likelihood
of multiple objects is defined by

(3)

where packs all observations, and for all hypotheses.
The first term in the right side of Equ.3 is the reward for
successful detections. It is decomposed as

(4)

To model , we evaluate the distribution of the
part detector’s true positive rate under different edge cov-
erage of the silhouette. The distribution is represented as a
histogram. Spatial error between the response and the hy-
pothesis or poor contract reduces the edge coverage score.
Lower edge coverage usually corresponds to lower true pos-
itive rate. We assumes that is an uniform distri-
bution, hence it is ignored in practice. The second term of
the right side of Equ.3 is the penalty for false alarms. It is
computed by one minus the detector’s precision. The third
is the penalty for missed detection. It is computed by one
minus the detection rate. These properties are evaluated for
different part detectors independently.

3.6. Searching for the best configuration
To search for the best interpretation of the image, we

examine the initial object hypotheses one by one, in the de-
scending order of their -coordinates, see Fig.9 for an ex-
ample. If there are several hypotheses for one object, the
algorithm will find the one that best aligns with the ob-
ject edges and part responses. For example, the hypotheses

in Fig.9 correspond to one human. Our algo-
rithm chooses the best one ( ) and removes the others. If
there are inter-object occlusions, the algorithm will ignore
the occluded parts. For example, the legs of hypothesis
are not detected, but this can be explained by occlusion from

. Therefore, is kept.

4. Experimental Results
We demonstrate our approach on the problem of pedes-

trian detection. We evaluate our system on two public im-



Figure 9. An example of searching for the best multi-object configuration. (The blue rectangles overlaid on the images are the hypotheses
being examined. The red boxes are the states kept after comparing the image likelihoods with/without one hypothesis. When examining
a hypothesis, one of the “with” and “without” likelihoods can be inherited from the previous round to reduce computational cost. For
example “without ” and “with ” are the same state, as is removed.)

age sets, the “USC pedestrian set B” [12]1 and the “Zurich
Mobile Pedestrian Sequences” [1]2. Unlike the other popu-
lar test sets for pedestrian detection, e.g. the INRIA set [13]
and the MIT set [20] which use segmented, separated hu-
man samples, these two sets contain images with multiple
interacting humans. They are very challenging because of
the frequent occlusions.

4.1. Training part detector hierarchy
To train the part detectors, we collect about 5,000 pedes-

trian samples covering different viewpoints, and 7,000
background images without humans from the Internet. The
full-body samples are normalized to pixels. The
sizes of the other body parts can be derived based on their
definitions in Fig.3. For training, the target false alarm rate
of the overall classifier is set to . The target detection
rate and false alarm rate of each cascade layer are set to

and respectively. Although feature sharing cuts
training time by about a half, it requires about five days to
train all the part detectors.

4.2. Results on the USC test set
The USC pedestrian set B contains 54 images with 271

humans from the CAVIAR corpus3. On this set, the per-
formance of our individual part detectors is comparable to
that in [12]. We compare the end-to-end performance of
our system with some previous methods. Fig.10 shows
the precision-recall curves. It can be seen that our method

1http://iris.usc.edu/˜bowu/DatasetWebpage/
dataset.html

2http://www.vision.ee.ethz.ch/˜aess/iccv2007/
3http://homepages.inf.ed.ac.uk/rbf/CAVIAR/

is significantly better than the other state-of-the-art meth-
ods. Here we do not use any scene structure or background
subtraction to facilitate detection. The test image size is

pixels. We search humans from 24 to 80 pixels
wide. We use four threads to run detection of different parts
simultaneously. Our experimental machine is a dual-core
dual-processor Intel Xeon 3.0GHz CPU. The average speed
on this set is about 3.6 second per image. Fig.12(a) shows
some example detection results on this set.
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Figure 10. Precision-recall curves on the USC pedestrian test set
B. (Our curve is obtained by changing the number of layers used
for the part detectors. A detection response is counted as correct,
if it overlaps with a ground-truth human by more than .)



4.3. Results on the Zurich test set
The Zurich set contains three test sequences captured by

a stereo pair of cameras mounted on a children’s stroller.
Same as [1], we only use the frames from the left cam-
era for testing. The first test sequence contains 999 frames
with 5,193 annotated humans; the second one contains
450 frames with 2,359 humans; the third one contains 354
frames with 1,828 humans. The frame size is . To
compare with the results in [1], which combines scene anal-
ysis with the object detection method in [14], we develop a
simple method to estimate the ground plane, which is used
to facilitate detection. First we use the full-body detector to
search for humans from 58 to 483 pixel high. Then from
the full-body responses, we do a RANSAC style algorithm
to estimate a linear mapping from the 2-D image position
to the 2-D human height: , where are
the image position, is the human height, and are the
unknowns. With ground plane, the other part detectors only
search the valid regions in the position-scale space. This
saves some computational cost and reduces the false alarm
rate.

Fig.11 shows the precision-recall curves of our methods
and those in [1]. It can be seen that on all the three se-
quences our method dominates. However, the efforts of
this work and that in [1] focus on different aspects. Ess
et al. [1] try to integrate scene structure analysis and ob-
ject detection, while our approach tries to segment multiple,
occluded objects jointly. These two complementary meth-
ods can be combined for further improvement. The average
speed of our system on this set is about 2.5 second per im-
age. Fig.12(b) shows some example results.

The performance on the USC set is much better than that
on the Zurich set. This is mainly because the background
of the Zurich set (outdoor) is much more cluttered than that
of the USC set (indoor). At similar detection rate, the false
alarm rate is much higher on the Zurich set. During testing
the only parameter different on the two sets is the search
range of human sizes.

5. Conclusion and Discussion
We described a method to group, merge, and assign

part detection responses to segment multiple, possibly inter-
occluded objects. Based on occlusion reasoning, joint like-
lihood of multiple objects is maximized to find the best in-
terpretation of the input image. We demonstrated our ap-
proach on the class of pedestrians. The experimental results
show that our method outperforms the previous ones.

To apply our approach to other object classes, some com-
ponents may need to be modified according to the class of
interest. First, the design of the part hierarchy is class de-
pendent. Different object classes may need different par-
titions. Second, the ground plane assumption is valid for
some objects in some applications, but not for all situations.
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Figure 11. Precision-recall curves on the Zurich mobile pedestrian
sequences. (Following [1]’s evaluation, only humans higher than
60 pixels are counted. The curves of [1] are for their full-system,
i.e. with ground plane and stereo depth.)

When this is not true, we need to infer the objects’ rela-
tive depths by other techniques. Third, though the feature
exclusiveness idea should be helpful for any feature based
detection, it may require different implementations for dif-
ferent features.
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